Skip to main content

Modes and Strategies of Mechanical Ventilation in ARDS

  • Chapter
  • First Online:
Burn and Trauma Associated Lung Injury
  • 215 Accesses

Abstract

Acute respiratory distress syndrome (ARDS) is a life-threatening clinical condition and a worse prognosis of patients, which is mainly treated by mechanical ventilation. However, improper ventilator settings could injure pulmonary and increase mortality of ARDS patients. Mechanisms of ventilator-induced pulmonary injuries include volume trauma, barotrauma, and biotrauma. This chapter provides an overview of the pathophysiology of ventilator-induced pulmonary injuries and mechanical ventilation strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frank JA, Gutierrez JA, Jones KD, Allen L, Dobbs L, Matthay MA. Low tidal volume reduces epithelial and endothelial injury in acid-injured rat lungs. Am J Respir Crit Care Med. 2002;165:242–9.

    Article  PubMed  Google Scholar 

  2. Hager DN, Krishnan JA, Hayden DL, Brower RG. Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med. 2005;172:1241–5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Terragni PP, Del Sorbo L, Mascia L, Urbino R, Martin EL, Birocco A, Faggiano C, Quintel M, Gattinoni L, Ranieri VM. Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology. 2009;111:826–35.

    Article  PubMed  Google Scholar 

  4. Kollef MH, Schuster DP. The acute respiratory distress syndrome. N Engl J Med. 1995;332:27–37.

    Article  CAS  PubMed  Google Scholar 

  5. Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet. 1967;2:319–23.

    Article  CAS  PubMed  Google Scholar 

  6. Pugin J, Verghese G, Widmer M-C, Matthay MA. The alveolar space is the site of intense inflammatory and profibrotic reactions in the early phase of acute respiratory distress syndrome. Crit Care Med. 1999;27:304–12.

    Article  CAS  PubMed  Google Scholar 

  7. Wiener-Kronish JP, Albertine KH, Matthay MA. Differential responses of the endothelial and epithelial barriers of the lung in sheep to Escherichia coli endotoxin. J Clin Invest. 1991;88:864–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ware LB, Matthay MA. Maximal alveolar epithelial fluid clearance in clinical acute lung injury: an excellent predictor of survival and the duration of mechanical ventilation. Am J Respir Crit Care Med. 1999;159(Suppl):A694. (Abstract)

    Google Scholar 

  9. Matthay MA, Wiener-Kronish JP. Intact epithelial barrier function is critical for the resolution of alveolar edema in humans. Am Rev Respir Dis. 1990;142:1250–7.

    Article  CAS  PubMed  Google Scholar 

  10. Sznajder JI. Strategies to increase alveolar epithelial fluid removal in the injured lung. Am J Respir Crit Care Med. 1999;160:1441–2.

    Article  CAS  PubMed  Google Scholar 

  11. Matute-Bello G, Winn RK, Jonas M, et al. Fas (CD95) induces alveolar epithelial cell apoptosis in vivo: implications for acute pulmonary inflammation. Am J Pathol. 2001;158:153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pittet JF, MacKersie RC, Martin TR, Matthay MA. Biological markers of acute lung injury: prognostic and pathogenetic significance. Am J Respir Crit Care Med. 1997;155:1187–205.

    Article  CAS  PubMed  Google Scholar 

  13. Bachofen M, Weibel ER. Structural alterations of lung parenchyma in the adult respiratory distress syndrome. Clin Chest Med. 1982;3:35–56.

    CAS  PubMed  Google Scholar 

  14. Bachofen A, Weibel ER. Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia. Am Rev Respir Dis. 1977;116:589–615.

    Article  CAS  PubMed  Google Scholar 

  15. Laufe MD, Simon RH, Flint A, Keller JB. Adult respiratory distress syndrome in neutropenic patients. Am J Med. 1986;80:1022–6.

    Article  CAS  PubMed  Google Scholar 

  16. Prescott SM, McIntyre TM, Zimmerman G. Two of the usual suspects, platelet-activating factor and its receptor, implicated in acute lung injury. J Clin Invest. 1999;104:1019–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matthay MA. Conference summary: acute lung injury. Chest. 1999;116(Suppl):119S–26S. https://doi.org/10.1378/chest.116.suppl_1.119s. PMID: 10424631.

  18. Nelson S, Belknap SM, Carlson RW, et al. A randomized controlled trial of filgrastim as an adjunct to antibiotics for treatment of hospitalized patients with community-acquired pneumonia. J Infect Dis. 1998;178:1075–80.

    Article  CAS  PubMed  Google Scholar 

  19. Lewis JF, Jobe AH. Surfactant and the adult respiratory distress syndrome. Am Rev Respir Dis. 1993;147:218–33. [Erratum, Am Rev Respir Dis 1993;147:1068.]

    Article  CAS  PubMed  Google Scholar 

  20. Gregory TJ, Longmore WJ, Moxley MA, et al. Surfactant chemical composition and biophysical activity in acute respiratory distress syndrome. J Clin Invest. 1991;88:1976–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gunther A, Mosavi P, Heinemann S, et al. Alveolar fibrin formation caused by enhanced procoagulant and depressed fibrinolytic capacities in severe pneumonia: comparison with the acute respiratory distress syndrome. Am J Respir Crit Care Med. 2000;161:454–62.

    Article  CAS  PubMed  Google Scholar 

  22. Ranieri VM, Suter PM, Tortorella C, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1999;282:54–61.

    Article  CAS  PubMed  Google Scholar 

  23. Pugin J, Verghese G, Widmer M-C, Matthay MA. The alveolar space is the site of intense inflammatory and profibrotic reactions in the early phase of acute respiratory distress syndrome. Crit Care Med. 1999;27:304–12.

    Article  CAS  PubMed  Google Scholar 

  24. Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures: protection by positive end-expiratory pressure. Am Rev Respir Dis. 1974;110:556–65.

    CAS  PubMed  Google Scholar 

  25. Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1988;137:1159–64.

    Article  CAS  PubMed  Google Scholar 

  26. Parker JC, Townsley MI, Rippe B, Taylor AE, Thigpen J. Increased microvascular permeability in dog lungs due to high peak airway pressures. J Appl Physiol. 1984;57:1809–16.

    Article  CAS  PubMed  Google Scholar 

  27. Slutsky AS, Tremblay LN. Multiple system organ failure: is mechanical ventilation a contributing factor? Am J Respir Crit Care Med. 1998;157:1721–5.

    Article  CAS  PubMed  Google Scholar 

  28. Fukuda Y, Ishizaki M, Masuda Y, Kimura G, Kawanami O, Masugi Y. The role of intraalveolar fibrosis in the process of pulmonary structural remodeling in patients with diffuse alveolar damage. Am J Pathol. 1987;126:171–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Martin C, Papazian L, Payan MJ, Saux P, Gouin F. Pulmonary fibrosis correlates with outcome in adult respiratory distress syndrome: a study in mechanically ventilated patients. Chest. 1995;107:196–200.

    Article  CAS  PubMed  Google Scholar 

  30. Zapol WM, Trelstad RL, Coffey JW, Tsai I, Salvador RA. Pulmonary fibrosis in severe acute respiratory failure. Am Rev Respir Dis. 1979;119:547–54.

    CAS  PubMed  Google Scholar 

  31. Martinet Y, Menard O, Vaillant P, Vignaud JM, Martinet N. Cytokines in human lung fibrosis. Arch Toxicol Suppl. 1996;18:127–39.

    Article  CAS  PubMed  Google Scholar 

  32. Amato MBP, Barbas CSV, Medeiros DM, et al. Effect of a protective ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347–54.

    Article  CAS  PubMed  Google Scholar 

  33. Brochard L, Roudot-Thoraval F, Roupie E, et al. Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. Am J Respir Crit Care Med. 1998;158:1831–8.

    Article  CAS  PubMed  Google Scholar 

  34. Eichacker PQ, Gerstenberger EP, Banks SM, et al. Metaanalysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes. Am J Respir Crit Care Med. 2002;166:1510–4.

    Article  PubMed  Google Scholar 

  35. Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, Constantin JM, Courant P, Lefrant JY, Guérin C, Prat G, Morange S, Roch A, ACURASYS Study Investigators. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107–16.

    Article  CAS  PubMed  Google Scholar 

  36. Retamal J, Libuy J, Jimenez M, Delgado M, Besa C, Bugedo G, Bruhn A. Preliminary study of ventilation with 4 ml/kg tidal volume in acute respiratory distress syndrome: feasibility and effects on cyclic recruitment-derecruitment and hyperinflation. Crit Care. 2013;17:R16.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ijland MM, Heunks LM, van der Hoeven JG. Bench-to-bedside review: hypercapnic acidosis in lung injury – from ‘permissive’ to ‘therapeutic’. Crit Care. 2010;14:237.

    Article  PubMed  Google Scholar 

  38. Pham T, Combes A, Roze H, Chevret S, Mercat A, Roch A, Mourvillier B, Ara-Somohano C, Bastien O, Zogheib E, Clavel M, Constan A, Marie Richard JC, Brun-Buisson C, Brochard L. Extracorporeal membrane oxygenation for pandemic influenza A(H1N1)-induced acute respiratory distress syndrome: a cohort study and propensity-matched analysis. Am J Respir Crit Care Med. 2013;187:276–85.

    Article  CAS  PubMed  Google Scholar 

  39. Kumpers P, Nickel N, Lukasz A, Golpon H, Westerkamp V, Olsson KM, Jonigk D, Maegel L, Bockmeyer CL, David S, Hoeper MM. Circulating angiopoietins in idiopathic pulmonary arterial hypertension. Eur Heart J. 2010;31:2291–300.

    Article  PubMed  CAS  Google Scholar 

  40. Zabrocki LA, Brogan TV, Statler KD, Poss WB, Rollins MD, Bratton SL. Extracorporeal membrane oxygenation for pediatric respiratory failure: survival and predictors of mortality. Crit Care Med. 2011;39:364–70.

    Article  PubMed  Google Scholar 

  41. Nielsen ND, Kjaergaard B, Koefoed-Nielsen J, Steensen CO, Larsson A. Apneic oxygenation combined with extracorporeal arteriovenous carbon dioxide removal provides sufficient gas exchange in experimental lung injury. ASAIO J. 2008;54:401–5.

    Article  CAS  PubMed  Google Scholar 

  42. Somaschini M, Bellan C, Locatelli G, Glauber M, Colombo A. Extracorporeal membrane oxygenation with veno-venous bypass and apneic oxygenation for treatment of severe neonatal respiratory failure. Int J Artif Organs. 1995;18:574–8.

    Article  CAS  PubMed  Google Scholar 

  43. Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, Zhou Q, Matte A, Walter SD, Lamontagne F, Granton JT, Arabi YM, Arroliga AC, Stewart TE, Slutsky AS, Meade MO, OSCILLATE Trial Investigators; Canadian Critical Care Trials Group. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368(9):795–805.

    Article  CAS  PubMed  Google Scholar 

  44. Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, Rowan K, Cuthbertson BH, OSCAR Study Group. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013;368(9):806–13.

    Article  CAS  PubMed  Google Scholar 

  45. Brodie D, Bacchetta M. Extracorporeal membrane oxygenation for ARDS in adults. N Engl J Med. 2011;365(20):1905–14.

    Article  CAS  PubMed  Google Scholar 

  46. Peek GJ, Mugford M, Tiruvoipati R, Wilson A, Allen E, Thalanany MM, Hibbert CL, Truesdale A, Clemens F, Cooper N, Firmin RK. Elbourne D; CESAR trial collaboration. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009;374(9698):1351–63.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, Q., Xie, J., Qiu, H. (2020). Modes and Strategies of Mechanical Ventilation in ARDS. In: Xia, Zf., Zhu, F., Sun, Y. (eds) Burn and Trauma Associated Lung Injury. Springer, Singapore. https://doi.org/10.1007/978-981-15-7056-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7056-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7054-4

  • Online ISBN: 978-981-15-7056-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics