Skip to main content

Neurons and Plasticity: What Do Glial Cells Have to Do with This?

  • Chapter
  • First Online:
Functional Brain Mapping: Methods and Aims

Part of the book series: Brain Informatics and Health ((BIH))

  • 553 Accesses

Abstract

It has long been the view that the neurons in the brain are responsible for its ability to process information from external cues and adapt accordingly. The key to this is the brain’s ability to change its internal structure in an activity-dependent manner over several timescales. Synapses are the key sites where changes, both structurally ad functionally, such take place. The neurons in the mammalian brain, however, only make up half the number of cells. The remaining cells are collectively called glial cells, a family of cells that are comprised of astrocytes, oligodendrocytes, ependymal cells and radial glia. Historically, these cells were believed to only support the maintenance and wellbeing of neurons, playing no role in information processing, however, over the last twenty years there is mounting evidence illustrating that this is not the case. Currently, experiments have shown that glial cells are directly involved in transmission and modulation of neurotransmitters, synaptic plasticity and have also been implicated in brain disorders, such as epilepsy. To this end, the traditional picture of a synapse being composed of a pre-synaptic terminal, a small extracellular gap and a post-synaptic spine needs revision to include both glial cell and extracellular matrix components. To this end, computational investigations of neural-glial signaling and their impact on synaptic plasticity and spiking neural network dynamics has been sorely lacking. It is the authors’ aspiration that this will inspire future researcher to investigate the complex interactions between neurons and glial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rose CR, Konnerth A (2001) Stores not just for storage: intracellular calcium release and synaptic plasticity. Neuron 31:519–522

    Article  CAS  PubMed  Google Scholar 

  2. Zucker RS (1999) Calcium-and activity-dependent synaptic plasticity. Curr Opin Neurobiol 9:305–313

    Article  CAS  PubMed  Google Scholar 

  3. Shouval HZ, Bear MF, Cooper LN (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci 99:10831–10836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REL, Leite REP, Lent R, Herculano-Houzel S et al (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541

    Article  PubMed  Google Scholar 

  5. Snell RS (2010) Clinical neuroanatomy. Lippincott Williams & Wilkins

    Google Scholar 

  6. Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1:683–692

    Article  CAS  PubMed  Google Scholar 

  7. Bacci A, Verderio C, Pravettoni E, Matteoli M (1999) The role of glial cells in synaptic function. Philos Trans R Soc B: Biol Sci 354:403–409

    Article  CAS  Google Scholar 

  8. Kurosinski P, Götz J (2002) Glial cells under physiologic and pathologic conditions. Arch Neurol 59:1524–1528

    Article  PubMed  Google Scholar 

  9. Verkhratsky A, Butt A (2013) Neuroglia: definition, classification, evolution, numbers, development. Glial Physiol Pathophysiol 73–104

    Google Scholar 

  10. Verkhratsky A, Butt AM (2013) Glial physiology and pathophysiology, Wiley

    Google Scholar 

  11. Laming PR, Syková E (1998) Glial cells: their role in behaviour, Cambridge University Press

    Google Scholar 

  12. Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Miller RH, Raff MC (1984) Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct. J Neurosci 4:585–592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553

    Article  CAS  PubMed  Google Scholar 

  15. Allen NJ, Barres BA (2005) Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 15:542–548

    Article  CAS  PubMed  Google Scholar 

  16. Allen NJ, Barres BA (2009) Neuroscience: glia—more than just brain glue. Nature 457:675–677

    Article  CAS  PubMed  Google Scholar 

  17. Spassky N, Merkle FT, Flames N, Tramontin AD, Garcı́a-Verdugo JM, Alvarez-Buylla A, (2005) Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25:10–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Abney ER, Bartlett PP, Raff MC (1981) Astrocytes, ependymal cells, and oligodendrocytes develop on schedule in dissociated cell cultures of embryonic rat brain. Dev Biol 83:301–310

    Article  CAS  PubMed  Google Scholar 

  19. Schnitzer J, Franke WW, Schachner M (1981) Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J Cell Biol 90:435–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hartfuss E, Galli R, Heins N, Götz M (2001) Characterization of CNS precursor subtypes and radial glia. Dev Biol 229:15–30

