Skip to main content

Microbial Electrosynthesis for Harnessing Value-Added Product via Carbon Dioxide Sequestering

  • Chapter
  • First Online:
Bioelectrochemical Systems

Abstract

The increasing levels of carbon dioxide due to the burning of fossil fuels and industrial emissions are a threat to the ecosystem and hence an efficient technique is required to fix this damage. Recently, bioelectrochemical systems (BES) emerged to decrease CO2 emissions and produce biofuel as a renewable source of energy. The microbial electrosynthesis (MES) is a new introduction to BES which uses microorganisms as a catalyst for utilizing CO2 as their electron donor and reduce it to produce gaseous fuels like methane or liquid fuels like acetate, butyrate, ethanol, etc. The various compounds are produced depending majorly on the microorganism used, their metabolic pathway, and the magnitude of the applied external voltage. Microbial electrosynthesis process takes place in the biocathode by reducing CO2 with electrons and protons generated during water oxidation at the abiotic anode. In the case of a biotic anode, oxidation could be performed at the anode chamber via electroactive bacteria (EAB) to convert biodegradable wastes to electrons and protons. The protons percolate through the ion exchange separators while an electron from anode reaches to cathode surface via external resistance to reduce the CO2. The electron mediators were used in cases to improve the kinetics of bioelectrochemical reduction of CO2. The present chapter explains the principles of MES; it include the advantages of MES, biochemistry of electron transfer processes in biotic electrodes and microbes involved in cathode for reduction of CO2. Further, this chapter discusses the recent developments in MES, illustrates the biochemical pathway involved in producing the different end products in the cathode chamber and possible downstream processes involved in the recovery of biofuel production. This chapter highlights major physicochemical parameters affecting microbial electrosynthesis processes and challenges. The chapter helps the reader to gain basic knowledge on MES, which has the potential to become the upcoming transformative, feasible and alternate technology to reduce the repercussions of excessive carbon dioxide in the atmosphere and save energy as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aulenta, F., Di Maio, V., Ferri, T., & Majone, M. (2010). The humic acid analogue antraquinone-2,6-disulfonate (AQDS) serves as an electron shuttle in the electricity-driven microbial dechlorination of trichloroethene to cis-dichloroethene. Bioresource Technology, 101(24), 9728–9733.

    Article  CAS  PubMed  Google Scholar 

  • Bajracharya, S., Vanbroekhoven, K., Buisman, C. J., Pant, D., & Strik, D. P. (2016). Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide. Environmental Science and Pollution Research, 23(22), 22292–22308.

    Article  CAS  PubMed  Google Scholar 

  • Bajracharya, S., Vanbroekhoven, K., Buisman, C. J., Strik, D. P., & Pant, D. (2017). Bioelectrochemical conversion of CO2 to chemicals: CO2 as a next generation feedstock for electricity-driven bioproduction in batch and continuous modes. Faraday Discussions, 202, 433–449.

    Article  CAS  PubMed  Google Scholar 

  • Batlle Vilanova, P. (2016). Bioelectrochemical transformation of carbon dioxide to target compounds through microbial electrosynthesis

    Google Scholar 

  • Batlle-Vilanova, P., Ganigué, R., Ramió-Pujol, S., Baneras, L., Jiménez, G., Hidalgo, M., et al. (2017). Microbial electrosynthesis of butyrate from carbon dioxide: Production and extraction. Bioelectrochemistry, 117, 57–64.

    Article  CAS  PubMed  Google Scholar 

  • Batlle-Vilanova, P., Puig, S., Gonzalez-Olmos, R., Balaguer, M. D., & Colprim, J. (2016). Continuous acetate production through microbial electrosynthesis from CO2 with microbial mixed culture. Journal of Chemical Technology & Biotechnology, 91(4), 921–927.

    Article  CAS  Google Scholar 

  • Bennetto, H. P. (1984). Microbial fuel cells. Life Chemistry Reports, 2(4), 363–453.

