Skip to main content

Critical Elements for Connectivity Analysis of Brain Networks

  • Chapter
  • First Online:
Functional Brain Mapping: Methods and Aims

Abstract

In recent years, new and important perspectives were introduced in the field of neuroimaging with the emergence of the connectionist approach [136]. In this new context, it is important to know not only which brain areas are activated by a particular stimulus but, mainly, how these areas are structurally and functionally connected, distributed, and organized in relation to other areas. In addition, the arrangement of the network elements, i.e., its topology, and the dynamics they give rise to are also important. This new approach is called connectomics [15]. It brings together a series of techniques and methodologies capable of systematizing, from the different types of signals and images of the nervous system, how neuronal units to brain areas are connected. Through this approach, the different patterns of connectivity can be graphically and mathematically represented by the so-called connectomes [115].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams N, Henson RN (2018) Recent advances in functional neuroimaging analysis for cognitive neuroscience. Brain Neurosci Adv 2:239821281775272. https://doi.org/10.1177/2398212817752727

    Article  Google Scholar 

  2. Bassett DS, Sporns O (2017) Network neuroscience. Nat Neurosci 20(3):353–364. https://doi.org/10.1038/nn.4502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1(4):0245–0251. https://doi.org/10.1371/journal.pcbi.0010042

    Article  CAS  Google Scholar 

  4. Avena-Koenigsberger A, Misic Bratislav, Sporns Olaf (2017) Communication dynamics in complex brain networks. Nat Rev Neurosci 19(1):17–33. https://doi.org/10.1038/nrn.2017.149

    Article  CAS  PubMed  Google Scholar 

  5. Sporns O, Kötter R (2004) Motifs in brain networks. PLoS Biol 2(11). https://doi.org/10.1371/journal.pbio.0020369

  6. Sporns O (2002) Network analysis, complexity, and brain function. Complexity 8(1):56–60. https://doi.org/10.1002/cplx.10047

    Article  Google Scholar 

  7. Honey CJ, Thivierge JP, Sporns O (2010) Can structure predict function in the human brain? NeuroImage 52(3):766–776. https://doi.org/10.1016/j.neuroimage.2010.01.071

    Article  PubMed  Google Scholar 

  8. Fornito A, Zalesky A, Breakspear M (2013) Graph analysis of the human connectome: promise, progress, and pitfalls. NeuroImage 80:426–444. https://doi.org/10.1016/j.neuroimage.2013.04.087

    Article  PubMed  Google Scholar 

  9. Bastos AM, Schoffelen J-M (2016) A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front Syst Neurosci 9(January):1–23. https://doi.org/10.3389/fnsys.2015.00175

    Article  Google Scholar 

  10. Canolty RT, Knight RT (2010) The functional role of cross-frequency coupling. Trends Cogn Sci 14(11):506–515. https://doi.org/10.1016/j.tics.2010.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3):1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003

    Article  PubMed  Google Scholar 

  12. Kaiser M (2011) A tutorial in connectome analysis: topological and spatial features of brain networks. NeuroImage 57(3):892–907. https://doi.org/10.1016/j.neuroimage.2011.05.025

    Article  PubMed  Google Scholar 

  13. Sporns O (2013) The human connectome: origins and challenges. NeuroImage 80:53–61. https://doi.org/10.1016/j.neuroimage.2013.03.023

    Article  PubMed  Google Scholar 

  14. Van Diessen E, Diederen SJH, Braun KPJ, Jansen FE, Stam CJ (2013) Functional and structural brain networks in epilepsy: what have we learned? Epilepsia 54(11):1855–1865. https://doi.org/10.1111/epi.12350

    Article  PubMed  Google Scholar 

  15. Betzel RF, Bassett DS (2017) Multi-scale brain networks. NeuroImage 160(November):73–83. https://doi.org/10.1016/j.neuroimage.2016.11.006

    Article  PubMed  Google Scholar 

  16. Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13(6):407–420. https://doi.org/10.1038/nrn3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Babiloni C, Pizzella V, Del Gratta C, Ferretti A, Romani GL (2009) Chapter 5 Fundamentals of electroencefalography, magnetoencefalography, and functional magnetic resonance imaging. Int Rev Neurobiol 86 (1st edn., Elsevier Inc.) https://doi.org/10.1016/S0074-7742(09)86005-4

