Skip to main content

Photosynthetic Microbial Fuel Cells: From Fundamental to Potential Applications

  • Chapter
  • First Online:
Bioelectrochemical Systems

Abstract

In photosynthetic microbial fuel cell (MFC), algae and photosynthetic bacteria undergo photosynthesis to generate electricity by harnessing the solar energy. The microorganisms on absorbing solar energy initiate a series of reactions to generate protons (H+ ions), electron, and oxygen through splitting of water. The energy from these reaction series is harnessed by placing photosynthetic organisms in anodic chamber separated from cathodic chamber by a semipermeable membrane selective for hydrogen ions. The electrons generated in an anodic chamber by photosynthetic activity of microbes travel through an outer circuit to the cathodic chamber, where they combine with protons and oxygen at the reductive electrode (cathode) to generate water. This technology has huge potential for converting solar energy into electrical energy and might also help to reduce the carbon footprint. The chapter discusses the concept, fundamentals, process design and operation of photosynthetic MFC. Furthermore, the role of photosynthetic organisms in MFC, various bottlenecks faced by MFC systems and their potential applications are also outlined in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aelterman, P., Rabaey, K., Pham, H. T., Boon, N., & Verstraete, W. (2006). Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environmental Science and Technology, 40(10), 3388–3394.

    Article  CAS  PubMed  Google Scholar 

  • Baicha, Z., Salar-García, M. J., Ortiz-Martínez, V. M., Hernández-Fernández, F. J., De los Ríos, A. P., Labjar, N., et al. (2016). A critical review on microalgae as an alternative source for bioenergy production: A promising low cost substrate for microbial fuel cells. Fuel Processing Technology, 154, 104–116.

    Article  CAS  Google Scholar 

  • Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.

    Article  CAS  PubMed  Google Scholar 

  • Berk, R. S., & Canfield, J. H. (1964). Bioelectrochemical energy conversion. Applied and Environmental Microbiology, 12(1), 10–12.

    Article  CAS  Google Scholar 

  • Chandra, R., Mohan, S. V., Roberto, P. S., Ritmann, B. E., & Cornejo, R. A. S. (2018). Biophotovoltaics: conversion of light energy to bioelectricity through photosynthetic microbial fuel cell technology. Microbial Fuel Cell, 2018, 373–387.

    Article  Google Scholar 

  • Chandra, R., Subhash, G. V., & Mohan, S. V. (2012). Mixotrophic operation of photo-bioelectrocatalytic fuel cell under anoxygenic microenvironment enhances the light dependent bioelectrogenic activity. Bioresource Technology, 109, 46–56.

    Article  CAS  PubMed  Google Scholar 

  • Chang, F. K. (2001). Chinese energy and Asian security. Orbis, 45(2), 211–240.

    Article  Google Scholar 

  • Chang, G. H., & Brada, J. C. (2006). The paradox of China’s growing under-urbanization. Economic Systems, 30(1), 24–40.

    Article  Google Scholar 

  • Chang, H. C., Du, H., Anda, J., Chuah, C. N., Ghosal, D., & Zhang, H. M. (2004. Enabling energy demand response with vehicular mesh networks. In IFIP International Conference on Mobile and Wireless Communication Networks (pp. 371–382).

    Google Scholar 

  • Chaturvedi, V., & Verma, P. (2016). Microbial fuel cell: A green approach for the utilization of waste for the generation of bioelectricity. Bioresources and Bioprocessing, 3(1), 38.

    Article  Google Scholar 

  • Del Campo, A. G., Cañizares, P., Rodrigo, M. A., Fernández, F. J., & Lobato, J. (2013). Microbial fuel cell with an algae-assisted cathode: A preliminary assessment. Journal of Power Sources, 242, 638–645.

    Article  CAS  Google Scholar 

  • Deng, H., Chen, Z., & Zhao, F. (2012). Energy from plants and microorganisms: Progress in plant–microbial fuel cells. ChemSusChem, 5(6), 1006–1011.