    Article  CAS  PubMed  Google Scholar 

  21. Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41:881–890

    Article  CAS  PubMed  Google Scholar 

  22. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Müller cells in the healthy and diseased retina. Prog Retinal Eye Res 25:397–424

    Article  CAS  Google Scholar 

  23. Levitt P, Rakic P (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol 193:815–840

    Article  CAS  PubMed  Google Scholar 

  24. Bonni A, Sun Y, Nadal-Vicens M, Bhatt A, Frank DA, Rozovsky I, Stahl N, Yancopoulos GD, Greenberg ME (1997) Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 278:477–483

    Article  CAS  PubMed  Google Scholar 

  25. Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430–440

    Article  CAS  PubMed  Google Scholar 

  26. Kettenmann H, Verkhratsky A (2011) Neuroglia, der lebende Nervenkitt. Fortschritte der Neurologie\textperiodcentered Psychiatrie 79: 588–597

    Google Scholar 

  27. Grosche J, Matyash V, Möller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuron–glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2:139–143

    Article  CAS  PubMed  Google Scholar 

  28. Eroglu C, Barres BA (2010) Regulation of synaptic connectivity by glia. Nature 468:223–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Eroglu C, Barres BA, Stevens B (2008) Glia as active participants in the development and function of synapses. In: Structural and functional organization of the synapse. Springer, pp 683–714

    Google Scholar 

  30. Metea MR, Newman EA (2006) Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci 26:2862–2870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Verkhratsky A, Toescu EC (2006) Neuronal-glial networks as substrate for CNS integration. J Cell Mol Med 10:869–879

    Article  PubMed Central  CAS  Google Scholar 

  32. Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11:87–99

    Article  CAS  PubMed  Google Scholar 

  33. Dani JW, Chernjavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8:429–440

    Article  CAS  PubMed  Google Scholar 

  34. Higashi K, Fujita A, Inanobe A, Tanemoto M, Doi K, Kubo T, Kurachi Y (2001) An inwardly rectifying K+ channel, Kir4. 1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am J Physiol-Cell Physiol 281:C922–C931

    Article  CAS  PubMed  Google Scholar 

  35. Hille B et al (2001) Ion channels of excitable membranes, vol 507. Sinauer Sunderland, MA

    Google Scholar 

  36. Verkhratsky A, Kirchhoff F (2007) Glutamate-mediated neuronal–glial transmission. J Anat 210:651–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Figley CR, Stroman PW (2011) The role (s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals. Eur J Neurosci 33:577–588

    Article  PubMed  Google Scholar 

  38. Gordon GRJ, Choi HB, Rungta RL, Ellis-Davies GCR, MacVicar BA (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456:745–749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14:311–321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, Stewart CL, Fields RD (2006) Astrocytes promote myelination in response to electrical impulses. Neuron 49:823–832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Bradl M, Lassmann H (2010) Oligodendrocytes: biology and pathology. Acta Neuropathol 119:37–53

    Article  PubMed  Google Scholar 

  42. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (2000) Principles of neural science, vol 4. McGraw-hill, New York

    Google Scholar 

  43. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927

    Article  CAS  PubMed  Google Scholar 

  44. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisén J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34

    Article  CAS  PubMed  Google Scholar 

  45. Rakic P (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electonmicroscopic study in Macacus rhesus. J Comp Neurol 141:283–312

    Article  CAS  PubMed  Google Scholar 

  46. Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–83

    Article  CAS  PubMed  Google Scholar 

  47. Rakic P (1988) Specification of cerebral cortical areas. Sci 241:170–176

    Article  CAS  Google Scholar 

  48. Rakic P (2009) Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 10:724–735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Doetsch F, Caille I, Lim DA, Garcı́a-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    Google Scholar 

  50. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Rash BG, Lim HD, Breunig JJ, Vaccarino FM (2011) FGF signaling expands embryonic cortical surface area by regulating Notch-dependent neurogenesis. J Neurosci 31:15604–15617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Rash BG, Tomasi S, Lim HD, Suh CY, Vaccarino FM (2013) Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain. J Neurosci 33:10802–10814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Mo Z, Zecevic N (2009) Human fetal radial glia cells generate oligodendrocytes in vitro. Glia 57:490–498

