Skip to main content

Multiple Faces of C-Reactive Protein: Structure–Function Relationships

  • Chapter
  • First Online:
Clinical Significance of C-reactive Protein
  • 523 Accesses

Abstract

C-reactive protein (CRP) is a fascinating acute phase protein which plays a range of functions in different physiological or pathophysiological states. Since its discovery, it has been regarded as a useful biomarker of tissue injury, infection, and inflammation. The native CRP (nCRP) and the modified isoforms (mCRP) appeared in due course of different researches. The mCRP is formed when CRP is exposed to acidic pH and redox conditions (conditions mimicking inflammatory microenvironments). The nCRP is the native pentameric structure. CRP is functional in both native (nCRP) and its non-native pentameric (mCRP) structural conformations. The functional roles of native CRP are quite different from mCRP. The mCRP binds to PC and also to immobilized (in vitro) factor H, the complement inhibitor for beneficial complement-resistant activity. Thus, nCRP is protective only against early-stage infection, while mCRP is protective against both early- and late-stage infections. As nCRP exhibits PC-independent anti-pneumococcal activity, it is quite feasible that CRP functions as a general antibacterial molecule. They have different impacts in diverse pathophysiological states. CRP as a biomarker of inflammation, is a clinically significant predictor of potential episodes of cardiovascular disease, independent of other risk factors. Researchers suggested the structure–function relationship between the mCRP isoforms and nCRP. Attempts had been made to recognize the possible significance between the diversity of structures and their opposing roles. This chapter discusses the biochemical facets of CRP biology, emphasizing on the supposed application between the structural biology of CRP isoforms, their physiological relevance, differentiation, and condition-based pathophysiological roles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APP:

Acute phase protein

APR:

Acute phase response

CHD:

Congenital heart defect

CHD:

Congenital heart disease

CR1:

Complement receptor 1

CR3:

Complement receptor 3

CRP:

C-reactive protein

EDTA:

Ethylenediaminetetraacetic acid

ESR:

Erythrocyte sedimentation rate

FcγR:

Fc-gamma receptors

fMLP:

N-formyl-l-methionyl-l-leucyl-phenylalanine

Glu:

Glutamate

HRT:

Hormone replacement therapy

HSA:

Human serum albumin

IgG:

Immunoglobulin

IL-1:

Interleukin-1

IL-10:

Interleukin 10

IL-12:

Interleukin 12

IL-1R:

Interleukin-1 receptor

IL-6:

Interleukin-6

LDL:

Low-density lipoprotein

LPG:

Lipophosphoglycan

Lys:

Lysine

Mal:

Malaria

MALDI-TOF:

Matrix-assisted laser desorption/ionization

mCRP:

Monomeric CRP

MMDB:

Molecular Modeling Database

neo-CRP:

neo-antigen CRP

oxLDL:

Oxidized low-density lipoproteins

PAF:

Paroxysmal atrial fibrillation

PAF:

Platelet-activating factor

PBMC:

Peripheral blood mononuclear cells

PC:

Phosphocholine

PCT:

Procalcitonin

PDB:

Protein Data Bank

Phe:

Phenylalanine

PL:

Poly-l-lysine

PMA:

Phorbol myristate acetate

RCSB:

Research Collaboratory for Structural Bioinformatics

SAA:

Serum amyloid A

SAP:

Serum amyloid P component

TB:

Tuberculosis

Thr:

Threonine

VL:

Visceral leishmaniasis

References

  • Abernethy TJ, Avery OT (1941) The occurrence during acute infections of a protein not normally present in the blood: I. Distribution of the reactive protein in patients’ sera and the effect of calcium on the flocculation reaction with C polysaccharide of pneumococcus. J Exp Med 73:173–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agassandian M, Shurin GV, Ma Y, Shurin MR (2014) C-reactive protein and lung diseases. Int J Biochem Cell Biol 53:77–88. M

    Article  CAS  PubMed  Google Scholar 

  • Agrawal A, Volanakis JE (1994) Probing the C1q-binding site on human C-reactive protein by site-directed mutagenesis. J Immunol 152:5404–5410

    CAS  PubMed  Google Scholar 

  • Agrawal A, Lee S, Carson M, Narayana SVL, Greenhough TJ, Volanakis JE (1997) Site-directed mutagenesis of the phosphocholine-binding site of human C-reactive protein: role of Thr76 and Trp67. J Immunol 158:345–350

    CAS  PubMed  Google Scholar 

  • Agrawal A, Simpson MJ, Black S, Carey MP, Samols D (2002) A C reactive protein mutant that does not bind to phosphocholine and pneumococcal C-polysaccharide. J Immunol 169:3217–3222. https://doi.org/10.4049/jimmunol.169.6.3217

    Article  CAS  PubMed  Google Scholar 

  • Agrawal A, Suresh MV, Singh SK, Ferguson DA Jr (2008) The protective function of human C-reactive protein in mouse models of Streptococcus pneumoniae infection. Endocr Metab Immune Disord Drug Targets 8:231–237. https://doi.org/10.2174/187153008786848321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguiar FJ, Ferreira-Júnior M, Sales MM, Cruz-Neto LM, Fonseca LA, Sumita NM, Duarte NJ, Lichtenstein A, Duarte AJ (2013) C-reactive protein: clinical applications and proposals for a rational use. Rev Assoc Med Bras (1992) 59(1):85–92

    Article  Google Scholar 

  • Ahmed N, Thorley R, Xia D, Samols D, Webster RO (1996) Transgenic mice expressing CRP exhibit diminished chemotactic factor induced alveolitis. Am J Respir Crit Care Med 153:1141–1147

    Article  CAS  PubMed  Google Scholar 

  • Albert MA, Danielson E, Rifai N, Ridker PM, PRINCE Investigators (2001) Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a randomized trial and cohort study. JAMA 286(1):64–70

    Article  CAS  PubMed  Google Scholar 

  • Albert CM, Ma J, Rifai N, Stampfer MJ, Ridker PM (2002) Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. Circulation 105(22):2595–2599

    Article  CAS  PubMed  Google Scholar 

  • Anderson JK, Stroud RM, Volanakis JE (1978) Studies on the binding specificity of human C-reactive protein for phosphorylcholine. Fed Proc 37:1495