    CAS  Google Scholar 

  • Borole, A. P. (2015). Microbial fuel cells and microbial electrolyzers. The Electrochemical Society Interface, 24(3), 55–59.

    Article  CAS  Google Scholar 

  • Bowien, B., & Kusian, B. (2002). Genetics and control of CO2 assimilation in the chemoautotroph Ralstoniaeutropha. Archives of Microbiology, 178(2), 85–93.

    Article  CAS  PubMed  Google Scholar 

  • Cao, X., Huang, X., Liang, P., Boon, N., Fan, M., Zhang, L., et al. (2009). A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction. Energy & Environmental Science, 2(5), 498–501.

    Article  CAS  Google Scholar 

  • Centi, G., & Perathoner, S. (2009). Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catalysis Today, 148(3-4), 191–205.

    Article  CAS  Google Scholar 

  • Chandrasekhar, K., & Ahn, Y.-H. (2017). Effectiveness of piggery waste treatment using microbial fuel cells coupled with elutriated-phased acid fermentation. Bioresource Technology, 244, 650–657.

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar, K., Amulya, K., & Mohan, S. V. (2015). Solid phase bio-electrofermentation of food waste to harvest value-added products associated with waste remediation. Waste Management, 45, 57–65.

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar, K., & Mohan, S. V. (2012). Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of PAH: Effect of substrate concentration. Bioresource Technology, 110, 517–525.

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekhar, K., & Mohan, S. V. (2014a). Bio-electrohydrolysis as a pretreatment strategy to catabolize complex food waste in closed circuitry: Function of electron flux to enhance acidogenic biohydrogen production. International Journal of Hydrogen Energy, 39(22), 11411–11422.

    Article  CAS  Google Scholar 

  • Chandrasekhar, K., & Mohan, S. V. (2014b). Induced catabolic bio-electrohydrolysis of complex food waste by regulating external resistance for enhancing acidogenic biohydrogen production. Bioresource Technology, 165, 372–382.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, S., Xing, D., Call, D. F., & Logan, B. E. (2009). Direct biological conversion of electrical current into methane by electromethanogenesis. Environmental Science & Technology, 43(10), 3953–3958.

    Article  CAS  Google Scholar 

  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.

    Article  CAS  PubMed  Google Scholar 

  • Clauwaert, P., & Verstraete, W. (2009). Methanogenesis in membraneless microbial electrolysis cells. Applied Microbiology and Biotechnology, 82(5), 829–836.

    Article  CAS  PubMed  Google Scholar 

  • Cole, E. B., & Bocarsly, A. B. (2010). Photochemical, electrochemical, and photoelectrochemical reduction of carbon dioxide (Vol. 11). Hoboken: Wiley Online Library.

    Google Scholar 

  • Costa, K. C., & Leigh, J. A. (2014). Metabolic versatility in methanogens. Current Opinion in Biotechnology, 29, 70–75.

    Article  CAS  PubMed  Google Scholar 

  • Debabov, V. (2017). Microbial electrosynthesis. Applied Biochemistry and Microbiology, 53(9), 842–858.

    Article  CAS  Google Scholar 

  • Deval, A. S., Parikh, H. A., Kadier, A., Chandrasekhar, K., Bhagwat, A. M., & Dikshit, A. K. (2017). Sequential microbial activities mediated bioelectricity production from distillery wastewater using bio-electrochemical system with simultaneous waste remediation. International Journal of Hydrogen Energy, 42(2), 1130–1141.

    Article  CAS  Google Scholar 

  • Dohnalkova, A. C., Marshall, M. J., Arey, B. W., Williams, K. H., Buck, E. C., & Fredrickson, J. K. (2011). Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy. Applied and Environmental Microbiology, 77(4), 1254–1262.

    Article  CAS  PubMed  Google Scholar 

  • Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean acidification: The other CO2 problem. Annual Review of Marine Science, 1(1), 169–192.

    Article  PubMed  Google Scholar 

  • Drake, H. L., Gößner, A. S., & Daniel, S. L. (2008). Old acetogens, new light. Annals of the New York Academy of Sciences, 1125(1), 100–128.