    Article  PubMed Central  PubMed  Google Scholar 

  54. Reuss B, Unsicker K (2005) Neuroglia. In: Kettenmann H, Ransom BR (eds). Oxford University Press, New York

    Google Scholar 

  55. Ricci G, Volpi L, Pasquali L, Petrozzi L, Siciliano G (2009) Astrocyte–neuron interactions in neurological disorders. J Biol Phys 35:317–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Perea G, Araque A (2005a) Glial calcium signaling and neuron–glia communication. Cell Calcium 38:375–382

    Article  CAS  PubMed  Google Scholar 

  57. Paixão S, Klein R (2010) Neuron–astrocyte communication and synaptic plasticity. Curr Opin Neurobiol 20:466–473

    Article  PubMed  CAS  Google Scholar 

  58. Auld DS, Robitaille R (2003) Glial cells and neurotransmission: an inclusive view of synaptic function. Neuron 40:389–400

    Article  CAS  PubMed  Google Scholar 

  59. Kettenmann H, Verkhratsky A et al (2008) Neuroglia: the 150 years after. Trends Neurosci 31:653

    Article  CAS  PubMed  Google Scholar 

  60. Achour SB, Pascual O (2012) Astrocyte–neuron communication: functional consequences. Neurochem Res 37:2464–2473

    Article  PubMed  CAS  Google Scholar 

  61. Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17:7817–7830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Pfrieger FW (2010) Role of glial cells in the formation and maintenance of synapses. Brain Res Rev 63:39–46

    Article  CAS  PubMed  Google Scholar 

  63. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    Article  CAS  PubMed  Google Scholar 

  64. Perea G, Araque A (2005b) Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci 25:2192–2203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Witcher MR, Kirov SA, Harris KM (2007) Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus. Glia 55:13–23

    Article  PubMed  Google Scholar 

  66. Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141

    Article  CAS  PubMed  Google Scholar 

  67. Bolton MM, Eroglu C (2009) Look who is weaving the neural web: glial control of synapse formation. Curr Opin Neurobiol 19:491–497

    Article  PubMed  CAS  Google Scholar 

  68. Araque A, Carmignoto G, Haydon PG (2001) Dynamic signaling between astrocytes and neurons. Annu Rev Physiol 63:795–813

    Article  CAS  PubMed  Google Scholar 

  69. Wang X, Lou N, Xu Q, Tian G-F, Peng WG, Han X, Kang J, Takano T, Nedergaard M (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9:816–823

    Article  CAS  PubMed  Google Scholar 

  70. Amiri M, Montaseri G, Bahrami F (2011) On the role of astrocytes in synchronization of two coupled neurons: a mathematical perspective. Biol Cybern 105:153–166

    Article  PubMed  Google Scholar 

  71. Amiri M, Bahrami F, Janahmadi M (2012) Modified thalamocortical model: A step towards more understanding of the functional contribution of astrocytes to epilepsy. J Comput Neurosci 33:285–299

    Article  PubMed  Google Scholar 

  72. Postnov DE, Brazhe NA, Sosnovtseva OV (2012) Functional modeling of neural-glial interaction. In: Biosimulation in biomedical research, health care and drug development. Springer, pp 133–151

    Google Scholar 

  73. Postnov DE, Koreshkov RN, Brazhe NA, Brazhe AR, Sosnovtseva OV (2009) Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks. J Biol Phys 35:425–445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Kell DB, Oliver SG (2004) Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. BioEssays 26:99–105

    Article  PubMed  Google Scholar 

  75. Postnov DE, Ryazanova LS, Sosnovtseva OV (2007) Functional modeling of neural–glial interaction. BioSystems 89:84–91

    Article  CAS  PubMed  Google Scholar 

  76. Postnov DE, Ryazanova LS, Brazhe NA, Brazhe AR, Maximov GV, Mosekilde E, Sosnovtseva OV (2008) Giant glial cell: New insight through mechanism-based modeling. J Biol Phys 34:441–457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Amiri M, Hosseinmardi N, Bahrami F, Janahmadi M (2013) Astrocyte-neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on modeling and experiments. J Comput Neurosci 34:489–504

    Article  PubMed  Google Scholar 

  78. De Pittà M, Brunel N (2016) Modulation of synaptic plasticity by glutamatergic gliotransmission: a modeling study. Neural plasticity 2016

    Google Scholar 

  79. De Pittà M, Volman V, Berry H, Parpura V, Volterra A, Ben-Jacob E (2012) Computational quest for understanding the role of astrocyte signaling in synaptic transmission and plasticity. Front Comput Neurosci 6:98

    Google Scholar 

  80. Fellin T, Ellenbogen JM, De Pittà M, Ben-Jacob E, Halassa MM (2012) Astrocyte regulation of sleep circuits: experimental and modeling perspectives. Front Comput Neurosci 6:65

    Google Scholar 

  81. Gordleeva SY, Stasenko SV, Semyanov AV, Dityatev AE, Kazantsev VB (2012) Bi-directional astrocytic regulation of neuronal activity within a network. Front Comput Neurosci 6:92

    Google Scholar 

  82. Tewari SG, Majumdar KK (2012) A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity. J Biol Phys 38:465–496

    Google Scholar 

  83. Nadkarni S, Jung P (2004) Dressed neurons: modeling neural–glial interactions. Phys Biol 1:35

    Article  CAS  PubMed  Google Scholar 

  84. Nadkarni S, Jung P (2005) Synaptic inhibition and pathologic hyperexcitability through enhanced neuron-astrocyte interaction: a modeling study. J Integr Neurosci 4:207–226

    Article  PubMed  Google Scholar 

  85. Nadkarni S, Jung P (2007) Modeling synaptic transmission of the tripartite synapse. Phys Biol 4:1

    Article  CAS  PubMed  Google Scholar 

  86. Izhikevich EM et al (2003) Simple model of spiking neurons. IEEE Trans Neural Networks 14:1569–1572

    Article  CAS  PubMed  Google Scholar 

  87. Reato D, Cammarota M, Parra LC, Carmignoto G (2012) Computational model of neuron-astrocyte interactions during focal seizure generation. Frontiers Comput Neurosci 6

    Google Scholar 

  88. Porter JT, McCarthy KD (1997) Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol 51:439–455

    Article  CAS  PubMed  Google Scholar 

  89. Kawabata S, Tsutsumi R, Kohara A, Yamaguchi T, Nakanishi S, Okada M (1996) Control of calcium oscillations by phosphorylation of metabotropic glutamate receptors. Nature 383:88–92

    Article  Google Scholar 

  90. Henneberger C, Papouin T, Oliet SHR, Rusakov DA (2010) Long-term potentiation depends on release of D-serine from astrocytes. Nature 463:232–236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Gordon GRJ, Iremonger KJ, Kantevari S, Ellis-Davies GCR, MacVicar BA, Bains JS (2009) Astrocyte mediated distributed plasticity at hypothalamic glutamate synapses. Neuron 64:391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul J-Y, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    Article  CAS  PubMed  Google Scholar 

  93. Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-α. Nature 440:1054–1059

    Article  CAS  PubMed  Google Scholar 

  94. Kaneko M, Stellwagen D, Malenka RC, Stryker MP (2008) Tumor necrosis factor-α mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron 58:673–680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, Malenka RC (2002) Control of synaptic strength by glial TNFα. Science 295:2282–2285

    Article  CAS  PubMed  Google Scholar 

  96. Chiu C-S, Brickley S, Jensen K, Southwell A, Mckinney S, Cull-Candy S, Mody I, Lester HA (2005) GABA transporter deficiency causes tremor, ataxia, nervousness, and increased GABA-induced tonic conductance in cerebellum. J Neurosci 25:3234–3245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Bult CJ, Eppig JT, Kadin JA, Richardson JE, Blake JA, Group MGD et al (2008) The mouse genome database (MGD): mouse biology and model systems. Nucleic Acids Res 36: D724–D728

    Google Scholar 

  98. Doengi M, Hirnet D, Coulon P, Pape H-C, Deitmer JW, Lohr C (2009) GABA uptake-dependent Ca2+ signaling in developing olfactory bulb astrocytes. Proc Natl Acad Sci 106:17570–17575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gomeza J, Hülsmann S, Ohno K, Eulenburg V, Szöke K, Richter D, Betz H (2003) Inactivation of the glycine transporter 1 gene discloses vital role of glial glycine uptake in glycinergic inhibition. Neuron 40:785–796

    Article  CAS  PubMed  Google Scholar 

  100. Filosa A, Paixão S, Honsek SD, Carmona MA, Becker L, Feddersen B, Gaitanos L, Rudhard Y, Schoepfer R, Klopstock T et al (2009) Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci 12:1285–1292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Carmona MA, Murai KK, Wang L, Roberts AJ, Pasquale EB (2009) Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc Natl Acad Sci 106:12524–12529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Klein R (2009) Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nat Neurosci 12:15–20

    Article  CAS  PubMed  Google Scholar 

  103. Omrani A, Melone M, Bellesi M, Safiulina V, Aida T, Tanaka K, Cherubini E, Conti F (2009) Up-regulation of GLT-1 severely impairs LTD at mossy fibre–CA3 synapses. J Physiol 587:4575–4588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Hoberg MD, Vidensky S, Chung DS et al (2005) β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nat 433:73–77

    Article  CAS  Google Scholar 

  105. Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10:647–658

    Article  CAS  PubMed  Google Scholar 

  106. Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nat 420:788–794

    Article  CAS  Google Scholar 

  107. Christopherson KS, Ullian EM, Stokes CCA, Mullowney CE, Hell JW, Agah A, Lawler J, Mosher DF, Bornstein P, Barres BA (2005) Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–433

    Article  CAS  PubMed  Google Scholar 

  108. Meyer-Franke A, Kaplan MR, Pfieger FW, Barres BA (1995) Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15:805–819

    Article  CAS  PubMed  Google Scholar 

  109. Elmariah SB, Hughes EG, Oh EJ, Balice-Gordon RJ (2004) Neurotrophin signaling among neurons and glia during formation of tripartite synapses. Neuron Glia biol 1:339–349

    Article  Google Scholar 

  110. Eroglu C, Allen NJ, Susman MW, O’Rourke NA, Park CY, Özkan E, Chakraborty C, Mulinyawe SB, Annis DS, Huberman AD et al (2009) Gabapentin receptor α2δ-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139:380–392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Xu J, Xiao N, Xia J (2010) Thrombospondin 1 accelerates synaptogenesis in hippocampal neurons through neuroligin 1. Nat Neurosci 13:22–24

    Article  CAS  PubMed  Google Scholar 

  112. Goritz C, Mauch DH, Pfrieger FW (2005) Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron. Mol Cell Neurosci 29:190–201

    Article  CAS  PubMed  Google Scholar 

  113. Mauch DH, Nägler K, Schumacher S, Göritz C, Müller E-C, Otto A, Pfrieger FW (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Sci 294:1354–1357

    Article  CAS  Google Scholar 

  114. Garcia O, Torres M, Helguera P, Coskun P, Busciglio J (2010) A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in Down’s syndrome. PLoS ONE 5:e14200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Pacey LKK, Doering LC (2007) Developmental expression of FMRP in the astrocyte lineage: implications for fragile X syndrome. Glia 55:1601–1609

    Article  PubMed  Google Scholar 

  116. Jacobs S, Doering LC (2010) Astrocytes prevent abnormal neuronal development in the fragile x mouse. J Neurosci 30:4508–4514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Chahrour M, Zoghbi HY (2007) The story of Rett syndrome: from clinic to neurobiology. Neuron 56:422–437

    Article  CAS  PubMed  Google Scholar 

  118. Chahrour M, Jung SY, Shaw C, Zhou X, Wong STC, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Sci 320:1224–1229

    Article  CAS  Google Scholar 

  119. World Health Organization and others (2013) Fact sheet N 999: epilepsy. Avalaible http://www.who.int/mediacentre/factsheets/fs999/en

  120. Lowenstein DH (2009) Epilepsy after head injury: an overview. Epilepsia 50:4–9

    Article  PubMed  Google Scholar 

  121. Annegers JF, Hauser WA, Coan SP, Rocca WA (1998) A population-based study of seizures after traumatic brain injuries. N Engl J Med 338:20–24

    Article  CAS  PubMed  Google Scholar 

  122. DeLorenzo RJ, Sun DA, Deshpande LS (2005) Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintainance of epilepsy. Pharmacol Ther 105:229–266

    Article  CAS  PubMed  Google Scholar 

  123. Bhalla D, Godet B, Druet-Cabanac M, Preux P-M (2011) Etiologies of epilepsy: a comprehensive review. Expert Rev Neurother 11:861–876

    Article  PubMed  Google Scholar 

  124. Choi J, Koh S (2008) Role of brain inflammation in epileptogenesis. Yonsei Med J 49:1–18

    Article  PubMed Central  PubMed  Google Scholar 

  125. Uhlmann EJ, Wong M, Baldwin RL, Bajenaru ML, Onda H, Kwiatkowski DJ, Yamada K, Gutmann DH (2002) Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 52:285–296

    Article  CAS  PubMed  Google Scholar 

  126. Coulter DA, Eid T (2012) Astrocytic regulation of glutamate homeostasis in epilepsy. Glia 60:1215–1226

    Article  PubMed Central  PubMed  Google Scholar 

  127. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T et al (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Sci 276:1699–1702

    Article  CAS  Google Scholar 

  128. Vezzani A, French J, Bartfai T, Baram TZ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7:31–40

    Article  CAS  PubMed  Google Scholar 

  129. Janzer RC, Raff MC (1987) Astrocytes induce blood–brain barrier properties in endothelial cells. Nat 325:253–257

    Article  CAS  Google Scholar 

  130. Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  PubMed  Google Scholar 

  131. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185

    Article  CAS  PubMed  Google Scholar 

  132. Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13

    Article  CAS  PubMed  Google Scholar 

  133. Cotzias GC, Papavasiliou PS, Gellene R (1969) Modification of parkinsonism—chronic treatment with L-dopa. N Engl J Med 280:337–345

    Article  CAS  PubMed  Google Scholar 

  134. Barbeau A (1969) L-dopa therapy in Parkinson’s disease: a critical review of nine years’ experience. Can Med Assoc J 101:59

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Fahn S (1986) Recent developments in Parkinson’s disease. Raven Pr

    Google Scholar 

  136. Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S et al (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22:1763–1771

    Article  PubMed Central  PubMed  Google Scholar 

  137. Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP (2003) The role of glial reaction and inflammation in Parkinson’s disease. Ann N Y Acad Sci 991:214–228

    Article  CAS  PubMed  Google Scholar 

  138. McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord 23:474–483

    Article  PubMed  Google Scholar 

  139. Hunot S, Bernard V, Faucheux B, Boissiere F, Leguern E, Brana C, Gautris PP, Guerin J, Bloch B, Agid Y et al (1996) Glial cell line-derived neurotrophic factor (GDNF) gene expression in the human brain: a post mortem in situ hybridization study with special reference to Parkinson’s disease. J Neural Trans 103:1043–1052

    Article  CAS  Google Scholar 

  140. Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P, Marsden CD (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36:348–355

    Article  CAS  PubMed  Google Scholar 

  141. Jenner P, Dexter DT, Sian J, Schapira AHV, Marsden CD (1992) Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. Ann Neurol 32:S82–S87

    Article  CAS  PubMed  Google Scholar 

  142. Desagher S, Glowinski J, Premont J (1996) Astrocytes protect neurons from hydrogen peroxide toxicity. J Neurosci 16:2553–2562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Desagher S, Glowinski J, Prémont J (1997) Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J Neurosci 17:9060–9067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. Kastner A, Anglade P, Bounaix C, Damier P, Javoy-Agid F, Bromet N, Agid Y, Hirsch EC (1994) Immunohistochemical study of catechol-O-methyltransferase in the human mesostriatal system. Neurosci 62:449–457

    Article  CAS  Google Scholar 

  145. Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients with parkinson’s disease. Histol Histopathol 12:25–32

    CAS  PubMed  Google Scholar 

  146. Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T (1994) Interleukin-1β, interleukin-6, epidermal growth factor and transforming growth factor-α are elevated in the brain from parkinsonian patients. Neurosci Lett 180:147–150

    Article  CAS  PubMed  Google Scholar 

  147. Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994) Tumor necrosis factor-α (TNF-α) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165:208–210

    Article  CAS  PubMed  Google Scholar 

  148. Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M, Nagatsu T (1996) Interleukin (IL)-1β, IL-2, IL-4, IL-6 and transforming growth factor-α levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett 211:13–16

    Article  CAS  PubMed  Google Scholar 

  149. McGeer PL, Schwab C, Parent A, Doudet D (2003) Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine administration. Ann Neurol 54:599–604

    Article  CAS  PubMed  Google Scholar 

  150. Dugas B, Mossalayi MD, Damais C, Kolb J-P (1995) Nitric oxide production by human monocytes: evidence for a role of CD23. Immunol Today 16:574–580

    Article  CAS  PubMed  Google Scholar 

  151. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci 90:1977–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tanzi RE, Gusella JF, Watkins PC, Bruns GA, St George-Hyslop P, Van Keuren ML, Patterson D, Pagan S, Kurnit DM, Neve RL (1987) Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the alzheimer locus. Sci 235: 880–884

    Google Scholar 

  153. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Sci 297:353–356

    Article  CAS  Google Scholar 

  154. Rocchi A, Pellegrini S, Siciliano G, Murri L (2003) Causative and susceptibility genes for alzheimer’s disease: a review. Brain Res Bull 61:1–24

    Article  CAS  PubMed  Google Scholar 

  155. Roßner S, Lange-Dohna C, Zeitschel U, Perez-Polo JR (2005) Alzheimer’s disease β-secretase BACE1 is not a neuron-specific enzyme. J Neurochem 92:226–234

    Article  PubMed  CAS  Google Scholar 

  156. Heneka MT, O’Banion MK (2007) Inflammatory processes in alzheimer’s disease. J Neuroimmunol 184:69–91

    Article  CAS  PubMed  Google Scholar 

  157. Meda L, Cassatella MA, Szendrei GI, Otvos L, Baron P, Villalba M, Ferrari D, Rossi F (1995) Activation of microglial cells by β-amyloid protein and interferon-γ. Nat 374:647–650

    Article  CAS  Google Scholar 

  158. Meda L, Baron P, Scarlato G (2001) Glial activation in Alzheimer’s disease: the role of Aβ and its associated proteins. Neurobiol Aging 22:885–893

    Article  CAS  PubMed  Google Scholar 

  159. Deane R, Wu Z, Zlokovic BV (2004) RAGE (Yin) versus LRP (Yang) balance regulates Alzheimer amyloid β-peptide clearance through transport across the blood–brain barrier. Stroke 35:2628–2631

    Article  CAS  PubMed  Google Scholar 

  160. Farfara D, Lifshitz V, Frenkel D (2008) Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of alzheimer’s disease. J Cell Mol Med 12:762–780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Mattson MP, Chan SL (2003a) Calcium orchestrates apoptosis. Nat Cell Biol 5:1041–1043

    Article  CAS  PubMed  Google Scholar 

  162. Mattson MP, Chan SL (2003b) Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium 34:385–397

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N. Iannella would like to thank Prof Stephen Coombes and the staff at the School of Mathematical Sciences at the University of Nottingham, UK for hosting and making it possible to write this chapter. N. Iannella’s contribution was supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement No PCOFUND-GA-2012-600181.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolangelo Iannella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iannella, N., Condemine, M. (2020). Neurons and Plasticity: What Do Glial Cells Have to Do with This?. In: Tsytsarev, V., Yamamoto, V., Zhong, N. (eds) Functional Brain Mapping: Methods and Aims. Brain Informatics and Health. Springer, Singapore. https://doi.org/10.1007/978-981-15-6883-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6883-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6882-4

  • Online ISBN: 978-981-15-6883-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics