Skip to main content

Cross-Linking, Modular Design and Self-assembly in Hydrogels

  • Chapter
  • First Online:
Nano Hydrogels

Part of the book series: Gels Horizons: From Science to Smart Materials ((GHFSSM))

Abstract

Gels can be recognised as a stiff but flexible, soft everyday material. They survive the “inversion test”, it is solid-like rheology that defies the character of the gel. Low-molecular-weight gels can be classified into organogels and hydrogels based on its constitution. All these gels have wide range of applications in the fields of biomedical engineering and pharmaceutical formulation. Hydrogels are highly tuneable viscoelastic hydrophilic polymers with 3D networks of cross-linking. Despite being mostly liquid, they have solid-like rheology due to its cross-linking. They are highly water-swellable polymer networks with water imbibing properties which gives them the flexibility to mimic natural tissues. The cross-linking is stabilised via interactions including Van der Waals, covalent bonding and hydrogen bonding. Hydrogels are formed by gelators of low molecular weight and exhibit colloidal properties. Stimuli-responsive nature of supramolecular gels can be utilised in targeted drug delivery systems. Natural polymeric hydrogels have a trending application in modern medicine due to its profound implication in sensing, targeted drug delivery, controlled release of a bio-active substance, etc. These gelators assemble by noncovalent interactions like π-π interactions and hydrogen bonding. The properties of hydrogels can be tuned by changing the external stimuli. These polymeric materials that can show both effector and sensor functions can be used to mimic the natural system, thereby fabricating intelligent systems. This chapter gives brief introduction on gels, following the different type of light molecular weight. Guanosine-based hydrogels and its applications are also discussed further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beginn U, Sheiko S, Möller M (2000) Macromol Chem Phys 201:1008–1015

    Google Scholar 

  2. Lee KY, Mooney DJ (2001) Chem Rev 101:1869

    Article  CAS  Google Scholar 

  3. Xing B, Yu CW, Chow KH, Ho PL, Fu D, Xu B (2002) J Am Chem Soc 124:14846

    Article  CAS  Google Scholar 

  4. Kouwer PH, Koepf M, Le Sage VA, Jaspers M, van Buul AM, Eksteen-Akeroyd ZH, Woltinge T, Schwartz E, Kitto HJ, Hoogenboom R (2013) Nature 493:651–655

    Article  CAS  Google Scholar 

  5. Zweep N, van Esch JH (2014) Functional molecular gels, pp 1–29

    Google Scholar 

  6. Weiss RG, Terech P (eds) (2006) Molecular gels, materials with self-assembled fibrillar networks. Springer, Dordrecht

    Google Scholar 

  7. Nishinari K (2009) Gels: structures, properties, and function. In: Tokita M, Nishinari K (eds), vol 136. Springer, pp 87–94

    Google Scholar 

  8. Fages F (2005) Low molecular mass gelators. Springer, Berlin

    Google Scholar 

  9. Peters GM, Davis JT (2016) Chem Soc Rev 45:3188

    Google Scholar 

  10. De Greef TFA, Smulders MMJ, Wolffs M, Schenning APHJ, Sijbesma RP, Meijer EW (2009) Chem Rev 109:5687–5754

    Article  CAS  Google Scholar 

  11. Shi C, Huang Z, Kilic S, Xu J, Enick RM, Beckman EJ, Carr AJ, Melendez RE, Hamilton AD (1999) Science 286:1540

    Article  CAS  Google Scholar 

  12. Hirst AR, Escuder B, Miravet JF, Smith DK et al (2008) High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew Chem Int Ed 47:8002−8018

    Google Scholar 

  13. Skilling KJ, Citossi F, Bradshaw TD, Ashford M, Kellam B, Marlow M (2014) Insights into low molecular mass organic gelators: a focus on drug delivery and tissue engineering applications. Soft Matter 10:237–256

    Article  CAS  Google Scholar 

  14. Liu XY, Li J-L (2013) Soft fibrillar materials: fabrication and applications. Wiley-VCH, Weinheim

    Google Scholar 

  15. Babu SS, Praveen VK, Ajayaghosh A (2014) Functional π-gelators and their applications. Chem Rev 114:1973–2129

    Article  CAS  Google Scholar 

  16. Yagai S (2011) Supramolecular soft material. In: Nakanishi T (ed). Wiley, Hoboken, pp 77–95

    Google Scholar 

  17. Piepenbrock M, Lloyd GO, Clarke N, Steed JW (2010) Chem Rev 110:1960–2004

    Article  CAS  Google Scholar 

  18. Hirst R, Smith DK (2005) Top Curr Chem 256:237–273

    Article  CAS  Google Scholar 

  19. Soler M, Newkome GR (2012) Supramolecular chemistry: from molecules to nanomaterials. In: Gale PA, Steed JW. Wiley, pp 3283–3319

    Google Scholar 

  20. Fages F, Vögtle F, Zinic M (2005) Top Curr Chem 256:77–131

    Google Scholar 

  21. Schoonbeek FS, van Esch JH, Hulst R, Kelloggand RM, Feringa BL (2000) Chemistry 6:2633–2643

    Google Scholar 

  22. de Loos M, Ligtenbarg AGJ, van Esch J, Kooijman H, Spek AL, Hage R, Kellogg RM, Feringa BL (2000) Eur J Org Chem 3675–3678

    Google Scholar 

  23. Graham T (1861) Philos Trans R Soc Lond 151:183–224

    Google Scholar 

  24. Lloyd DJ (1926) Colloid Chem 1:767

    Google Scholar 

  25. Raeburn J, Cardoso A, Adams D (2013) Chem Soc Rev 42:5143–5156

    Article  CAS  Google Scholar 

  26. Smith M, Williams RJ, Tang C, Coppo P, Collins RF, Turner ML, Saiani A, Ulijn RV (2008) Adv Mater 20:37–41

    Article  CAS  Google Scholar 

  27. Braun H-G, Cardoso AZ (2012) Colloids Surf B 97:43–50

    Google Scholar 

  28. Israeachvili I, Wennerstrom H (1992) J Phys Chem 96:520–531

    Google Scholar 

  29. Aggeli A, Nyrkova IA, Bell M, Harding R, Carrick L, McLeish TCB, Semenov AN, Boden N (2001) Proc Natl Acad Sci USA 98:11857–11862

    Google Scholar 

  30. Liu XY (2005) Low molecular mass gelators: design, self-assembly, function. In: Fages F (ed), vol 256, pp 1–37

    Google Scholar 

  31. Liu XY, Sawant PD (2001) Appl Phys Lett 79:3518–3520

    Article  CAS  Google Scholar 

  32. Liu XY, Sawant PD (2002) Angew Chem Int Ed 41:3641–3645

    Google Scholar 

  33. Liu XY, Sawant PD (2002) Adv Mater 14:421–426

    Article  Google Scholar 

  34. Richter A, Paschew G, Klatt S, Lienig J, Arndt K-F, Adler H-JP (2008) Sensors 8:561–581

    Article  CAS  Google Scholar 

  35. Cheng E, Xing Y, Chen P, Yang Y, Sun Y, Zhou D, Xu L, Fan Q, Liu D (2009) Angew Chem Int Ed 48:7660–7663

    Article  CAS  Google Scholar 

  36. Marcombe R, Cai S, Hong W, Zhao X, Lapusta Y, Suo Z (2010) Soft Matter 6:784–793

    Article  CAS  Google Scholar 

  37. Zhou SL, Matsumoto S, Tian HD, Yamane H, Ojida A, Kiyonaka S, Hamachi I (2005) Chem Eur J 11:1130–1136

    Article  CAS  Google Scholar 

  38. Guiseppi-Elie A (2010) Biomaterials 31:2701–2716

    Article  CAS  Google Scholar 

  39. Kulkarni RV, Sa B (2009) J Bioact Compat Polym 24:368–384

    Article  CAS  Google Scholar 

  40. Kulkarni RV, Biswanath SA (2007) J Appl Biomater Biomech 5:125–139

    CAS  Google Scholar 

  41. Zhang RS, Tang MG, Bowyer A, Eisenthal R, Hubble J (2005) Biomaterials 26:4677–4683

    Article  CAS  Google Scholar 

  42. Zhao B, Moore JS (2001) Langmuir 17:4758–4763

    Article  CAS  Google Scholar 

  43. Traitel T, Kost J, Lapidot SA (2003) Biotechnol Bioeng 84:20–28

    Article  CAS  Google Scholar 

  44. Liu T-Y, Hu S-H, Liu K-H, Liu D-M, Chen S-Y (2008) J Control Release 126:228–236

    Article  CAS  Google Scholar 

  45. Liang Y-Y, Zhang L-M, Jiang W, Li W (2007) ChemPhysChem 8:2367–2372

    Article  CAS  Google Scholar 

  46. Liu XY, Sawant PD, Tan WB, Noor IBM, Pramesti C, Chen BH (2002) J Am Chem Soc 124:15055–15063

    Article  CAS  Google Scholar 

  47. Maeda S, Kato T, Kogure H, Hosoya N (2015) Appl Phys Lett 106:171909

    Article  CAS  Google Scholar 

  48. Asmarandei I, Fundueanu G, Cristea M, Harabagiu V, Constantin M (2013) J Polym Res 20:293

    Google Scholar 

  49. Lee SC et al (2013) Adv Drug Deliv Rev 65:17–20

    Article  CAS  Google Scholar 

  50. Wang QQ, Kong M, An Y, Liu Y, Li JJ, Zhou X, Feng C, Li J, Jiang SY, Cheng XJ, Chen XG (2013) J Mater Sci 48:5614–5623

    Article  CAS  Google Scholar 

  51. Wichterle O, Lím D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  52. Rokita B, Rosiak JM, Ulanski P (2009) Macromolecules 42:3269–3274

    Article  CAS  Google Scholar 

  53. Blackburn GM, Gait MJ, Loakes D, Williams DM (eds) (2006) Nucleic acids in chemistry and biology. Royal Society of Chemistry, Cambridge

    Google Scholar 

  54. Soyfer VN, Potaman VN (1995) Triple-helical nucleic acids. Springer, New York

    Google Scholar 

  55. Davis JT (2004) Angew Chem Int Ed 43:668–698

    Article  CAS  Google Scholar 

  56. Du X et al (2015) Chem Rev 115:13165–13307

    Article  CAS  Google Scholar 

  57. Balasubramanian S, Neidle S (eds) (2006) Quadruplex nucleic acids. Royal Society of Chemistry, Cambridge

    Google Scholar 

  58. Bhattacharyya T, Saha P, Dash J (2018) ACS Omega 3:2230–2241

    Article  CAS  Google Scholar 

  59. Du X, Zhou J, Shi J, Xu B (2015) Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem Rev 115:13165–13307

    Article  CAS  Google Scholar 

  60. Sangeetha NM, Maitra U (2005) Supramolecular gels: functions and uses. Chem Soc Rev 34:821–836

    Article  CAS  Google Scholar 

  61. Datta S, Bhattacharya S (2015) Multifarious facets of sugar-derived molecular gels: molecular features, mechanisms of self-assembly and emerging applications. Chem Soc Rev 44:5596–5637

    Article  CAS  Google Scholar 

  62. Buerkle LE, Rowan SJ (2012) Supramolecular gels formed from multi-component low molecular weight species. Chem Soc Rev 41:6089–6102

    Article  CAS  Google Scholar 

  63. Estroff LA, Hamilton AD (2004) Water gelation by small organic molecules. Chem Rev 104:1201–1218

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiya Jose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benny, S., Jose, J., Thomas, S. (2021). Cross-Linking, Modular Design and Self-assembly in Hydrogels. In: Jose, J., Thomas, S., Thakur, V.K. (eds) Nano Hydrogels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-7138-1_8

Download citation

Publish with us

Policies and ethics