    Article  CAS  PubMed  Google Scholar 

  • Emde, R., & Schink, B. (1990). Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system. Applied and Environmental Microbiology, 56(9), 2771–2776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erable, B., Duţeanu, N. M., Ghangrekar, M. M., Dumas, C., & Scott, K. (2010a). Application of electro-active biofilms. Biofouling, 26(1), 57–71.

    Article  CAS  PubMed  Google Scholar 

  • Erable, B., Vandecandelaere, I., Faimali, M., Delia, M.-L., Etcheverry, L., Vandamme, P., et al. (2010b). Marine aerobic biofilm as biocathode catalyst. Bioelectrochemistry, 78(1), 51–56.

    Article  CAS  PubMed  Google Scholar 

  • Faraghiparapari, N., & Zengler, K. (2017). Production of organics from CO2 by microbial electrosynthesis (MES) at high temperature. Journal of Chemical Technology & Biotechnology, 92(2), 375–381.

    Article  CAS  Google Scholar 

  • Fast, A. G., & Papoutsakis, E. T. (2012). Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Current Opinion in Chemical Engineering, 1(4), 380–395.

    Article  Google Scholar 

  • Ganigué, R., Puig, S., Batlle-Vilanova, P., Balaguer, M. D., & Colprim, J. (2015). Microbial electrosynthesis of butyrate from carbon dioxide. Chemical Communications, 51(15), 3235–3238.

    Article  PubMed  CAS  Google Scholar 

  • Godoy, M. S., Mongili, B., Fino, D., & Prieto, M. A. (2017). About how to capture and exploit the CO 2 surplus that nature, per se, is not capable of fixing. Microbial Biotechnology, 10(5), 1216–1225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong, Y., Ebrahim, A., Feist, A. M., Embree, M., Zhang, T., Lovley, D., et al. (2012). Sulfide-driven microbial electrosynthesis. Environmental Science & Technology, 47(1), 568–573.

    Article  CAS  Google Scholar 

  • Gorby, Y. A., Yanina, S., McLean, J. S., Rosso, K. M., Moyles, D., Dohnalkova, A., et al. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences, 103(30), 11358–11363.

    Article  CAS  Google Scholar 

  • Green, M. A., Emery, K., Hishikawa, Y., Warta, W., & Dunlop, E. D. (2015). Solar cell efficiency tables (version 45). Progress in Photovoltaics: Research and Applications, 23(1), 1–9.

    Article  Google Scholar 

  • Gregory, K. B., Bond, D. R., & Lovley, D. R. (2004). Graphite electrodes as electron donors for anaerobic respiration. Environmental Microbiology, 6(6), 596–604.

    Article  CAS  PubMed  Google Scholar 

  • Grousseau, E., Lu, J., Gorret, N., Guillouet, S. E., & Sinskey, A. J. (2014). Isopropanol production with engineered Cupriavidus necator as bioproduction platform. Applied Microbiology and Biotechnology, 98(9), 4277–4290.

    Article  CAS  PubMed  Google Scholar 

  • Gu, M., Yin, Q., Liu, Y., Du, J., & Wu, G. (2019). New insights into the effect of direct interspecies electron transfer on syntrophic methanogenesis through thermodynamic analysis. Bioresource Technology Reports, 7, 100225.

    Article  Google Scholar 

  • Harrington, T. D., Tran, V. N., Mohamed, A., Renslow, R., Biria, S., Orfe, L., et al. (2015). The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli: menaquinone reduction. Bioresource Technology, 192, 689–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hongo, M., & Iwahara, M. (1979). Application of electro-energizing method to L-glutamic acid fermentation. Agricultural and Biological Chemistry, 43(10), 2075–2081.

    CAS  Google Scholar 

  • Inyang, M., Gao, B., Pullammanappallil, P., Ding, W., & Zimmerman, A. R. (2010). Biochar from anaerobically digested sugarcane bagasse. Bioresource Technology, 101(22), 8868–8872.