    Google Scholar 

  • Ansar W, Bandyopadhyay SM, Chowdhury S, Habib SH, Mandal C (2006) Role of C-reactive protein in complement-mediated hemolysis in Malaria. Glycoconj J 23(3–4):233–240

    Article  CAS  PubMed  Google Scholar 

  • Ansar W, Mukhopadhyay S, Habib SK, Basu S, Saha B, Sen AK, Mandal CN, Mandal C (2009a) Disease-associated glycosylated molecular variants of human C-reactive protein activate complement-mediated hemolysis of erythrocytes in tuberculosis and Indian visceral leishmaniasis. Glycoconj J 26(9):1151–1169. https://doi.org/10.1007/s10719-009-9236-y

    Article  CAS  PubMed  Google Scholar 

  • Ansar W, Habib SK, Roy S, Mandal C, Mandal C (2009b) Unraveling the C-reactive protein complement-cascade in destruction of red blood cells: potential pathological implications in Plasmodium falciparum malaria. Cell Physiol Biochem 23(1–3):175–190. https://doi.org/10.1159/000204106

    Article  CAS  PubMed  Google Scholar 

  • Ballou SP, Lozanski G (1992) Induction of inflammatory cytokine release from cultured human monocytes by C-reactive protein. Cytokine 4:361–368

    Article  CAS  PubMed  Google Scholar 

  • Baumeister D, Akhtar R, Ciufolini S, Pariante CM, Mondelli V (2016) Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, inetleukin-6 and tumour necrosis factor-α. Mol Psychiatry 21:642–649. https://doi.org/10.1038/mp.2015.67

    Article  CAS  PubMed  Google Scholar 

  • Bee A, Culley FJ, Alkhalife IS, Bodman-Smith KB, Raynes JG, Bates PA (2001) Transformation of Leishmania mexicana metacyclic promastigotes to amastigote-like forms mediated by binding of C -reactive protein. Parasitology 122:521–529

    Article  CAS  PubMed  Google Scholar 

  • Bharadwaj D, Stein M-P, Volzer M, Mold C, DuClos TW (1999) The major receptor for C-reactive protein on leukocytes is Fcg receptor II. J Exp Med 190:585–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biasucci LM, Liuzzo G, Grillo RL, Caligiuri G, Rebuzzi AG, Buffon A, Summaria F, Ginnetti F, Fadda G, Maseri A (1999) Elevated levels of C-reactive protein at discharge in patients with unstable angina predict recurrent instability. Circulation 99(7):855–860

    Article  CAS  PubMed  Google Scholar 

  • Black S, Kushner I, Samols D (2004) C-reactive protein. J Biol Chem 279(47):48487–48490. https://doi.org/10.1074/jbc.R400025200

    Article  CAS  PubMed  Google Scholar 

  • Blake GJ, Ridker PM (2002) C-reactive protein and prognosis after percutaneous coronary intervention. Eur Heart J 23:923–925

    Article  CAS  PubMed  Google Scholar 

  • Bodman-Smith KB, Melendez AJ, Campbell I, Harrison PT, Allen JM, Raynes JG (2002a) C-reactive protein-mediated phagocytosis and phospholipase D signalling through the high-affinity receptor for immunoglobulin G (FcγRI). Immunology 107:252–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodman-Smith KB, Mbuchi M, Culley FJ, Bates PA, Raynes JG (2002b) C-reactive protein-mediated phagocytosis of Leishmania donovani promastigotes does not alter parasite survival or macrophage responses. Parasite Immunol 24(9–10):447

    Article  CAS  PubMed  Google Scholar 

  • Boncler M, Wu Y, Watala C (2019) The multiple faces of C-reactive protein—physiological and pathophysiological implications in cardiovascular disease. Molecules 2062:24. https://doi.org/10.3390/molecules24112062

    Article  CAS  Google Scholar 

  • Boras E, Slevin M, Alexander MY, Aljohi A, Gilmore W, Ashworth J, Krupinski J, Potempa LA, Al Abdulkareem I, Elobeid A, Matou-Nasri S (2014) Monomeric C-reactive protein and Notch-3 co-operatively increase angiogenesis through PI3K signalling pathway. Cytokine 69(2):165–179. https://doi.org/10.1016/j.cyto.2014.05.027

    Article  CAS  PubMed  Google Scholar 

  • Bray C, Bell LN, Liang H, Haykal R, Kaiksow F, Mazza JJ, Yale SH (2016) Erythrocyte sedimentation rate and C-reactive protein measurements and their relevance in clinical medicine. Wis Med J 115:317–321

    Google Scholar 

  • Chandrashekara S (2014) C-reactive protein: An inflammatory marker with specific role in physiology, pathology, and diagnosis. J Rheumatol Clin Immunol 2:S1

    Article  Google Scholar 

  • Ciliberto G, Arcone R, Wagner EF, Ru¨ther U (1987) Inducible and tissue-specific expression of human C-reactive protein in transgenic mice. EMBO J 6:4017–4022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciubotaru I, Potempa LA, Wander RC (2005) Production of modified C-reactive protein in U937-derived macrophages. Exp Biol Med 230(10):762–770. https://doi.org/10.1177/153537020

    Article  CAS  Google Scholar 

  • Corcoran MP, Meydani M, Lichtenstein AH, Schaefer EJ, Dillard A, Lamon-Fava S (2010) Sex hormone modulation of proinflammatory cytokine and CRP expression in macrophages from older men and postmenopausal women. J Endocrinol 206(2):217–224. https://doi.org/10.1677/JOE-10-0057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CRP C-Reactive Protein (Homo sapiens) (2020) Entrez gene. National Center for Biotechnology Information (NCBI), U.S. National Library of Medicine.

    Google Scholar 

  • Culley FJ, Harris RA, Kaye PM, McAdam PWJ, Raynes JG (1996) C-reactive protein binds to a novel ligand on Leishmania donovani and increases uptake into human macrophages. J Immunol 156:4691–4696

    CAS  PubMed  Google Scholar 

  • Culley FJ, Bodman-Smith KB, Ferguson MAJ, Nikolaev AV, Shantilal N, Raynes JG (2000) C-reactive protein binds to phosphorylated carbohydrates. Glycobiology 10:59–65

    Article  CAS  PubMed  Google Scholar 

  • Danesh J, Pepys MB (2009) C-reactive protein and coronary disease: is there a causal link? Circulation 120:2036–2039

    Article  PubMed  Google Scholar 

  • Danesh J, Collins R, Appleby P, Peto R (1998) Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. JAMA 279:1477–1482

    Article  CAS  PubMed  Google Scholar 

  • Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A, Lowe GD, Pepys MB, Gudnason V (2004) C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 350:1387–1397

    Article  CAS  PubMed  Google Scholar 

  • Das T, Sen AK, Kempf T, Pramanik SR, Mandal C, Mandal C (2003) Induction of glycosylation in human C-reactive protein under different pathological conditions. Biochem J 373(Pt 2):345–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das T, Mandal C, Mandal C (2004a) Variations in binding characteristics of glycosylated human C-reactive proteins in different pathological conditions. Glycoconj J 20:537–543

    Article  CAS  PubMed  Google Scholar 

  • Das T, Mandal C, Mandal C (2004b) Protein A-a new ligand for human C-reactive protein. FEBS Lett 576:107–113

    Article  CAS  PubMed  Google Scholar 

  • De Beaufort AJ, Langermans JAM, Matze-van der Lans AM, Hiemstra PS, Vossen JM, van Furth R (1997) Difference in binding of killed and live Streptococcus pneumoniae serotypes by C-reactive protein. Scand J Immunol 46:597–600. https://doi.org/10.1046/j.1365-3083.1997.d01-171.x

    Article  PubMed  Google Scholar 

  • Decensi A, Omodei U, Robertson C, Bonanni B, Guerrieri-Gonzaga A, Ramazzotto F et al (2002) Effect of transdermal estradiol and oral conju-gated estrogen on C-reactive protein in retinoid-placebo trial in healthy women. Circulation 106(10):1224–1228. https://doi.org/10.1161/01.CIR.0000028463.74880.EA

    Article  CAS  PubMed  Google Scholar 

  • Devaraj S, Dasu MR, Singh U, Rao LV, Jialal I (2009) C-reactive protein stimulates superoxide anion release and tissue factor activity in vivo. Atherosclerosis 203:67–74

    Article  CAS  PubMed  Google Scholar 

  • Diehl EE, Haines GK 3rd, Radosevich JA, Potempa LA (2000) Immunohistochemical localization of modified C-reactive protein antigen in normal vascular tissue. Am J Med Sci 319(2):79–83

    Article  CAS  PubMed  Google Scholar 

  • Du Clos TW (2000) Function of C-reactive protein. Ann Med 32(4):274–278. https://doi.org/10.3109/07853890009011772

    Article  PubMed  Google Scholar 

  • Du Clos TW (2003) C-reactive protein as a regulator of autoimmunity and inflammation. Arthritis Rheum 48:1475–1477

    Article  PubMed  Google Scholar 

  • Du Clos TW (2013) Pentraxins: Structure, function, and role in inflammation. ISRN Inflamm 2013:379,040

    Google Scholar 

  • Du Clos TW, Mold C (2004) C-reactive protein: an activator of innate immunity and a modulator of adaptive immunity. Immunol Res 30(3):261–277. https://doi.org/10.1385/IR:30:3:261

    Article  PubMed  Google Scholar 

  • Du Clos TW, Mold C, Paterson PY, Alroy J, Gewurz H (1981) Localization of C-reactive protein in inflammatory lesions of experimental allergic enceph-alomyelitis. Clin Exp Immunol 43:565–573

    PubMed  PubMed Central  Google Scholar 

  • Du Clos TW, Zlock LT, Rubin RL (1988) Analysis of the binding of C-reactive protein to histones and chromatin. J Immunol 141(12):4266–4270

    PubMed  Google Scholar 

  • Edwards KM, Gewurz H, Lint TF, Mold C (1982) A role for C-reactive protein in the complement-mediated stimulation of human neutrophils by type 27 Streptococcus pneumoniae. J Immunol 128:2493–2496

    CAS  PubMed  Google Scholar 

  • Emerging Risk Factors Collaboration, Kaptoge S, Di Angelantonio E, Lowe G, Pepys MB, Thompson SG, Collins R, Danesh J (2010) C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375(9709):132–140. https://doi.org/10.1016/S0140-6736(09)61717-7

    Article  CAS  Google Scholar 

  • Esposito K, Pontillo A, Di Palo C et al (2003) Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA 289:1799–1804

    Article  CAS  PubMed  Google Scholar 

  • Fearon DT, Locksley RM (1996) The instructive role of innate immunity in the acquired immune response. Science 272(5258):50–53

    Article  CAS  PubMed  Google Scholar 

  • Fibrinogen Studies Collaboration, Danesh J, Lewington S, Thompson SG, Lowe GD, Collins R, Kostis JB, Wilson AC, Folsom AR, Wu K, Benderly M, Goldbourt U, Willeit J, Kiechl S, Yarnell JW, Sweetnam PM, Elwood PC, Cushman M, Psaty BM, Tracy RP, Tybjaerg-Hansen A, Haverkate F, de Maat MP, Fowkes FG, Lee AJ, Smith FB, Salomaa V, Harald K, Rasi R, Vahtera E, Jousilahti P, Pekkanen J, D’Agostino R, Kannel WB, Wilson PW, Tofler G, Arocha-Piñango CL, Rodriguez-Larralde A, Nagy E, Mijares M, Espinosa R, Rodriquez-Roa E, Ryder E, Diez-Ewald MP, Campos G, Fernandez V, Torres E, Marchioli R, Valagussa F, Rosengren A, Wilhelmsen L, Lappas G, Eriksson H, Cremer P, Nagel D, Curb JD, Rodriguez B, Yano K, Salonen JT, Nyyssönen K, Tuomainen TP, Hedblad B, Lind P, Loewel H, Koenig W, Meade TW, Cooper JA, De Stavola B, Knottenbelt C, Miller GJ, Cooper JA, Bauer KA, Rosenberg RD, Sato S, Kitamura A, Naito Y, Palosuo T, Ducimetiere P, Amouyel P, Arveiler D, Evans AE, Ferrieres J, Juhan-Vague I, Bingham A, Schulte H, Assmann G, Cantin B, Lamarche B, Després JP, Dagenais GR, Tunstall-Pedoe H, Woodward M, Ben-Shlomo Y, Davey Smith G, Palmieri V, Yeh JL, Rudnicka A, Ridker P, Rodeghiero F, Tosetto A, Shepherd J, Ford I, Robertson M, Brunner E, Shipley M, Feskens EJ, Kromhout D, Dickinson A, Ireland B, Juzwishin K, Kaptoge S, Lewington S, Memon A, Sarwar N, Walker M, Wheeler J, White I, Wood A (2005) Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA 294(14):1799–1809

    Google Scholar 

  • Filep J, Foldes-Filep E (1989) E_ects of C-reactive protein on human neutrophil granulocytes challenged with N-formyl-methionyl-leucyl-phenylalanine and platelet-activating factor. Life Sci 44:517–524

    Article  CAS  PubMed  Google Scholar 

  • Frolet C, Beniazza M, Roux L, Gallet B, Noirclerc-Savoye M, Vernet T, Di Guilmi AM (2010) New adhesin functions of surface-exposed pneumococcal proteins. BMC Microbiol 10:190. https://doi.org/10.1186/1471-2180-10-190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340(6):448–454. https://doi.org/10.1056/NEJM199902113400607

    Article  CAS  PubMed  Google Scholar 

  • Galve-de Rochemonteix B, Wiktorowicz K, Kushner I, Dayer JM (1993) C-reactive protein increases production of IL-1 alpha, IL-1 beta, and TNF-alpha, and expression of mRNA by human alveolar macrophages. J Leukoc Biol 53:439–445

    Article  CAS  PubMed  Google Scholar 

  • Gang TB, Hammond DJ Jr, Singh SK, Ferguson DA Jr, Mishra VK, Agrawal A (2012) The phosphocholine-binding pocket on C-reactive protein is necessary for initial protection of mice against pneumococcal infection. J Biol Chem 287:43116–43125. https://doi.org/10.1074/jbc.M112.427310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gang TB, Hanley GA, Agrawal A (2015) C-reactive protein protects mice against pneumococcal infection via both phosphocholine-dependent and phosphocholine-independent mechanisms. Infect Immun 83:1845–1852. https://doi.org/10.1128/IAI.03058-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gewurz H, Mold C, Siegel J, Fiedel B (1982) C-reactive protein and the acute phase response. Adv Intern Med 27:345–372

    CAS  PubMed  Google Scholar 

  • Gewurz H, Zhang XH, Lint TF (1995) Structure and function of the pentraxins. Curr Opin Immunol 7(1):54–64

    Article  CAS  PubMed  Google Scholar 

  • Gitlin JD, Gitlin JI, Gitlin D (1977) Localizing of C-reactive protein in synovium of patients with rheumatoid arthritis. Arthritis Rheum 20(8):1491–1499. https://doi.org/10.1002/art.1780200808

    Article  CAS  PubMed  Google Scholar 

  • Gould JM, Weiser JN (2001) Expression of Creactive protein in the human respiratory tract. Infect Immun 69:1747–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haffner SM, Greenberg AS, Weston WM et al (2002) Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 106:679–684

    Article  CAS  PubMed  Google Scholar 

  • Heuertz RM, Tricomi SM, Ezekiel UR, Webster RO (1999) C-reactive protein inhibits chemotactic peptide-induced p38 mitogen-activated protein kinase activity and human neutrophil movement. J Biol Chem 274:17,968–17,974

    Article  CAS  Google Scholar 

  • Heuertz RM, Schneider GP, Potempa LA, Webster RO (2005) Native and modified C-reactive protein bind different receptors on human neutrophils. Int J Biochem Cell Biol 37:320–335

    Article  CAS  PubMed  Google Scholar 

  • Hirschfield GM, Herbert J, Kahan MC, Pepys MB (2003) Human C-reactive protein does not protect against acute lipopolysaccharide challenge in mice. J Immunol 171:6046–6051. https://doi.org/10.4049/jimmunol.171.11.6046

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson WL, Koenig W, Fröhlich M, Sund M, Lowe GD, Pepys MB (2000) Immunoradiometric assay of circulating C-reactive protein: age-related values in the adult general population. Clin Chem 46(7):934–938

    Article  CAS  PubMed  Google Scholar 

  • Ji SR, Wu Y, Potempa LA, Qiu Q, Zhao J (2006) Interactions of C-reactive protein with low-density lipoproteins: Implications for an active role of modified C-reactive protein in atherosclerosis. Int J Biochem Cell Biol 38:648–661

    Article  CAS  PubMed  Google Scholar 

  • Kaplan MH, Volanakis JE (1974) Interaction of C-reactive protein complexes with the complement system. I. Consumption of human complement associated with the reaction of C-reactive protein with pneumococcal C-polysaccharide and with the choline phosphatides, lecithin, and sphingomyelin. J Immunol 112:2135–2147

    CAS  PubMed  Google Scholar 

  • Karasahin O, Tasar PT, Timur O, Yildirim F, Binici DN, Sahin S (2018) The value of C-reactive protein in infection diagnosis and prognosis in elderly patients. Aging Clin Exp Res 30:555–562

    Article  PubMed  Google Scholar 

  • Kempka G, Roos PH, Kolb-Bachofen V (1990) A membrane-associated form of C-reactive protein is the galactose-specific particle receptor on rat liver macrophages. J Immunol 144(3):1004–1009

    CAS  PubMed  Google Scholar 

  • Kew RR, Hyers TM, Webster RO (1990a) Human C-reactive protein inhibits neutrophil chemotaxis in vitro: Possible implications for the adult respiratory distress syndrome. J Lab Clin Med 115:339–345

    CAS  PubMed  Google Scholar 

  • Kew RR, Hyers TM, Webster RO (1990b) Human CRP inhibits neutrophil chemotaxis in vitro; possible implications for ARDS. J Lab Clin Med 115:339–345

    CAS  PubMed  Google Scholar 

  • Khreiss T, József L, Potempa LA, Filep JG (2004) Conformational rearrangement in C-reactive protein is required for proinflammatory actions on human endothelial cells. Circulation 109(16):2016–2022

    Article  CAS  PubMed  Google Scholar 

  • Kilpatrick JM, Volanakis JE (1991) Molecular genetics, structure, and function of C-reactive protein. Immunol Res 10(1):43–53

    Article  CAS  PubMed  Google Scholar 

  • Kilpatrick JM, Kearney JF, Volanakis JE (1982) Demonstration of calcium-induced conformational change(s) in C-reactive protein by using monoclonal antibodies. Mol Immunol 19:1159–1165

    Article  CAS  PubMed  Google Scholar 

  • Kindmark CO (1972) In vitro binding of human C-reactive protein by some pathogenic bacteria and zymosan. Clin Exp Immunol 11:283–289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Köttgen E, Hell B, Kage A, Tauber R (1992) Lectin specificity and binding characteristics of human C-reactive protein. J Immunol 149:445–453

    PubMed  Google Scholar 

  • Kuller LH, Tracy RP, Shaten J, Meilahn EN (1996) Relation of C-reactive protein and coronary heart disease in the MRFIT nested case-control study: Multiple Risk Factor Intervention Trial. Am J Epidemiol 144:537–547

    Article  CAS  PubMed  Google Scholar 

  • Kurtz EG, Ridker PM, Rose LM, Cook NR, Everett BM, Buring JE et al (2011) Oral postmenopausal hormone therapy, C-reactive protein and cardiovascular out-comes. Menopause 18(1):23–29. https://doi.org/10.1097/gme.0b013e3181e750dd

    Article  PubMed  PubMed Central  Google Scholar 

  • Kushner I (1982) The phenomenon of the acute phase response. Ann NY Acad Sci USA 389:39–48. https://doi.org/10.1111/j.1749-6632.1982.tb22124.x

    Article  CAS  Google Scholar 

  • Kushner I, Kaplan MH (1961) Studies of acute phase proteins. I. An immunohistochemical method for the localisation of CRP in rabbits. Association with necrosis in local inflammatory lesions. J Exp Med 114:961–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagrand WK, Niessen HW, Wolbink GJ, Jaspars LH, Visser CA, Verheugt FW et al (1997) C-reactive protein colocalizes with complement in human hearts during acute myocardial infarction. Circulation 95(1):97–103. https://doi.org/10.1161/01.CIR.95.1.97

    Article  CAS  PubMed  Google Scholar 

  • Lee RT, Takagahara I, Lee YC (2002) Mapping the binding areas of human C-reactive protein for phosphorylcholine and polycationic compounds. Relationship between the two types of binding sites. J Biol Chem 277(1):225–232

    Article  CAS  PubMed  Google Scholar 

  • Ling MR, Chapple IL, Creese AJ, Matthews JB (2014) E_ects of C-reactive protein on the neutrophil respiratory burst in vitro. Innate Immun 20:339–349

    Article  PubMed  CAS  Google Scholar 

  • Liuzzo G, Biasucci LM, Gallimore JR, Grillo RL, Rebuzzi AG, Pepys MB, Maseri A (1994) The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. N Engl J Med 331(7):417–424

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Mold C, Du Clos TW, Sun PD (2018) Pentraxins and Fc Receptor-Mediated Immune Responses. Front Immunol 9:2607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mandal C, Biswas M, Nagpurkar A, Mookerjea S (1991) Isolation of a phosphoryl choline-binding protein from the hemolymph of the snail, Achatina fulica. Dev Comp Immunol 15:227–239

    Article  CAS  PubMed  Google Scholar 

  • Marnell LL, Mold C, Volzer MA, Burlingame RW, DuClos TW (1995) C-reactive protein binds to FcgR1 in transfected COS cells. J Immunol 155:2185–2193

    CAS  PubMed  Google Scholar 

  • McCarthy MI (1947) The occurrence during acute infections of a protein not normally present in the blood. J Exp Med 85:491–498

    Article  Google Scholar 

  • McFadyen JD, Kiefer J, Braig D, Loseff-Silver J, Potempa LA, Eisenhardt SU, Peter K (2018) Dissociation of C-reactive protein localizes and amplifies inflammation: evidence for a direct biological role of C-reactive protein and its conformational changes. Front Immunol 9:1351. https://doi.org/10.3389/fimmu.2018.01351. eCollection 2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435

    Article  CAS  PubMed  Google Scholar 

  • Miyagawa N, Okamoto Y, Nakano H (1988) Effect of C-reactive protein on peritoneal macrophages. II. Human C-reactive protein activates peritoneal macrophages of guinea pigs to release superoxide anion in vitro. Microbiol Immunol 32:721–723

    Article  CAS  PubMed  Google Scholar 

  • Mold C, Nakayama S, Holzer TJ, Gewurz H, Du Clos TW (1981) C-reactive protein is protective against Streptococcus pneumoniae infection in mice. J Exp Med 154(5):1703–1708

    Article  CAS  PubMed  Google Scholar 

  • Mold C, Rodgers CP, Kaplan RL, Gewurz H (1982) Binding of human C-reactive protein to bacteria. Infect Immun 38:392–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mold C, Gewurz H, Du Clos TW (1999) Regulation of complement activation by c-reactive protein. Immunopharmacology 42:23–30

    Article  CAS  PubMed  Google Scholar 

  • Molins B, Pena E, de la Torre R, Badimon L (2011) Monomeric C-reactive protein is prothrombotic and dissociates from circulating pentameric C-reactive protein on adhered activated platelets under flow. Cardiovasc Res 92:328–337

    Article  CAS  PubMed  Google Scholar 

  • Mortensen RF, Zhong W (2000) Regulation of phagocytic leukocyte activities by C-reactive protein. J Leukoc Biol 67:495–500

    Article  CAS  PubMed  Google Scholar 

  • Murphy C, Beckers J, Rüther U (1995) Regulation of the human C-reactive protein gene in transgenic mice. J Biol Chem 270:704–708

    Article  CAS  PubMed  Google Scholar 

  • Nakagomi A, Freedman SB, Geczy CL (2000) Interferon-gamma and lipopolysaccharide potentiate monocyte tissue factor induction by C-reactive protein: relationship with age, sex, and hormone replacement treatment. Circulation 101:1785–1791

    Article  CAS  PubMed  Google Scholar 

  • Ng PML, Le Saux A, Lee CM, Tan NS, Lu J, Thiel S et al (2007) C-reactive protein collaborates with plasma lectins to boost immune response against bacteria. EMBO J 26:3431–3440. https://doi.org/10.1038/sj.emboj.7601762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngwa DN (2016) Comparison of anti-pneumococcal functions of native and modified forms of C-reactive protein. Dissertation/Master’s thesis. East Tennessee States University, Johnson City, TN

    Google Scholar 

  • Ngwa DN, Agrawal A (2019) Structure-function relationships of C-reactive protein in bacterial infection. Front Immunol 10:166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noren Hooten N, Ejiogu N, Zonderman AB, Evans MK (2012) Association of oxidative DNA damage and C-reactive protein in women at risk for cardiovascular disease. Arterioscler Thromb Vasc Biol 32:2776–2784

    Article  PubMed  CAS  Google Scholar 

  • Parish WE (1971) Studies on vasculitis. I. Immunoglobulins, 1C, C-reactive protein, and bacterial antigens in cutaneous vasculitis lesions. Clin Allergy 1:97–109. https://doi.org/10.1111/j.1365-2222.1971.tb02451.x

    Article  CAS  PubMed  Google Scholar 

  • Pasceri V, Willerson JT, Yeh ET (2000) Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 102:2165–2168

    Article  CAS  PubMed  Google Scholar 

  • Pasceri V, Cheng JS, Willerson JT, Yeh ET, Chang J (2001) Modulation of C-reactive protien-mediated monocyte chemoattractant protein-1 induction in human endothelial cells by anti-atherosclerosis drugs. Circulation 103:2531–2534

    Article  CAS  PubMed  Google Scholar 

  • Pepys MB (1981) C-reactive protein fifty years on. Lancet 1:653–657

    Article  CAS  PubMed  Google Scholar 

  • Pepys MB, Baltz ML (1983) Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein. Adv Immunol 34:141–212

    Article  CAS  PubMed  Google Scholar 

  • Pepys MB, Berger A (2001) The renaissance of C reactive protein. BMJ 322(7277):4–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepys MB, Hirschfield GM (2003) C-reactive protein: a critical update. J Clin Invest 111:1805–1812. https://doi.org/10.1172/JCI200318921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepys MB, Baltz ML, Gomer K, Davies AJS, Doenhoff M (1979) Serum amyloid P component is an acute-phase reactant in the mouse. Nature 278:259–261

    Article  CAS  PubMed  Google Scholar 

  • Pepys MB, Booth SE, Tennet GA, Butler PJG, Williams DG (1994) Binding of pentraxins to different nuclear structures. CRP binds to small nuclear ribonuclearprotein particles and serum amyloid P binds to chromatin and nucleoli. Clin Exp Immunol 97:152–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepys MB, Hawkins PN, Kahan MC, Tennent GA, Gallimore JR, Graham D, Sabin CA, Zychlinsky A, De Diego J (2005) Pro-inflammatory Effects of Bacterial Recombinant Human C-Reactive Protein are Caused by Contamination with Bacterial Products not by C-Reactive Protein Itself. Circ Res 97:97–103

    Article  CAS  Google Scholar 

  • Plenge JK, Hernandez TL, Weil KM et al (2002) Simvastatin lowers C-reactive protein within 14 days: an effect independent of low-density lipoprotein cholesterol reduction. Circulation 106:1447–1452

    Article  CAS  PubMed  Google Scholar 

  • Potempa LA, Maldonado BA, Laurent P, Zemel ES, Gewurz H (1983) Antigenic, electrophoretic and binding alterations of human C-reactive protein modified selectively in the absence of calcium. Mol Immunol 20:1165–1175

    Article  CAS  PubMed  Google Scholar 

  • Potempa LA, Siegel JN, Fiedel BA, Potempa RT, Gewurz H (1987) Expression, detection and assay of a neoantigen (Neo-CRP) associated with a free, human C-reactive protein subunit. Mol Immunol 24(5):531–541

    Article  CAS  PubMed  Google Scholar 

  • Potempa LA, Zeller JM, Fiedel BA, Kinoshita CM, Gewurz H (1988) Stimulation of human neutrophils, monocytes, and platelets by modified C-reactive protein (CRP) expressing a neoantigenic specificity. Inflammation 12(4):391–405

    Article  CAS  PubMed  Google Scholar 

  • Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286(3):327–334. https://doi.org/10.1001/jama.286.3.327

    Article  CAS  PubMed  Google Scholar 

  • Ramadan MA, Shrive AK, Holden D, Myles DA, Volanakis JE, DeLucas LJ, Greenhough TJ (2002) The three-dimensional structure of calcium-depleted human C-reactive protein from perfectly twinned crystals. Acta Crystallogr D Biol Crystallogr 58:992–1001

    Article  PubMed  CAS  Google Scholar 

  • Raynes JG, Curry A, Harris RA (1994) Binding of C-reactive protein to Leishmania. Biochem Soc Trans 22(1):3S

    Article  CAS  PubMed  Google Scholar 

  • Rees RF, Gewurz H, Siegel JN, Coon J, Potempa LA (1988) Expression of a C-reactive protein neoantigen (neo-CRP) in inflamed rabbit liver and muscle. Clin Immunol Immunopathol 48(1):95–107

    Article  CAS  PubMed  Google Scholar 

  • Reynolds GD, Vance RP (1987) C-reactive protein immunohistochemical localization in normal and atherosclerotic human aortas. Arch Pathol Lab Med 111(3):265–269

    CAS  PubMed  Google Scholar 

  • Ridker PM (2002) Inflammatory biomarkers, statins, and the risk of stroke: cracking a clinical conundrum. Circulation 105:2583–2585

    Article  PubMed  Google Scholar 

  • Ridker PM (2003a) Rosuvastatin in the primary prevention of cardiovascular disease among patients with low levels of low-density lipoprotein cholesterol and elevated high-sensitivity C-reactive protein: rationale and design of the JUPITER trial. Circulation 108:2292–2297

    Article  PubMed  Google Scholar 

  • Ridker PM (2003b) Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 107:363–369. https://doi.org/10.1161/01.cir.0000053730.47739.3c

    Article  PubMed  Google Scholar 

  • Ridker PM, Cushman M, Stampfer MJ et al (1997) Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 336:973–999

    Article  CAS  PubMed  Google Scholar 

  • Ridker PM, Hennekens CH, Rifai N, Buring JE, Manson JE (1999a) Hormone replacement therapy and increased plasma concentration of C-reactive protein. Circulation 100(7):713–716. https://doi.org/10.1161/01.CIR.100.3.230

    Article  CAS  PubMed  Google Scholar 

  • Ridker PM, Rifai N, Pfeffer MA et al (1999b) Long-term effects of pravastatin on plasma concentration of C-reactive protein: the Cholesterol And Recurrent Events (CARE) Investigators. Circulation 100:230–235

    Article  CAS  PubMed  Google Scholar 

  • Ridker PM, Hennekens CH, Buring JE, Rifai N (2000a) C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 342(12):836–843. https://doi.org/10.1056/NEJM200003233421202

    Article  CAS  PubMed  Google Scholar 

  • Ridker PM, Rifai N, Stampfer MJ, Hennekens CH (2000b) Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101(15):1767–1772

    Article  CAS  PubMed  Google Scholar 

  • Ridker PM, Stampfer MJ, Rifai N (2001) Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA 285:2481–2485

    Article  CAS  PubMed  Google Scholar 

  • Ridker PM, Rifai N, Rose L, Buring JE, Cook NR (2002) Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 347:1557–1565

    Article  CAS  PubMed  Google Scholar 

  • Ridker PM, Buring JE, Cook NR, Rifai N (2003) C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14,719 initially healthy American women. Circulation 107(3):391–397

    Article  PubMed  Google Scholar 

  • Robey FA, Jones KD, Tanaka T, Liu TY (1984) Binding of C-reactive protein to chromatin and nucleosome core particles. A possible physiological role of C-reactive protein. J Biol Chem 259(11):7311–7316

    Article  CAS  PubMed  Google Scholar 

  • Robey FA, Jones KD, Steinberg AD (1985) C-reactive protein mediates the solubilization of nuclear DNA by complement in vitro. J Exp Med 161(6):1344–1356

    Article  CAS  PubMed  Google Scholar 

  • Rohde LE, Hennekens CH, Ridker PM (1999) Survey of C-reactive protein and cardiovascular risk factors in apparently healthy men. Am J Cardiol 84:1018–1022

    Article  CAS  PubMed  Google Scholar 

  • Ryu JA, Yang JH, Lee D, Park CM, Suh GY, Jeon K, Cho J, Baek SY, Carriere KC, Chung CR (2015) Clinical usefulness of procalcitonin and c-reactive protein as outcome predictors in critically ill patients with severe sepsis and septic shock. PLoS One 10(9):e0138150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salazar J, Martinez MS, Mervin Chavez M, Toledo A, Anez R, Yaquelín Torres Y et al (2014a) C-reactive protein: clinical and epidemiological perspectives. Cardiol Res Pract 2014:605810. https://doi.org/10.1155/2014/605810

    Article  PubMed  PubMed Central  Google Scholar 

  • Salazar J, Martínez MS, Chávez-Castillo M, Núñez V, Añez R, Torres Y, Toledo A, Chacín M, Silva C, Pacheco E, Rojas J, Bermúdez V (2014b) C-reactive protein: an in-depth look into structure, function, and regulation. Int Sch Res Notices 2014:653045. https://doi.org/10.1155/2014/653045. eCollection 2014

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrive AK, Cheetham GMT, Holden D, Myles DAA, Turnell WG, Volanakis JE, Pepys MB, Bloomer AC, Greenhough TJ (1996) Nat Struct Biol 3:346–354. https://doi.org/10.1038/nsb0496-346

    Article  CAS  PubMed  Google Scholar 

  • Simental-Mendia LE, Sahebkar A, Rodriguez-Moran M, Zambrano-Galvan G, Guerrero-Romero F (2017) Effect of magnesium supplementation on plasma C-reactive protein concentrations: a systematic review and meta-analysis of randomized controlled trials. Curr Pharm Des 23:4678–4686

    Article  CAS  PubMed  Google Scholar 

  • Simons JP, Loeffler JM, Al-Shawi R, Ellmerich S, Hutchinson WL, Tennent GA, Petrie A, Raynes JG, de Souza JB, Lawrence RA, Read KD, Pepys MB (2014) C-reactive protein is essential for innate resistance to pneumococcal infection. Immunology 142(3):414–420. https://doi.org/10.1111/imm.12266

    Article  CAS  PubMed  Google Scholar 

  • Sproston NR, Ashworth JJ (2018) Role of C-Reactive Protein at Sites of Inflammation and Infection. Front Immunol 9:754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stein MP, Edberg JC, Kimberley PP et al (2000) CRP binding to Fc RIIa on human monocytes and neutrophils is allele specific. J Clin Invest 105:369–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suresh MV, Singh SK, Ferguson DA Jr, Agrawal A (2006) Role of the property of C-reactive protein to activate the classical pathway of complement in protecting mice from pneumococcal infection. J Immunol 176:4369–4374. https://doi.org/10.4049/jimmunol.176.7.4369

    Article  CAS  PubMed  Google Scholar 

  • Szalai AJ (2001) The antimicrobial activity of C-reactive protein. Microbes Infect 4:201–205

    Article  Google Scholar 

  • Szalai AJ, Briles DE, Volanakis JE (1995) Human C-reactive protein is protective against fatal Streptococcus pneumoniae infection in transgenic mice. J Immunol 155:2557–2563

    CAS  PubMed  Google Scholar 

  • Szalai AJ, Briles DE, Volanakis JE (1996) Role of complement in C-reactive-protein-mediated protection of mice from Streptococcus pneumoniae. Infect Immun 64(11):4850–4853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szalai AJ, Agrawal A, Greenhough TJ, Volanakis JE (1997) C-reactive protein: structural biology, gene expression, and host defense function. Immunol Res 16(2):127–136

    Article  CAS  PubMed  Google Scholar 

  • Szalai AJ, van Ginkel FW, Dalrymple SA, Murray R, McGhee JR, Volankis JE (1998) Testosterone and IL-6 requirements for human C-reactive protein gene expression in transgenic mice. J Immunol 160(11):5294–5299

    CAS  PubMed  Google Scholar 

  • Szalai AJ, van Ginkel FW, Wang Y, McGhee JR, Volanakis JE (2000a) Complement-dependent acute-phase expression of C-reactive protein and serum amyloid P-component. J Immunol 165:1030–1035

    Article  CAS  PubMed  Google Scholar 

  • Szalai AJ, VanCott JL, McGhee JR, Volanakis JE, Benjamin WH Jr (2000b) Human C-reactive protein is protective against fatal Salmonella enterica serovar typhimurium infection in transgenic mice. Infect Immun 68:5652–5656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szalai AJ, McCrory HA, Cooper GS, Wu J, Kimberly RP (2002) Association between baseline levels of C-reactive protein (CRP) and a dinucleotide repeat polymorphism in the intron of the CRP gene. Genes Immun 3:14–19

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Fung E, Xu A, Lan HY (2017) C-reactive protein and ageing. Clin Exp Pharmacol Physiol 44:9–14

    Article  CAS  PubMed  Google Scholar 

  • Tchernof A, Nolan A, Sites CK et al (2002) Weight loss reduces C-reactive protein levels in obese postmenopausal women. Circulation 105:564–569

    Article  PubMed  Google Scholar 

  • Thompson D, Pepys MB, Wood SP (1999) The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 7:169–177. https://doi.org/10.1016/S0969-2126(99)80023-9

    Article  CAS  PubMed  Google Scholar 

  • Ticinesi A, Lauretani F, Nouvenne A, Porro E, Fanelli G, Maggio M, Meschi T (2017) C-reactive protein (CRP) measurement in geriatric patients hospitalized for acute infection. Eur J Intern Med 37:7–12

    Article  CAS  PubMed  Google Scholar 

  • Tilg H, Vannier E, Vachino G, Dinarello CA, Mier JW (1993) Antiinflammatory Properties of Hepatic Acute Phase Proteins: Preferential Induction of Interleukin 1 (IL-1) Receptor Antagonist over ID113 Synthesis by Human Peripheral Blood Mononuclear Cells. J Exp Med 178:1629–1636

    Article  CAS  PubMed  Google Scholar 

  • Tillet WS, Francis T (1930) Serological reactions in pneumonia with a non- protein somatic fraction of Pneumococcus. J Exp Med 52(4):561–571. https://doi.org/10.1084/jem.52.4.561

    Article  Google Scholar 

  • Torzewski J, Torzewski M, Bowyer DE, Fröhlich M, Koenig W, Waltenberger J et al (1998) C-reactive protein frequently colocalizes with the terminal complement complex in the intima of early atherosclerotic lesions of human coronary arteries. Arterioscler Thromb Vasc Biol 18(9):1386–1392. https://doi.org/10.1161/01.ATV.18.9.1386

    Article  CAS  PubMed  Google Scholar 

  • Torzewski M, Rist C, Mortensen RF et al (2000) C-reactive protein in the arterial intima: role of C-reactive protein receptor-dependent monocyte recruitment in atherogenesis. Arterioscler Thromb Vasc Biol 20:2094–2099

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Szmitko PE, Yeh ETH (2004) C-reactive protein structure affects function. Circulation 109:1914–1917

    Article  PubMed  Google Scholar 

  • Vermeire S, Van Assche G, Rutgeerts P (2005) The role of C-reactive protein as an inflammatory marker in gastrointestinal diseases. Nat Clin Pract Gastr 2:580–586

    CAS  Google Scholar 

  • Vigushin DM, Pepys MB, Hawkins PN (1993) Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. J Clin Invest 91:1351–1357. https://doi.org/10.1172/JCI116336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volanakis JE (2001) Human C-reactive protein: expression, structure, and function. Mol Immunol 38:189–197

    Article  CAS  PubMed  Google Scholar 

  • Volanakis JE, Kaplan MH (1971) Specificity of C-reactive protein for choline phosphate residues of pneumococcal C-polysaccharide. Proc Soc Exp Biol Med 136:612–614. https://doi.org/10.3181/00379727-136-35,323

    Article  CAS  PubMed  Google Scholar 

  • Vongpatanasin W, Tuncel M, Wang Z, Arbique D, Mehrad B, Jialal I (2003) Differential effects of oral versus transdermal estrogen replacement therapy on C-reactive protein in postmenopausal women. J Am Coll Cardiol 41(8):1358–1363. https://doi.org/10.1016/S0735-1097(03)00156-6

    Article  CAS  PubMed  Google Scholar 

  • Wang MY, Ji SR, Bai CJ, El Kebir D, Li HY, Shi JM, Zhu W, Costantino S, Zhou HH, Potempa LA et al (2011) A redox switch in C-reactive protein modulates activation of endothelial cells. FASEB J 25:3186–3196

    Article  CAS  PubMed  Google Scholar 

  • Weinhold B, Bader A, Valeria POLI, Rütehr U (1997) Interleukin-6 is necessary, but not sufficient, for induction of the human C-reactive protein gene in vivo. Biochem J 325(3):617–621. https://doi.org/10.1042/bj3250617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiser JN, Pan N, McGowan KL, Musher D, Martin A, Richards J (1998) Phosphorylcholine on the lipopolysaccharide of Haemophilus influenza contributes to persistence in the respiratory tract and sensitivity to serum killing mediated by C-reactive protein. J Exp Med 187:631–640. https://doi.org/10.1084/jem.187.4.631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehead AS, Zahedi K, Rits M, Mortensen RF, Lelias JM (1990) Mouse C-reactive protein: generation of cDNA clones, structural analysis, and induction of mRNA during inflammation. Biochem J 266:283–290. https://doi.org/10.1042/bj2660283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada S, Gotoh T, Nakashima Y, Kayaba K, Ishikawa S, Nago N, Nakamura Y, Itoh Y, Kajii E (2001) Distribution of serum C-reactive protein and its association with atherosclerosis risk factors in a Japanese population. Am J Epidemiol 153:1183–1190

    Article  CAS  PubMed  Google Scholar 

  • Yeh ET, Willerson JT (2003) Coming of age of C-reactive protein: using inflammation markers in cardiology. Circulation 107:370–372

    Article  PubMed  Google Scholar 

  • Yeh ETH, Anderson HV, Pasceri V, Willerson JT (2001) C-reactive protein linking inflammation to cardiovascular complications. Circulation 104:974–975

    Article  CAS  PubMed  Google Scholar 

  • Ying S-C, Gewurz H, Kinoshita CM, Potempa LA, Siegel JN (1989) Identification and partial characterization of multiple native and neoantigenic epitopes of human C-reactive protein by using monoclonal antibodies. J Immunol 143:221–228

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ansar, W. (2020). Multiple Faces of C-Reactive Protein: Structure–Function Relationships. In: Ansar, W., Ghosh, S. (eds) Clinical Significance of C-reactive Protein. Springer, Singapore. https://doi.org/10.1007/978-981-15-6787-2_1

Download citation

Publish with us

Policies and ethics