    Article  CAS  PubMed  Google Scholar 

  • Dong, Y., Qu, Y., He, W., Du, Y., Liu, J., Han, X., et al. (2015). A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode. Bioresource Technology, 195, 66–72.

    Article  CAS  PubMed  Google Scholar 

  • Du, R., Cao, S., Li, B., Niu, M., Wang, S., & Peng, Y. (2017). Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters. Water Research, 108, 46–56.

    Article  CAS  PubMed  Google Scholar 

  • Durruty, I., Bonanni, P. S., González, J. F., & Busalmen, J. P. (2012). Evaluation of potato-processing wastewater treatment in a microbial fuel cell. Bioresource Technology, 105, 81–87.

    Article  CAS  PubMed  Google Scholar 

  • Fan, Y., Han, S. K., & Liu, H. (2012). Improved performance of CEA microbial fuel cells with increased reactor size. Energy & Environmental Science, 5(8), 8273–8280.

    Article  CAS  Google Scholar 

  • Figueredo, F., Cortón, E., & Abrevaya, X. C. (2015). In situ search for extraterrestrial life: A microbial fuel cell–based sensor for the detection of photosynthetic metabolism. Astrobiology, 15(9), 717–727.

    Article  PubMed  Google Scholar 

  • Fischer, F. (2018). Photoelectrode, photovoltaic and photosynthetic microbial fuel cells. Renewable and Sustainable Energy Reviews, 90, 16–27.

    Article  CAS  Google Scholar 

  • Fornero, J. J., Rosenbaum, M., Cotta, M. A., & Angenent, L. T. (2008). Microbial fuel cell performance with a pressurized cathode chamber. Environmental Science & Technology, 42(22), 8578–8584.

    Article  CAS  Google Scholar 

  • Fraiwan, A., Kwan, L., & Choi, S. (2016). A disposable power source in resource-limited environments: A paper-based biobattery generating electricity from wastewater. Biosensors and Bioelectronics, 85, 190–197.

    Article  CAS  PubMed  Google Scholar 

  • Fu, P. (2009). Genome-scale modeling of Synechocystis sp. PCC 6803 and prediction of pathway insertion. Journal of Chemical Technology and Biotechnology, 84(4), 473–483.

    Article  CAS  Google Scholar 

  • Gajda, I., Greenman, J., Melhuish, C., & Ieropoulos, I. (2015). Self-sustainable electricity production from algae grown in a microbial fuel cell system. Biomass and Bioenergy, 82, 87–93.

    Article  CAS  Google Scholar 

  • Gautam, K., Pareek, A., & Sharma, D. K. (2017). Comparison and utilization of potential green algal and cyanobacterial species for power generation through algal microbial fuel cell. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(5), 451–457.

    Article  CAS  Google Scholar 

  • Ghangrekar, M. M., & Shinde, V. B. (2007). Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresource Technology, 98(15), 2879–2885.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, R. S. (2005). Protein signatures distinctive of alpha proteobacteria and its subgroups and a model for α–proteobacterial evolution. Critical Reviews in Microbiology, 31(2), 101–135.

    Article  CAS  PubMed  Google Scholar 

  • Hai, F. I., Yamamoto, K., & Fukushi, K. (2007). Hybrid treatment systems for dye wastewater. Critical Reviews in Environmental Science and Technology, 37(4), 315–377.

    Article  CAS  Google Scholar 

  • Hashemi, N., Lackore, J. M., Sharifi, F., Goodrich, P. J., Winchell, M. L., & Hashemi, N. (2016). A paper-based microbial fuel cell operating under continuous flow condition. Bioresource Technology, 4(2), 98–103.

    Google Scholar 

  • He, Z., Wagner, N., Minteer, S. D., & Angenent, L. T. (2006). An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environmental Science and Technology, 40(17), 5212–5217.

    Article  CAS  PubMed  Google Scholar 

  • Helder, M., Strik, D. P., Hamelers, H. V., & Buisman, C. J. (2012). The flat-plate plant-microbial fuel cell: The effect of a new design on internal resistances. Biotechnology for Biofuels, 5(1), 70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helder, M., Strik, D. P., Hamelers, H. V. M., Kuhn, A. J., Blok, C., & Buisman, C. J. N. (2010). Concurrent bio-electricity and biomass production in three plant-microbial fuel cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresource Technology, 101(10), 3541–3547.

    Article  CAS  PubMed  Google Scholar 

  • Huang, L., & Logan, B. E. (2008). Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Applied Microbiology and Biotechnology, 80, 349–355.

    Article  CAS  PubMed  Google Scholar 

  • Ivashin, N., Källebring, B., Larsson, S., & Hansson, Ö. (1998). Charge separation in photosynthetic reaction centers. The Journal of Physical Chemistry B, 102(25), 5017–5022.

    Article  CAS  Google Scholar 

  • Janzen, A. F., & Seibert, M. (1980). Photoelectrochemical conversion using reaction-centre electrodes. Nature, 286(5773), 584–585.

    Article  CAS  Google Scholar 

  • Kracke, F., Vassilev, I., & Krömer, J. O. (2015). Microbial electron transport and energy conservation—The foundation for optimizing bioelectrochemical systems. Frontiers in Microbiology, 6, 575.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, D. J., Chang, J. S., & Lai, J. Y. (2015). Microalgae–microbial fuel cell: A mini review. Bioresource Technology, 198, 891–895.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H., & Choi, S. (2015). A micro-sized bio-solar cell for self-sustaining power generation. Lab on a Chip, 15(2), 391–398.

    Article  CAS  PubMed  Google Scholar 

  • Liljeroth, E., Kuikman, P., & Van Veen, J. A. (1994). Carbon translocation to the rhizosphere of maize and wheat and influence on the turnover of native soil organic matter at different soil nitrogen levels. Plant and Soil, 161(2), 233–240.

    Article  Google Scholar 

  • Liu, H., & Logan, B. E. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science and Technology, 38(14), 4040–4046.

    Article  CAS  PubMed  Google Scholar 

  • Liu, S., Qureshi, N., & Hughes, S. R. (2017). Progress and perspectives on improving butanol tolerance. World Journal of Microbiology and Biotechnology, 33(3), 51.

    Article  PubMed  CAS  Google Scholar 

  • Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., et al. (2006). Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40(17), 5181–5192.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, J. M., & Whipps, J. M. (1990). Substrate flow in the rhizosphere. Plant and Soil, 129(1), 1–10.

    Article  CAS  Google Scholar 

  • Marsili, E., Baron, D. B., Shikhare, I. D., Coursolle, D., Gralnick, J. A., & Bond, D. R. (2008). Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences, 105(10), 3968–3973.

    Article  CAS  Google Scholar 

  • McCormick, A. J., Bombelli, P., Scott, A. M., Philips, A. J., Smith, A. G., Fisher, A. C., et al. (2011). Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy and Environmental Science, 4(11), 4699–4709.

    Article  CAS  Google Scholar 

  • Mohan, S. V., Mohanakrishna, G., Chiranjeevi, P., Peri, D., & Sarma, P. N. (2010). Ecologically engineered system (EES) designed to integrate floating, emergent and submerged macrophytes for the treatment of domestic sewage and acid rich fermented-distillery wastewater: Evaluation of long term performance. Bioresource Technology, 101(10), 3363–3370.

    Article  CAS  Google Scholar 

  • Mohan, S. V., Srikanth, S., Chiranjeevi, P., Arora, S., & Chandra, R. (2014). Algal biocathode for in situ terminal electron acceptor (TEA) production: Synergetic association of bacteria–microalgae metabolism for the functioning of biofuel cell. Bioresource Technology, 166, 566–574.

    Article  CAS  Google Scholar 

  • Mohanakrishna, G., Srikanth, S., & Pant, D. (2015). Bioelectrochemical systems (BES) for microbial electroremediation: An advanced wastewater treatment technology. In Applied environmental biotechnology: Present scenario and future trends (pp. 145–167). Cham: Springer.

    Google Scholar 

  • Narayanan, K. A., Stalin, S., & Meera, P. (2012). A membrane less, single chamber microbial fuel cell for waste water treatment. Asian Journal of Scientific Research, 5(4), 255–262.

    Article  CAS  Google Scholar 

  • Nevin, K. P., Richter, H., Covalla, S. F., Johnson, J. P., Woodard, T. L., Orloff, A. L., et al. (2008). Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environmental Microbiology, 10(10), 2505–2514.

    Article  CAS  PubMed  Google Scholar 

  • Pehl, M., Arvesen, A., Humpenöder, F., Popp, A., Hertwich, E. G., & Luderer, G. (2017). Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling. Nature Energy, 2(12), 939.

    Article  CAS  Google Scholar 

  • Pei, H., Yang, Z., Nie, C., Hou, Q., Zhang, L., Wang, Y., et al. (2018). Using a tubular photosynthetic microbial fuel cell to treat anaerobically digested effluent from kitchen waste: Mechanisms of organics and ammonium removal. Bioresource Technology, 256, 11–16.

    Article  CAS  PubMed  Google Scholar 

  • Pisciotta, J. M., Zou, Y., & Baskakov, I. V. (2010). Light-dependent electrogenic activity of cyanobacteria. Public Library of Science One, 5(5), 10821.

    Google Scholar 

  • Pocaznoi, D., Calmet, A., Etcheverry, L., Erable, B., & Bergel, A. (2012). Stainless steel is a promising electrode material for anodes of microbial fuel cells. Energy & Environmental Science, 5(11), 9645–9652.

    Article  CAS  Google Scholar 

  • Powell, N., Shilton, A., Pratt, S., & Chisti, Y. (2011). Luxury uptake of phosphorus by microalgae in full-scale waste stabilisation ponds. Water Science and Technology, 63(4), 704–709.

    Article  CAS  PubMed  Google Scholar 

  • Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M., & Verstraete, W. (2004). Biofuel cells select for microbial consortia that self-mediate electron transfer. Applied and Environmental Microbiology, 70(9), 5373–5382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts, A. G., Bowman, M. K., & Kramer, D. M. (2004). The inhibitor DBMIB provides insight into the functional architecture of the Qo site in the cytochrome b6f complex. Biochemistry, 43(24), 7707–7716.

    Article  CAS  PubMed  Google Scholar 

  • Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 356, 225–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawa, M., Fantuzzi, A., Bombelli, P., Howe, C. J., Hellgardt, K., & Nixon, P. J. (2017). Electricity generation from digitally printed cyanobacteria. Nature Communications, 8(1), 1327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schröder, U. (2007). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Physical Chemistry Chemical Physics, 9(21), 2619–2629.

    Article  PubMed  Google Scholar 

  • Shi, L., Richardson, D. J., Wang, Z., Kerisit, S. N., Rosso, K. M., Zachara, J. M., et al. (2009). The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. Environmental Microbiology Reports, 1(4), 220–227.

    Article  CAS  PubMed  Google Scholar 

  • Shukla, M., & Kumar, S. (2018). Algal growth in photosynthetic algal microbial fuel cell and its subsequent utilization for biofuels. Renewable and Sustainable Energy Reviews, 82, 402–414.

    Article  CAS  Google Scholar 

  • Sivakumar, P., Ilango, K., Praveena, N., Sircar, A., Balasubramanian, R., Sakthisaravanan, A., et al. (2018). Algal fuel cell. Microalgal Biotechnology, 2018, 91.

    Google Scholar 

  • Strik, D. P., Hamelers, H. V. M., Snel, J. F., & Buisman, C. J. (2008). Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research, 32(9), 870–876.

    Article  CAS  Google Scholar 

  • Strik, D. P., Timmers, R. A., Helder, M., Steinbusch, K. J., Hamelers, H. V., & Buisman, C. J. (2011). Microbial solar cells: Applying photosynthetic and electrochemically active organisms. Trends in Biotechnology, 29(1), 41–49.

    Article  CAS  PubMed  Google Scholar 

  • Timmers, R. A., Strik, D. P., Arampatzoglou, C., Buisman, C. J., & Hamelers, H. V. (2012). Rhizosphere anode model explains high oxygen levels during operation of a Glyceria maxima PMFC. Bioresource Technology, 108, 60–67.

    Article  CAS  PubMed  Google Scholar 

  • UNDP. (2000). Energy and the challenge of sustainability. New York: United Nations Development Programme and World Energy Council.

    Google Scholar 

  • Wang, C., Guo, L., Li, Y., & Wang, Z. (2012). Systematic comparison of C3 and C4 plants based on metabolic network analysis. BMC Systems Biology, 6(2), 9.

    CAS  Google Scholar 

  • Wang, X., Feng, Y., Liu, J., Lee, H., Li, C., Li, N., et al. (2010). Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosensors and Bioelectronics, 25(12), 2639–2643.

    Article  CAS  PubMed  Google Scholar 

  • Wang-Otomo, Z. Y. (2016). Recent understanding on the photosystem of purple photosynthetic bacteria. In Solar to chemical energy conversion (pp. 379–390). Cham: Springer.

    Chapter  Google Scholar 

  • Wei, X., Mohammadifar, M., Yang, W., & Choi, S. (2016). A microscale biophotovoltaic device. IEEE Sensors, 2016, 1–3.

    Article  CAS  Google Scholar 

  • Wu, X. Y., Song, T. S., Zhu, X. J., Wei, P., & Zhou, C. C. (2013). Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation. Applied Biochemistry and Biotechnology, 171(8), 2082–2092.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y. C., Wang, Z. J., Zheng, Y., Xiao, Y., Yang, Z. H., & Zhao, F. (2014). Light intensity affects the performance of photo microbial fuel cells with Desmodesmus sp. A8 as cathodic microorganism. Applied Energy, 116, 86–90.

    Article  CAS  Google Scholar 

  • Xie, X., Pasta, M., Hu, L., Yang, Y., McDonough, J., Cha, J., et al. (2011). Nano-structured textiles as high-performance aqueous cathodes for microbial fuel cells. Energy and Environmental Science, 4(4), 1293–1297.

    Article  CAS  Google Scholar 

  • Xing, D., Cheng, S., Regan, J. M., & Logan, B. E. (2009). Change in microbial communities in acetate-and glucose-fed microbial fuel cells in the presence of light. Biosensors and Bioelectronics, 25(1), 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Xing, D., Zuo, Y., Cheng, S., Regan, J. M., & Logan, B. E. (2008). Electricity generation by Rhodopseudomonas palustris DX-1. Environmental Science & Technology, 42(11), 4146–4151.

    Article  CAS  Google Scholar 

  • Yong, X. Y., Feng, J., Chen, Y. L., Shi, D. Y., Xu, Y. S., Zhou, J., et al. (2014). Enhancement of bioelectricity generation by cofactor manipulation in microbial fuel cell. Biosensors and Bioelectronics, 56, 19–25.

    Article  CAS  PubMed  Google Scholar 

  • Yoshizawa, T., Miyahara, M., Kouzuma, A., & Watanabe, K. (2014). Conversion of activated sludge reactors to microbial fuel cells for wastewater treatment coupled to electricity generation. Journal of Bioscience and Bioengineering, 118, 533–539.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, G., Jiao, Y., & Lee, D. J. (2015). A lab-scale anoxic/oxic-bioelectrochemical reactor for leachate treatments. Bioresource Technology, 186, 97–105.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jaswal, V., Rani, G., Yogalakshmi, K.N. (2020). Photosynthetic Microbial Fuel Cells: From Fundamental to Potential Applications. In: Kumar, P., Kuppam, C. (eds) Bioelectrochemical Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-6868-8_1

Download citation

Publish with us

Policies and ethics