    Article  CAS  PubMed  Google Scholar 

  • Jajesniak, P., Ali, H., & Wong, T. S. (2014). Carbon dioxide capture and utilization using biological systems: opportunities and challenges. Journal of Bioprocessing and Biotechniques, 4(155), 2.

    Google Scholar 

  • Jana, P. S., Katuri, K., Kavanagh, P., Kumar, A., & Leech, D. (2014). Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of film thickness. Physical Chemistry Chemical Physics, 16(19), 9039–9046.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Y., Su, M., Zhang, Y., Zhan, G., Tao, Y., & Li, D. (2013). Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate. International Journal of Hydrogen Energy, 38(8), 3497–3502.

    Article  CAS  Google Scholar 

  • Jiang, Y., & Zeng, R. J. (2018). Expanding the product spectrum of value added chemicals in microbial electrosynthesis through integrated process design—a review. Bioresource Technology, 269, 503–512.

    Article  CAS  PubMed  Google Scholar 

  • Kadier, A., Kalil, M. S., Chandrasekhar, K., Mohanakrishna, G., Saratale, G. D., Saratale, R. G., et al. (2018). Surpassing the current limitations of high purity H2 production in microbial electrolysis cell (MECs): Strategies for inhibiting growth of methanogens. Bioelectrochemistry, 119, 211–219.

    Article  CAS  PubMed  Google Scholar 

  • Karthikeyan, R., Singh, R., & Bose, A. (2019). Microbial electron uptake in microbial electrosynthesis: A mini-review. Journal of Industrial Microbiology & Biotechnology, 2019, 1–8.

    Google Scholar 

  • Kaster, A.-K., Moll, J., Parey, K., & Thauer, R. K. (2011). Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea. Proceedings of the National Academy of Sciences, 108(7), 2981–2986.

    Article  CAS  Google Scholar 

  • Khunjar, W. O., Sahin, A., West, A. C., Chandran, K., & Banta, S. (2012). Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell. PLoS One, 7(9), e44846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiely, P. D., Rader, G., Regan, J. M., & Logan, B. E. (2011a). Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts. Bioresource Technology, 102(1), 361–366.

    Article  CAS  PubMed  Google Scholar 

  • Kiely, P. D., Regan, J. M., & Logan, B. E. (2011b). The electric picnic: synergistic requirements for exoelectrogenic microbial communities. Current Opinion in Biotechnology, 22(3), 378–385.

    Article  CAS  PubMed  Google Scholar 

  • Kipnis, N. (2003). Changing a theory: The case of Volta’s contact electricity. In F. Kirjassa, J. A. Bevi-lacqua, & E. A. Giannetto (Eds.), Volta and the history of electricity (pp. 17–35). Hoepli: Universita degli studi di Pavia.

    Google Scholar 

  • Kobayashi, H., Saito, N., Fu, Q., Kawaguchi, H., Vilcaez, J., Wakayama, T., et al. (2013). Bio-electrochemical property and phylogenetic diversity of microbial communities associated with bioelectrodes of an electromethanogenic reactor. Journal of Bioscience and Bioengineering, 116(1), 114–117.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Hsu, L. H.-H., Kavanagh, P., Barrière, F., Lens, P. N., Lapinsonnière, L., et al. (2017). The ins and outs of microorganism–electrode electron transfer reactions. Nature Reviews Chemistry, 1(3), 0024.

    Article  CAS  Google Scholar 

  • Kumar, P., Chandrasekhar, K., Kumari, A., Sathiyamoorthi, E., & Kim, B. (2018). Electro-fermentation in aid of bioenergy and biopolymers. Energies, 11(2), 343.

    Article  CAS  Google Scholar 

  • LaBelle, E. V., Marshall, C. W., Gilbert, J. A., & May, H. D. (2014). Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome. PLoS One, 9(10), e109935.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, H., Opgenorth, P. H., Wernick, D. G., Rogers, S., Wu, T.-Y., Higashide, W., et al. (2012). Integrated electromicrobial conversion of CO2 to higher alcohols. Science, 335(6076), 1596–1596.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., & Bond, D. R. (2012). Long-distance electron transfer by G. sulfurreducens biofilms results in accumulation of reduced c-type cytochromes. ChemSusChem, 5(6), 1047–1053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., et al. (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 40(17), 5181–5192.

    Article  CAS  Google Scholar 

  • Lohner, S. T., Deutzmann, J. S., Logan, B. E., Leigh, J., & Spormann, A. M. (2014). Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis. The ISME Journal, 8(8), 1673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall, C. W., LaBelle, E. V., & May, H. D. (2013a). Production of fuels and chemicals from waste by microbiomes. Current Opinion in Biotechnology, 24(3), 391–397.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, C. W., Ross, D. E., Fichot, E. B., Norman, R. S., & May, H. D. (2013b). Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environmental Science & Technology, 47(11), 6023–6029.

    Article  CAS  Google Scholar 

  • Marsili, E., Baron, D. B., Shikhare, I. D., Coursolle, D., Gralnick, J. A., & Bond, D. R. (2008). Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences, 105(10), 3968–3973.

    Article  CAS  Google Scholar 

  • Martin, W. F. (2012). Hydrogen, metals, bifurcating electrons, and proton gradients: The early evolution of biological energy conservation. FEBS Letters, 586(5), 485–493.

    Article  CAS  PubMed  Google Scholar 

  • McDonald, M. S. (2003). Photobiology of higher plants. Hoboken: John Wiley & Sons.

    Google Scholar 

  • Mohan, S. V., & Chandrasekhar, K. (2011a). Self-induced bio-potential and graphite electron accepting conditions enhances petroleum sludge degradation in bio-electrochemical system with simultaneous power generation. Bioresource Technology, 102(20), 9532–9541.

    Article  CAS  PubMed  Google Scholar 

  • Mohan, S. V., & Chandrasekhar, K. (2011b). Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: influence of electrode assembly and buffering capacity. Bioresource Technology, 102(14), 7077–7085.

    Article  CAS  PubMed  Google Scholar 

  • Nevin, K. P., Hensley, S. A., Franks, A. E., Summers, Z. M., Ou, J., Woodard, T. L., et al. (2011). Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Applied and Environmental Microbiology, 77(9), 2882–2886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M., & Lovley, D. R. (2010). Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio, 1(2), e00103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parameswaran, P., Zhang, H., Torres, C. I., Rittmann, B. E., & Krajmalnik-Brown, R. (2010). Microbial community structure in a biofilm anode fed with a fermentable substrate: The significance of hydrogen scavengers. Biotechnology and Bioengineering, 105(1), 69–78.

    Article  CAS  PubMed  Google Scholar 

  • Park, D., Laivenieks, M., Guettler, M., Jain, M., & Zeikus, J. (1999). Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Applied and Environmental Microbiology, 65(7), 2912–2917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, D., & Zeikus, J. (1999). Utilization of electrically reduced neutral Red byActinobacillus succinogenes: Physiological function of neutral Red in membrane-driven fumarate reduction and energy conservation. Journal of Bacteriology, 181(8), 2403–2410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peguin, S., & Soucaille, P. (1996). Modulation of metabolism of Clostridium acetobutylicum grown in chemostat culture in a three-electrode potentiostatic system with methyl viologen as electron carrier. Biotechnology and Bioengineering, 51(3), 342–348.

    Article  CAS  PubMed  Google Scholar 

  • Pohorelic, B. K., Voordouw, J. K., Lojou, E., Dolla, A., Harder, J., & Voordouw, G. (2002). Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenborough on hydrogen and lactate metabolism. Journal of Bacteriology, 184(3), 679–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potter, M. (1910). On the difference of potential due to the vital activity of microorganisms. Durham University Philosophy Society, 1910, 245–249.

    Google Scholar 

  • Qian, Y., Huang, L., Zhou, P., Tian, F., & Puma, G. L. (2019). Reduction of Cu (II) and simultaneous production of acetate from inorganic carbon by Serratia Marcescens biofilms and plankton cells in microbial electrosynthesis systems. Science of the Total Environment, 666, 114–125.

    Article  CAS  Google Scholar 

  • Rabaey, K., Boon, N., Höfte, M., & Verstraete, W. (2005). Microbial phenazine production enhances electron transfer in biofuel cells. Environmental Science & Technology, 39(9), 3401–3408.

    Article  CAS  Google Scholar 

  • Ranaivoarisoa, T. O., Rengasamy, K., Guzman, M. S., Singh, R., & Bose, A. (2017). Towards sustainable bioplastic production in resource limited environments using the photoferroautotrophic and photoelectroautotrophic bacterium Rhodopseudomonas palustris TIE-1. bioRxiv, 214551.

    Google Scholar 

  • Reguera, G., McCarthy, K. D., Mehta, T., Nicoll, J. S., Tuominen, M. T., & Lovley, D. R. (2005). Extracellular electron transfer via microbial nanowires. Nature, 435(7045), 1098.

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum, M., Aulenta, F., Villano, M., & Angenent, L. T. (2011). Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved? Bioresource Technology, 102(1), 324–333.

    Article  CAS  PubMed  Google Scholar 

  • Rotaru, A.-E., Shrestha, P. M., Liu, F., Shrestha, M., Shrestha, D., Embree, M., et al. (2014). A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy & Environmental Science, 7(1), 408–415.

    Article  CAS  Google Scholar 

  • Rozendal, R. A., Hamelers, H. V., Rabaey, K., Keller, J., & Buisman, C. J. (2008). Towards practical implementation of bioelectrochemical wastewater treatment. Trends in Biotechnology, 26(8), 450–459.

    Article  CAS  PubMed  Google Scholar 

  • Rozendal, R. A., Jeremiasse, A. W., Hamelers, H. V., & Buisman, C. J. (2007). Hydrogen production with a microbial biocathode. Environmental Science & Technology, 42(2), 629–634.

    Article  CAS  Google Scholar 

  • Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., et al. (2000). Global biodiversity scenarios for the year 2100. Science, 287(5459), 1770–1774.

    Article  CAS  PubMed  Google Scholar 

  • Schröder, U. (2007). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Physical Chemistry Chemical Physics, 9(21), 2619–2629.

    Article  PubMed  Google Scholar 

  • Schrott, G. D., Ordoñez, M. V., Robuschi, L., & Busalmen, J. P. (2014). Physiological stratification in electricity-producing biofilms of Geobacter sulfurreducens. ChemSusChem, 7(2), 598–603.

    Article  CAS  PubMed  Google Scholar 

  • Schuchmann, K., & Müller, V. (2016). Energetics and application of heterotrophy in acetogenic bacteria. Applied and Environmental Microbiology, 82(14), 4056–4069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegert, M., Yates, M. D., Call, D. F., Zhu, X., Spormann, A., & Logan, B. E. (2014). Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis. ACS Sustainable Chemistry & Engineering, 2(4), 910–917.

    Article  CAS  Google Scholar 

  • Stams, A. J., & Plugge, C. M. (2009). Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Reviews Microbiology, 7(8), 568.

    Article  CAS  PubMed  Google Scholar 

  • Steidl, R. J., Lampa-Pastirk, S., & Reguera, G. (2016). Mechanistic stratification in electroactive biofilms of Geobacter sulfurreducens mediated by pilus nanowires. Nature Communications, 7, 12217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinbusch, K. J., Hamelers, H. V., Schaap, J. D., Kampman, C., & Buisman, C. J. (2009). Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environmental Science & Technology, 44(1), 513–517.

    Article  CAS  Google Scholar 

  • Strycharz, S. M., Woodard, T. L., Johnson, J. P., Nevin, K. P., Sanford, R. A., Löffler, F. E., et al. (2008). Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Applied and Environmental Microbiology, 74(19), 5943–5947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sydow, A., Krieg, T., Mayer, F., Schrader, J., & Holtmann, D. (2014). Electroactive bacteria—molecular mechanisms and genetic tools. Applied Microbiology and Biotechnology, 98(20), 8481–8495.

    Article  CAS  PubMed  Google Scholar 

  • Tandukar, M., Huber, S. J., Onodera, T., & Pavlostathis, S. G. (2009). Biological chromium (VI) reduction in the cathode of a microbial fuel cell. Environmental Science & Technology, 43(21), 8159–8165.

    Article  CAS  Google Scholar 

  • TerAvest, M. A., Zajdel, T. J., & Ajo-Franklin, C. M. (2014). The Mtr pathway of shewanella oneidensis MR-1 couples substrate utilization to current production in escherichia coli. ChemElectroChem, 1(11), 1874–1879.

    Article  CAS  Google Scholar 

  • Thauer, R. K. (2012). The Wolfe cycle comes full circle. Proceedings of the National Academy of Sciences, 109(38), 15084–15085.

    Article  CAS  Google Scholar 

  • Thrash, J. C., Van Trump, J. I., Weber, K. A., Miller, E., Achenbach, L. A., & Coates, J. D. (2007). Electrochemical stimulation of microbial perchlorate reduction. Environmental Science & Technology, 41(5), 1740–1746.

    Article  CAS  Google Scholar 

  • Torella, J. P., Gagliardi, C. J., Chen, J. S., Bediako, D. K., Colón, B., Way, J. C., et al. (2015). Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system. Proceedings of the National Academy of Sciences, 112(8), 2337–2342.

    Article  CAS  Google Scholar 

  • Vassilev, I., Hernandez, P. A., Batlle-Vilanova, P., Freguia, S., Krömer, J. O., Keller, J., et al. (2018). Microbial electrosynthesis of isobutyric, butyric, caproic acids, and corresponding alcohols from carbon dioxide. ACS Sustainable Chemistry & Engineering, 6(7), 8485–8493.

    Article  CAS  Google Scholar 

  • Villano, M., De Bonis, L., Rossetti, S., Aulenta, F., & Majone, M. (2011). Bioelectrochemical hydrogen production with hydrogenophilic dechlorinating bacteria as electrocatalytic agents. Bioresource Technology, 102(3), 3193–3199.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, R. C., Regan, J. M., Oh, S.-E., Zuo, Y., & Logan, B. E. (2009). Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Research, 43(5), 1480–1488.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Luo, H., Fallgren, P. H., Jin, S., & Ren, Z. J. (2015). Bioelectrochemical system platform for sustainable environmental remediation and energy generation. Biotechnology Advances, 33(3-4), 317–334.

    Article  PubMed  CAS  Google Scholar 

  • Xafenias, N., & Mapelli, V. (2014). Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production. International Journal of Hydrogen Energy, 39(36), 21864–21875.

    Article  CAS  Google Scholar 

  • Xie, X., Yu, G., Liu, N., Bao, Z., Criddle, C. S., & Cui, Y. (2012). Graphene–sponges as high-performance low-cost anodes for microbial fuel cells. Energy & Environmental Science, 5(5), 6862–6866.

    Article  CAS  Google Scholar 

  • Yu, J., Dow, A., & Pingali, S. (2013). The energy efficiency of carbon dioxide fixation by a hydrogen-oxidizing bacterium. International Journal of Hydrogen Energy, 38(21), 8683–8690.

    Article  CAS  Google Scholar 

  • Zaybak, Z., Pisciotta, J. M., Tokash, J. C., & Logan, B. E. (2013). Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems. Journal of Biotechnology, 168(4), 478–485.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karthic, A., Pandit, S., Khilari, S., Mathuriya, A.S., Jung, S.P. (2020). Microbial Electrosynthesis for Harnessing Value-Added Product via Carbon Dioxide Sequestering. In: Kumar, P., Kuppam, C. (eds) Bioelectrochemical Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-6872-5_12

Download citation

Publish with us

Policies and ethics