  18. Pizzagalli DA (2007) Electroencephalography and high-density electrophysiological source localization. Handbook Psychophysiol 3:56–84. https://doi.org/10.1109/TNSRE.2007.903919

    Article  Google Scholar 

  19. Bullmore ET, Bassett DS (2011) Brain graphs: graphical models of the human brain connectome. Ssrn. https://doi.org/10.1146/annurev-clinpsy-040510-143934

    Article  Google Scholar 

  20. Douw L, van Dellen E, de Groot M, Heimans JJ, Klein M, Stam CJ, Reijneveld JC (2010) Epilepsy is related to theta band brain connectivity and network topology in brain tumor patients. BMC Neurosci 11. https://doi.org/10.1186/1471-2202-11-103

  21. Baliki MN, Geha PY, Apkarian AV, Chialvo DR (2008) Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 28(6):1398–1403. https://doi.org/10.1523/JNEUROSCI.4123-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stam CJ, van Straaten ECW (2012) The organization of physiological brain networks. Clin Neurophysiol 123(6):1067–1087. https://doi.org/10.1016/j.clinph.2012.01.011

    Article  CAS  PubMed  Google Scholar 

  23. Stam CJ (2014) Modern network science of neurological disorders. Nat Rev Neurosci 15(10):683–695. https://doi.org/10.1038/nrn3801

    Article  CAS  PubMed  Google Scholar 

  24. Bullmore ED, Sporns O (2009a) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198. https://doi.org/10.1038/nrn2575

  25. Fornito A, Zalesky A, Pantelis C, Bullmore ET (2012) Schizophrenia, neuroimaging and connectomics. NeuroImage 62(4):2296–2314. https://doi.org/10.1016/j.neuroimage.2011.12.090

    Article  PubMed  Google Scholar 

  26. Sporns O (2011) The human connectome: a complex network. Ann N Y Acad Sci 1224(1):109–125. https://doi.org/10.1111/j.1749-6632.2010.05888.x

    Article  PubMed  Google Scholar 

  27. Costa LF, Rodrigues FA, Travieso G, Villas Boas PR (2007) Characterization of complex networks: a survey of measurements 56 (February 2007): 167–242. https://doi.org/10.1080/00018730601170527

  28. Huang H, Tanner J, Parvataneni H, Rice M, Horgas A, Ding M, Price C (2018) Impact of total knee arthroplasty with general anesthesia on brain networks: cognitive efficiency and ventricular volume predict functional connectivity decline in older adults. J Alzheimer’s Dis 62(1):319–333. https://doi.org/10.3233/JAD-170496

    Article  Google Scholar 

  29. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256. https://doi.org/10.1137/S003614450342480

    Article  Google Scholar 

  30. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: structure and dynamics. Phys Rep 424(4–5):175–308. https://doi.org/10.1016/j.physrep.2005.10.009

    Article  Google Scholar 

  31. Amaral LAN, Ottino JM (2004) Complex networks. Eur Phys J B—Condens Matter 38(2):147–162. https://doi.org/10.1140/epjb/e2004-00110-5

    Article  CAS  Google Scholar 

  32. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8(9):418–425. https://doi.org/10.1016/j.tics.2004.07.008

    Article  PubMed  Google Scholar 

  33. Allen EA, Damaraju E, Eichele T, Wu L, Calhoun VD (2018) EEG signatures of dynamic functional network connectivity states. Brain Topogr 31(1):101–116. https://doi.org/10.1007/s10548-017-0546-2

    Article  CAS  PubMed  Google Scholar 

  34. Shine JM, Aburn MJ, Breakspear M, Poldrack RA (2018) The modulation of neural gain facilitates a transition between functional segregation and integration in the brain. ELife 7:1–16. https://doi.org/10.7554/eLife.31130

    Article  Google Scholar 

  35. Li K, Guo L, Nie J, Li G, Liu T (2009) Review of methods for functional brain connectivity detection using FMRI. Comput Med Imaging Graph 33(2):131–139. https://doi.org/10.1016/j.compmedimag.2008.10.011

    Article  PubMed  Google Scholar 

  36. Barch DM, Burgess GC, Harms MP, Petersen SE, Schlaggar BL, Corbetta M, Glasser MF et al (2013) Function in the human connectome: task-FMRI and individual differences in behavior. NeuroImage 80:169–189. https://doi.org/10.1016/j.neuroimage.2013.05.033

    Article  PubMed  Google Scholar 

  37. Rissman J, Gazzaley A, D’Esposito M (2004) Measuring functional connectivity during distinct stages of a cognitive task. NeuroImage 23(2):752–763. https://doi.org/10.1016/j.neuroimage.2004.06.035

    Article  PubMed  Google Scholar 

  38. Baker JM, Bruno JL, Gundran A, Hadi Hosseini SM, Reiss L (2018) FNIRS measurement of cortical activation and functional connectivity during a visuospatial working memory task, pp 1–22. https://doi.org/10.1371/journal.pone.0201486

  39. Zhang H, Zhang YJ, Chun Ming L, Ma SY, Zang YF, Zhu CZ (2010) Functional connectivity as revealed by independent component analysis of resting-state FNIRS measurements. NeuroImage 51(3):1150–1161. https://doi.org/10.1016/j.neuroimage.2010.02.080

    Article  PubMed  Google Scholar 

  40. Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M, Xanthopoulos P, Sakkalis V, Vanrumste B (2008) Review on solving the inverse problem in EEG source analysis. J NeuroEng Rehabil 5. https://doi.org/10.1186/1743-0003-5-25

  41. Bradley A, Yao J, Dewald J, Richter CP (2016) Evaluation of electroencephalography source localization algorithms with multiple cortical sources. PLoS ONE 11(1):e0147266. https://doi.org/10.1371/journal.pone.0147266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pascual-Marqui RD (1999) Review of methods for solving the EEG inverse problem. Int J Bioelectromagnetism 1(1):75–86. https://www.citeulike-article-id:5020586

  43. Chen XL, Xiong YY, Xu GL, Liu XF (2012) Deep brain stimulation. Intervent Neurol 1(3–4):200–2012. https://doi.org/10.1016/B978-0-12-385157-4.00740-5

    Article  Google Scholar 

  44. Engel AK, Moll CKE, Fried I, Ojemann GA (2005) Invasive recordings from the human brain: clinical insights and beyond. Nat Rev Neurosci 6(1):35–47. https://doi.org/10.1038/nrn1585

    Article  CAS  PubMed  Google Scholar 

  45. Lal TN, Hinterberger T, Widman G, Schrӧder M, Hill J, Rosenstiel W, Elger CE, Schӧlkopf B (2005) Methods towards invasive human brain computer interfaces. Adv Neural Inf Proc Syst 17:737–744. https://doi.org/10.1.1.64.8486

    Google Scholar 

  46. Sporns O (2016) Connectome networks: from cells to systems. In: Micro-, Meso- and macro-connectomics of the brain, pp 107–127

    Google Scholar 

  47. Craddock RC, Jbabdi S, Yan CG, Vogelstein JT, Xavier Castellanos F, Di Martino A, Kelly C, Heberlein K, Colcombe S, Milham MP (2013) Imaging human connectomes at the macroscale. Nat Methods 10(6):524–539. https://doi.org/10.1038/nmeth.2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Poli D, Pastore VP, Massobrio P (2015) Functional connectivity in vitro neuronal assemblies. Front Neural Circ 9(October):57. https://doi.org/10.3389/fncir.2015.00057

    Article  Google Scholar 

  49. Yoneki E, Hui P, Crowcroft J (2008) Distinct Types of hubs in human dynamic networks. In: Proceedings of the 1st workshop on social network systems—SocialNets ’08, pp 7–12. https://doi.org/10.1145/1435497.1435499

  50. Navlakha S, Rastogi R, Shrivastava N (2008) Graph summarization with bounded error. In: Proceedings of the 2008 ACM SIGMOD international conference on management of data—SIGMOD ’08, p 419. https://doi.org/10.1145/1376616.1376661

  51. Park HJ, Friston K (2013) Structural and functional brain networks: from connections to cognition. Science 342(6158). https://doi.org/10.1126/science.1238411

  52. Friston KJ (2011) Functional and effective connectivity: a review. Brain Connectivity 1(1):13–36. https://doi.org/10.1089/brain.2011.0008

    Article  PubMed  Google Scholar 

  53. Altman N, Krzywinski M (2015) Points of significance: association, correlation and causation. Nat Methods 12(10):899–900. https://doi.org/10.1038/nmeth.3587

    Article  CAS  PubMed  Google Scholar 

  54. Valdes-Sosa PA, Roebroeck A, Daunizeau J, Friston K (2011) Effective connectivity: influence, causality and biophysical modeling. NeuroImage 58(2):339–361. https://doi.org/10.1016/j.neuroimage.2011.03.058

    Article  PubMed  Google Scholar 

  55. Akaike H (1968) On the use of a linear model for the identification of feedback systems. Ann Inst Stat Math 20(1):425–439. https://doi.org/10.1007/BF02911655

    Article  Google Scholar 

  56. Granger CWJ (1969) “Investigating causal relations by econometric models and cross-spectral methods author(S):” Ecometrica 37:424–438. http://ir.obihiro.ac.jp/dspace/handle/10322/3933

  57. Schweder T (1970) Composable Markov processes. J Appl Probab 7 (Aug 1970):400–410. https://doi.org/10.1111/j.1365-2672.2007.03484.x

  58. Wiener N (1956) The theory of prediction. Modern mathematics for engineers. New York, pp 165–90

    Google Scholar 

  59. Razi A, Friston KJ (2016) The connected brain. IEEE Sig Process Mag 33(3):14–35

    Article  Google Scholar 

  60. Papo D, Zanin M, Buldú JM (2014) Reconstructing functional brain networks: have we got the basics right? Front Human Neurosci 8(February):8–11. https://doi.org/10.3389/fnhum.2014.00107

    Article  Google Scholar 

  61. Ahuja RK, Magnanti TL (2018) Network flows: theory, algorithms, and applications. In: Pearson Education (ed) Network flows

    Google Scholar 

  62. Wilson RJ (1979) Introduction to graph theory. Pearson Education India

    Google Scholar 

  63. Lee Rodgers J, Nicewander WA (1988) Thirteen ways to look at the correlation coefficient. Am Stat 42(1):59–66

    Article  Google Scholar 

  64. Kelley DJ, Farhoud M, Meyerand ME, Nelson DL, Ramirez LF, Dempsey RJ, Davidson RJ (2007) Creating physical 3D stereolithograph models of brain and skull. PLoS ONE 2(10):e1119. https://doi.org/10.1371/journal.pone.0001119

    Article  PubMed  PubMed Central  Google Scholar 

  65. Meskaldji DE, Vasung L, Romascano D, Thiran JP, Hagmann P, Morgenthaler S, Van De Ville D (2015) Improved statistical evaluation of group differences in connectomes by screening-filtering strategy with application to study maturation of brain connections between childhood and adolescence. NeuroImage 108:251–264. https://doi.org/10.1016/j.neuroimage.2014.11.059

    Article  PubMed  Google Scholar 

  66. Shaw JC (1984) Correlation and coherence analysis of the EEG: a selective tutorial review. Int J Psychophysiol 1(3):255–266. https://doi.org/10.1016/0167-8760(84)90045-x

    Article  CAS  PubMed  Google Scholar 

  67. Sifuzzaman M, Islam M, Ali MZ (2009) Application of wavelet transform and its advantages compared to Fourier transform

    Google Scholar 

  68. Pesaran B, Vinck M, Einevoll GT, Sirota A, Fries P, Siegel M, Truccolo W, Schroeder CE, Srinivasan R (2018) Investigating large-scale brain dynamics using field potential recordings: analysis and interpretation. Nat Neurosci 1–17. https://doi.org/10.1038/s41593-018-0171-8

  69. Baccala L, Sameshima K (2001) Partial directed coherence: a new concept in neural structure determination. Biol Cybern 84(1):463–474. https://doi.org/10.1007/PL00007990

    Article  CAS  PubMed  Google Scholar 

  70. Sun FT, Miller LM, D’Esposito M (2004) Measuring interregional functional connectivity using coherence and partial coherence analyses of FMRI data. NeuroImage 21(2):647–658. https://doi.org/10.1016/j.neuroimage.2003.09.056

    Article  PubMed  Google Scholar 

  71. Bowyer Susan M (2016) Coherence a measure of the brain networks: past and present. Neuropsychiatric Electrophysiol 2(1):1. https://doi.org/10.1186/s40810-015-0015-7

    Article  Google Scholar 

  72. Carmona J, Suarez J, Ochoa J (2017) Brain functional connectivity in Parkinson’s disease—EEG resting analysis. In: VII Latin American congress on biomedical engineering CLAIB 2016, Bucaramanga, Santander, Colombia, 26–28 Oct 2016, pp 185–188

    Google Scholar 

  73. Engel AK, Fries P (2016) Neuronal oscillations, coherence, and consciousness. Neurol Conciousness (Elsevier Ltd.). https://doi.org/10.1016/B978-0-12-800948-2.00003-0

    Google Scholar 

  74. Vergara JR, Estévez PA (2014) A review of feature selection methods based on mutual information. Neural Comput Appl 24(1):175–186. https://doi.org/10.3762/bjnano.7.4

    Article  CAS  Google Scholar 

  75. MacKay JC (2003) Information theory, inference, and learning algorithms. Cambridge University Press. https://doi.org/10.1016/S0020-7063(14)00055-7

    Google Scholar 

  76. Cover TM, Thomas JA (2012) Elements of information theory. Wiley

    Google Scholar 

  77. Polani D (2013) Kullback-Leibler divergence. Springer 15:1087–1088. https://doi.org/10.1016/0378-4754(88)90061-4

    Article  Google Scholar 

  78. Shlens J (2014) Notes on Kullback-Leibler divergence and likelihood. ArXiv 1–4. https://doi.org/10.1108/JKM-06-2014-0253

  79. James RG, Barnett N, Crutchfield JP (2016) Information flows? A critique of transfer entropies. Phys Rev Lett 116(23):1–5. https://doi.org/10.1103/PhysRevLett.116.238701

    Article  CAS  Google Scholar 

  80. Schreiber Thomas (2006) Measuring information transfer. Phys Rev Lett 85(2):461. https://doi.org/10.1103/PhysRevLett.85.461

    Article  Google Scholar 

  81. Bossomaier T, Barnett L, Harré M, and Lizier JT (2016) An introduction to transfer entropy. Springer

    Google Scholar 

  82. Lindner M, Vicente R, Priesemann V, Wibral M (2011) TRENTOOL: a matlab open source toolbox to analyse information flow in time series data with transfer entropy. BMC Neurosci 12. https://doi.org/10.1186/1471-2202-12-119

  83. Nolte G, Ziehe A, Kramer N, Popescu F, Muller K-R (2008) Comparison of granger causality and phase slope index. Nips 6:267–276

    Google Scholar 

  84. Cohen MX (2015) Effects of time lag and frequency matching on phase-based connectivity. J Neurosci Methods 250:137–146. https://doi.org/10.1016/j.jneumeth.2014.09.005

    Article  PubMed  Google Scholar 

  85. Maris E, Fries P, van Ede F (2016) Diverse phase relations among neuronal rhythms and their potential function. Trends Neurosci 39(2):86–99. https://doi.org/10.1016/j.tins.2015.12.004

    Article  CAS  PubMed  Google Scholar 

  86. Friston KJ, Litvak V, Oswal A, Razi A, Stephan KE, Van Wijk BCM, Ziegler G, Zeidman P (2016) Bayesian model reduction and empirical Bayes for group (DCM) studies. NeuroImage 128:413–431. https://doi.org/10.1016/j.neuroimage.2015.11.015

    Article  PubMed  Google Scholar 

  87. Kuznetsov YA (2013) Elements of applied bifurcation theory, vol 112. Springer Science & Business Media

    Google Scholar 

  88. Marreiros G, Santos R, Ramos C, Neves J (2010) Context-aware emotion-based model for group decision making. IEEE Intell Syst 25(2):31–39. https://doi.org/10.1109/MIS.2010.46

    Article  Google Scholar 

  89. Brockwell PJ, Davis RA (1998) Time series: theory and methods. J Am Stat Assoc 92 (Springer, New York). https://doi.org/10.2307/2965440

  90. Haufe S, Nikulin VV, Müller KR, Nolte G (2013) A critical assessment of connectivity measures for EEG data: a simulation study. NeuroImage 64(1):120–133. https://doi.org/10.1016/j.neuroimage.2012.09.036

    Article  PubMed  Google Scholar 

  91. Stephan KE, Friston KJ (2010) Analyzing effective connectivity with functional magnetic resonance imaging. Wiley Interdisc Rev: Cogn Sci 1(3):446–459. https://doi.org/10.1002/wcs.58

    Article  Google Scholar 

  92. Wig GS, Schlaggar BL, Petersen SE (2011) Concepts and principles in the analysis of brain networks. Ann N Y Acad Sci 1224(1):126–146. https://doi.org/10.1111/j.1749-6632.2010.05947.x

    Article  PubMed  Google Scholar 

  93. Honey CJ, Tter RK, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci 104(24):10240–10245. https://doi.org/10.1073/pnas.98.2.676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sporns O (2013) Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol 23(2):162–171. https://doi.org/10.1016/j.conb.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  95. Stam CJ, Reijneveld JC (2007) Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys 1:1–19. https://doi.org/10.1186/1753-4631-1-3

    Article  Google Scholar 

  96. Bassett DS, Bullmore ED (2006) Small-world brain networks. Neuroscientist 12(6):512–523. https://doi.org/10.1177/1073858406293182

  97. Khadem A, Hossein-Zadeh GA, Khorrami A (2016) Long-range reduced predictive information transfers of autistic youths in EEG sensor-space during face processing. Brain Topogr 29(2):283–295. https://doi.org/10.1007/s10548-015-0452-4

    Article  PubMed  Google Scholar 

  98. Stephan KE, Friston KJ, Frith CD (2009) Dysconnection in Schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull 35(3):509–527. https://doi.org/10.1093/schbul/sbn176

    Article  PubMed  PubMed Central  Google Scholar 

  99. Barker K, Ramirez-Marquez JE, Rocco CM (2013) Resilience-based network component importance measures. Reliab Eng Syst Saf 117:89–97. https://doi.org/10.1016/j.ress.2013.03.012

    Article  Google Scholar 

  100. Vella, D, Zoppis I, Mauri G, Mauri P, Di Silvestre D (2017) From protein-protein interactions to protein co-expression networks: a new perspective to evaluate large-scale proteomic data. Eurasip J Bioinf Syst Biol 2017(1). https://doi.org/10.1186/s13637-017-0059-z

  101. Wang XF (2002) Complex networks: topology, dynamics and synchronization. Int J Bifurcat Chaos 12(05):885–916

    Article  Google Scholar 

  102. Strogatz SH (2001) Exploring complex networks. Nature 410(6825):268–276. https://doi.org/10.1038/35065725

    Article  CAS  PubMed  Google Scholar 

  103. Rajula HS, Reddy MMM, Fanos V (2018) Scale-free networks in metabolomics. Bioinformation 14(03):140–144. https://doi.org/10.6026/97320630014140

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ouma WZ, Pogacar K, Grotewold E (2018) Topological and statistical analyses of gene regulatory networks reveal unifying yet quantitatively different emergent properties. PLoS Comput Biol 14(4):1–17. https://doi.org/10.1371/journal.pcbi.1006098

    Article  CAS  Google Scholar 

  105. Broder A, Kumar R, Maghoul F, Raghavan P, Rajagopalan S, Stata R, Tomkins A, Wiener J (2000) Graph structure in the web. Comput Netw 33(1):309–320. https://doi.org/10.1016/S1389-1286(00)00083-9

    Article  Google Scholar 

  106. Eguíluz VM, Chialvo DR, Cecchi GA, Baliki M, Vania Apkarian A (2005) Scale-free brain functional networks. Phys Rev Lett 94(1):1–4. https://doi.org/10.1103/PhysRevLett.94.018102

    Article  CAS  Google Scholar 

  107. He BJ, Zempel JM, Snyder AZ, Raichle ME (2010) The temporal structures and functional significance of scale-free brain activity. Neuron 66(3):353–369. https://doi.org/10.1016/j.neuron.2010.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. van den Heuvel MP, Stam CJ, Boersma M, Hulshoff Pol HE (2008) Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. NeuroImage 43(3):528–539. https://doi.org/10.1016/j.neuroimage.2008.08.010

    Article  PubMed  Google Scholar 

  109. Watts DJ, Strogatz SH (1998) Watts-1998-collective dynamics of ‘small-world’ 393(June):440–442. https://doi.org/10.1038/30918

  110. Hallquist MN, Hillary FG (2018) We Thank Zach Ceneviva, Allen Csuk, Richard Garcia, Melanie Glatz, and Riddhi Patel for their work collecting, organizing, and coding references for the literature review and manuscript. Netw Neurosci

    Google Scholar 

  111. Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2(2):145–162. https://doi.org/10.1385/NI:2:2:145

    Article  PubMed  Google Scholar 

  112. Milo R, Shen-Orr S, Itkovitz S, Kashtan N, Chlovskii D, Alon U (2002) Network motifs : simple building blocks of complex networks. American Association for the Advancement of Science Stable. http://www.jstor. Science 298(5594):824–827

    Google Scholar 

  113. Horn Andreas, Ostwald Dirk, Reisert Marco, Blankenburg Felix (2014) The structural-functional connectome and the default mode network of the human brain. NeuroImage 102(P1):142–151. https://doi.org/10.1016/j.neuroimage.2013.09.069

    Article  PubMed  Google Scholar 

  114. Thompson WH, Brantefors P, Fransson P (2017) From static to temporal network theory: applications to functional brain connectivity. Netw Neurosci 1(2):69–99. https://doi.org/10.1162/NETN_a_00011

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kivelä M, Arenas A, Barthelemy Marc, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2(3):203–271. https://doi.org/10.1093/comnet/cnu016

    Article  Google Scholar 

  116. Deco G, Jirsa VK, McIntosh AR (2011) Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci 12(1):43–56. https://doi.org/10.1038/nrn2961

    Article  CAS  PubMed  Google Scholar 

  117. Calhoun VD, Miller R, Pearlson G, Adali T (2014) The chronnectome: time-varying connectivity networks as the next frontier in FMRI data discovery. Neuron 84(2):262–274. https://doi.org/10.1016/j.neuron.2014.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Doron KW, Bassett DS, Gazzaniga MS (2012) dynamic network structure of interhemispheric coordination. Proc Natl Acad Sci 109(46):18661–18668. https://doi.org/10.1073/pnas.1216402109

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ma S, Calhoun VD, Phlypo R, Adali T (2014) Dynamic changes of spatial functional network connectivity in healthy individuals and Schizophrenia patients using independent vector analysis. NeuroImage 90:196–206. https://doi.org/10.1016/j.neuroimage.2013.12.063

    Article  PubMed  Google Scholar 

  120. Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS (2013) Multi-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci 16(9):1348–1355. https://doi.org/10.1038/nn.3470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Davison EN, Schlesinger KJ, Bassett DS, Lynall ME, Miller MB, Grafton ST, Carlson JM (2015) Brain network adaptability across task states. PLoS Comput Biol 11(1). https://doi.org/10.1371/journal.pcbi.1004029

  122. De Domenico M, Sasai S, Arenas A (2016) Mapping Multiplex hubs in human functional brain networks. Front Neurosci 10(Jul):1–14. https://doi.org/10.3389/fnins.2016.00326

  123. Vaiana M, Muldoon SF (2018) Multilayer brain networks. J Nonlinear Sci (Sept 2017) 1–23. https://doi.org/10.1007/s00332-017-9436-8

  124. Yu R, Chien YL, Wang HLS, Liu CM, Liu CC, Hwang TJ, Hsieh MH, Hwu HG, Tseng WYI (2014) Frequency-specific alternations in the amplitude of low-frequency fluctuations in Schizophrenia. Hum Brain Mapp 35(2):627–637. https://doi.org/10.1002/hbm.22203

    Article  PubMed  Google Scholar 

  125. Garcés P, Pereda E, Hernández-Tamames JA, Del-Pozo F, Maestú F, Pineda-Pardo JA (2016) Multimodal description of whole brain connectivity: a comparison of resting state MEG, FMRI, and DWI. Hum Brain Mapp 37(1):20–34. https://doi.org/10.1002/hbm.22995

    Article  PubMed  Google Scholar 

  126. Battiston F, Nicosia V, Chavez M, Latora V (2017) Multilayer motif analysis of brain networks. Chaos 27(4). https://doi.org/10.1063/1.4979282

  127. D’Agostino G, Scala A (2014) Networks of networks: the last frontier of complexity, vol 97. https://doi.org/10.1007/978-3-319-03518-5

  128. Bassett, DS, Khambhati AN, Grafton ST (2016) Emerging frontiers of neuroengineering: a network science of brain connectivity, pp 327–352 (March). https://doi.org/10.1146/annurev-bioeng-071516-044511

  129. De Domenico M, Solé-Ribalta A, Cozzo E, Kivelä M, Moreno Y, Porter MA, Gómez S, Arenas A (2014) Mathematical formulation of multilayer networks. Phys Rev X 3(4):1–15. https://doi.org/10.1103/PhysRevX.3.041022

    Article  CAS  Google Scholar 

  130. Lee KM, Min B, Goh KI (2015) Towards real-world complexity: an introduction to multiplex networks. Eur Phys J B 88(2). https://doi.org/10.1140/epjb/e2015-50742-1

  131. Supekar, K, Menon V, Rubin D, Musen M, Greicius MD (2008) Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol 4(6). https://doi.org/10.1371/journal.pcbi.1000100

  132. Lynall M-E, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore E (2010) Functional connectivity and brain networks in Schizophrenia. J Neurosci 30(28):9477–9487. https://doi.org/10.1523/JNEUROSCI.0333-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ganella EP, Seguin C, Bartholomeusz CF, Whittle S, Bousman C, Wannan CM, Zalesky A (2018) Default-mode ntwork activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MR. Schizophr Res 193:284–292. https://doi.org/10.1016/j.schres.2017.07.014

    Article  PubMed  Google Scholar 

  134. Zhang Z, Liao W, Chen H, Dante Mantini J, Ding R, Qiang X, Wang Z et al (2011) Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain 134(10):2912–2928. https://doi.org/10.1093/brain/awr223

    Article  PubMed  Google Scholar 

  135. Hogan RE (2018) Malformations of cortical development: a structural and functional MRI perspective. Epilepsy Currents 18(2):92–94. https://doi.org/10.5698/1535-7597.18.2.92

    Article  PubMed  PubMed Central  Google Scholar 

  136. Tecchio F, Cottone C, Porcaro C, Cancelli A, Di Lazzaro V, Assenza G (2018) Brain functional connectivity changes after transcranial direct current stimulation in epileptic patients. Front Neural Circ 12(May):1–7. https://doi.org/10.3389/fncir.2018.00044

    Article  Google Scholar 

  137. Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens Ph (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17(1):92–99. https://doi.org/10.1093/cercor/bhj127

    Article  CAS  PubMed  Google Scholar 

  138. Kabbara A, Eid H, El Falou W, Khalil M, Wendling F, Hassan M (2018) Reduced integration and improved segregation of functional brain networks in Alzheimer’s disease. J Neural Eng 15(2). https://doi.org/10.1088/1741-2552/aaaa76

  139. Heuvel MP, Den V, Sporns O, Collin G, Scheewe T, Mandl RCW, Cahn W, Goni J, Hulshoff Pol HE, Kahn RS (2013) Abnormal rich club organization and functional brain dynamics in Schizophrenia. JAMA Psychiatry 70(8):783–792. https://doi.org/10.1001/jamapsychiatry.2013.1328

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Faber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Faber, J., Antoneli, P.C., Araújo, N.S., Pinheiro, D.J.L.L., Cavalheiro, E. (2020). Critical Elements for Connectivity Analysis of Brain Networks. In: Tsytsarev, V., Yamamoto, V., Zhong, N. (eds) Functional Brain Mapping: Methods and Aims. Brain Informatics and Health. Springer, Singapore. https://doi.org/10.1007/978-981-15-6883-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6883-1_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6882-4

  • Online ISBN: 978-981-15-6883-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics