Skip to main content

Imaging of Single Ventricle

  • Chapter
  • First Online:
CT and MRI in Congenital Heart Diseases

Abstract

Single ventricle is a unique entity with a complex anatomy and physiology where there is complete or partial absence of an interventricular septum. It is associated with high morbidity, mortality and resource usage. The palliation of this condition generally involves a univentricular repair which involves a creation of a complete cavopulmonary connection by incorporating the caval flow into the pulmonary circulation. The key to a successful procedure revolves around a preoperative comprehensive multimodality cardiac imaging. Multiple imaging techniques are used in a graded and complementary fashion in order to select the right patient for the Fontan procedure and to ensure good long-term outcomes. Echocardiography, cardiac MRI and cardiac CTA are the tools that are frequently used in the evaluation of this disease entity. Proper application of existing and novel techniques will hopefully make this complex evaluation simpler and ultimately lead to better outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frescural C, Thienal G. The new concept of univentricular connection. Front Pediatr. 2014;2:62.

    Google Scholar 

  2. Nelson DP, Schwartz SM, Chang AC. Neonatal physiology of the functionally univentricular heart. Cardiol Young. 2004;14(Suppl 1):52–60.

    Article  PubMed  Google Scholar 

  3. Rahimtoola SH, Ongley PA, Swan HJ. The hemodynamics of common (or single) ventricle. Circulation. 1966;34:14–23.

    Article  CAS  PubMed  Google Scholar 

  4. Fogel MA, Weinberg PM, Gupt Fellows KE, Hoffman EA. A study in ventricular-ventricular interaction. Single right ventricles compared with systemic right ventricles in a dual chamber circulation. Circulation. 1995;92:219–30.

    Article  CAS  PubMed  Google Scholar 

  5. Fogel MA, Weinbery PM, Gupta KB, et al. Mechanic of the single left ventricle: a study in ventricular-ventricular interaction II. Circulation. 1998;98:330–8.

    Article  CAS  PubMed  Google Scholar 

  6. Damiano RJ Jr, La FP, Cox JL, Lowe JE, Santamore WP. Significant left ventricle contribution to right ventricular systolic function. Am J Physiol. 1991;261:H1514–24.

    PubMed  Google Scholar 

  7. Williams RV, Ritter S, Tani LY, Pagoto LT, Munich LL. Quantitative assessment of ventricular function in children with single ventricle using the Doppler myocardial performance index. Am J Cardiol. 2000;86:1106–10.

    Article  CAS  PubMed  Google Scholar 

  8. Piran S, Veldtman G, Sir S, Webb GD, Liu PP. Heart failure and ventricular dysfunction in patients wth single or systemic right ventricles. Circulation. 2002;105:1189–94.

    Article  PubMed  Google Scholar 

  9. Macartney FJ, Patridge JB, Scott O, Deverall PB. Common or single ventricle. An angiocardiographic and hemodynamic study of 42 patients. Circulation. 1976;53:543–54.

    Article  CAS  PubMed  Google Scholar 

  10. Van Praagh R, Vaan Praagh S, Vlad P, et al. Diagnosis of the anatomic types of single or common ventricle. Am J Cardiol. 1965;15:345–66.

    Article  Google Scholar 

  11. Van Praagh R, Ongley PA, Swan HJ. Anatomic types of single or common ventricle in man. Morphologic and geometric asserts of 60 necropsied cases. Am J Cardiol. 1964;13:367–86.

    Article  Google Scholar 

  12. Bevilacqua M, Sanders SP, Van PS, Colan SD, Parness I. Double inlet single left ventricle. Echocardiographic anatomy with emphasis on the morphology of the atrioventricular valves and ventricular septal defect. J Am Coll Cardiol. 1919;18:559–68.

    Article  Google Scholar 

  13. Hallermann FJ, Davis GD, Ritter DG, Kincaid OW. Roentgenographic features of common ventricle. Radiology. 1966;87:409–23.

    Article  CAS  PubMed  Google Scholar 

  14. Shapiro SR, Ruckman RN, Kapur S, et al. Single ventricle with truncus arteriosus in siblings. Am Heart J. 1981;102:456–9.

    Article  CAS  PubMed  Google Scholar 

  15. Loffredo CA, Chokkalingam A, Sill AM, Boughman JA, Clark EB, Scheel J, Brenner JI. Prevalence of congenital cardiovascular malformations among relatives of infants with hypoplastic left heart, coarctation of the aorta, and d-transposition of the great arteries. Am J Med Genet A. 2004;124:225–30.

    Article  Google Scholar 

  16. Gill HK, Splitt M, Sharland GK, Simpson JM. Patterns of recurrence of congenital heart disease: an analysis of 6, 640 consecutive pregnancies evaluated by detailed fetal echocardiography. J Am Coll Cardiol. 2003;42:923–9.

    Article  PubMed  Google Scholar 

  17. Rao PS. Tricuspid atresia. Curr Treat Options Cardiovasc Med. 2000;2:507–20.

    Article  CAS  PubMed  Google Scholar 

  18. Franklin RC, Spiegelhalter DJ, Anderson RH, Macartney FJ, Rossi Filho RI, Douglas JM, Rigby ML, Deanfield JE. Double-inlet ventricle presenting in infancy: I: survival without definitive repair. J Thorac Cardiovasc Surg. 1991;101:767–76.

    Article  CAS  PubMed  Google Scholar 

  19. Weigel TJ, Driscoll DJ, Michels VV. Occurrence of congenital heart defects in siblings of patients with univentricular heart and tricuspid atresia. Am J Cardiol. 1989;64:768–71.

    Article  CAS  PubMed  Google Scholar 

  20. Burn J, Brennan P, Little J, Holloway S, Coffey R, Somerville J, Dennis NR, Allan L, Arnold R, Deanfield JE, Godman M, Houston A, Keeton B, Oakley C, Scott O, Silove E, Wilkinson J, Pembrey M, Hunter AS. Recurrence risks in offspring of adults with major heart defects: results from first cohort of British collaborative study. Lancet. 1998;351:311–6.

    Article  CAS  PubMed  Google Scholar 

  21. Shapiro SR, Ruckman RN, Kapur S, Chandra R, Galioto FM, Perry LW, Scott LP 3rd. Single ventricle with truncus arteriosus in siblings. Am Heart J. 1981;102(3 Pt 1):456–9.

    Article  CAS  PubMed  Google Scholar 

  22. Moodie DS, Ritter DG, Tajik AJ, O’Fallon WM. Long-term follow-up in the unoperated univentricular heart. Am J Cardiol. 1984;53:1124–8.

    Article  CAS  PubMed  Google Scholar 

  23. Davachi F, Moller JH. The electrocardiogram and vectorcardiogram in single ventricle. Anatomic correlations. Am J Cardiol. 1974;33:95–106.

    Google Scholar 

  24. Shaher RM. The electrocardiogram in single ventricle. Br Heart J. 1963;25:465–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Neill CA, Brink AJ. Left axis deviation in tricuspid atresia and single ventricle: the electrocardiogram in 36 autopsied cases. Circulation. 1955;12:612–9.

    Article  CAS  PubMed  Google Scholar 

  26. Carey LS, Ruttenberg HD. Roentgenographic features of common ventricle with inversions of the infundibulum: corrected transposition with rudimentary left ventricle. Am J Roentgenol Radium Ther Nucl Med. 1964;92:652–68.

    CAS  PubMed  Google Scholar 

  27. Elliot LP, Gedugaudas E. The roentgenologic findings in common ventricle with transposition of the great vessels. Radiology. 1964;82:850–65.

    Article  Google Scholar 

  28. Shinebourne EA, Lau KC, Calcaterra G, Anderson RH. Univentricular heart of right ventricular type: clinical, angiographic and electocardiographic features. Am J Cardiol. 1980;46:439–45.

    Article  CAS  PubMed  Google Scholar 

  29. Kutty S, Colen TM, Smallhorn JF. Three-dimensional echocardiography in the assessment of congenital mitral valve disease. J Am Soc Echocardiogr. 2014;27:142–54.

    Article  PubMed  Google Scholar 

  30. Lopez L, Colan SD, Frommelt PC, et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr. 2010;23:465–95.

    Article  PubMed  Google Scholar 

  31. Heinemann M, Breuer J, Steger V, et al. Incidence and impact of systemic venous collateral development after Glenn and Fontan procedures. Thorac Cardiovasc Surg. 2001;49:172–8.

    Article  CAS  PubMed  Google Scholar 

  32. Grosse-Wortmann L, Al-Otay A, Yoo SJ. Aortopulmonary collaterals after bidirectional cavopulmonary connection or Fontan completion: quantification with MRI. Circ Cardiovasc Imaging. 2009;2:219–25.

    Article  PubMed  Google Scholar 

  33. Akagi T, Benson LN, Williams WG, et al. Regional ventricular wall motion abnormalities in tricuspid atresia after the Fontan procedure. J Am Coll Cardiol. 1993;22:1182–8.

    Article  CAS  PubMed  Google Scholar 

  34. Cheung YF, Penny DJ, Redington AN. Serial assessment of left ventricular diastolic function after Fontan procedure. Heart. 2000;83:420–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li SJ, Wong SJ, Cheung YF. Atrial and ventricular mechanics in patients after Fontan-type procedures: atriopulmonary connection versus extracardiac conduit. J Am Soc Echocardiogr. 2014;27:666–74.

    Article  PubMed  Google Scholar 

  36. Larrazabal LA, Selamet Tierney ES, Brown DW, et al. Ventricular function deteriorates with recurrent coarctation in hypoplastic left heart syndrome. Ann Thorac Surg. 2008;86:869–74. discussion 869–874

    Article  PubMed  Google Scholar 

  37. Lemler MS, Scott WA, Leonard SR, et al. Fenestration improves clinical outcome of the fontan procedure: a prospective, randomized study. Circulation. 2002;105:207–12.

    Article  PubMed  Google Scholar 

  38. Fratz S, Chung T, Greil GF, et al. Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson. 2013;15:51.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ait-Ali L, Andreassi MG, Foffa I, et al. Cumulative patient effective dose and acute radiation-induced chromosomal DNA damage in children with congenital heart disease. Heart. 2010;96:269–74.

    Article  PubMed  Google Scholar 

  40. Glatz AC, Purrington KS, Klinger A, et al. Cumulative exposure to medical radiation for children requiring surgery for congenital heart disease. J Pediatr. 2014;164:789–94.

    Article  PubMed  Google Scholar 

  41. Ramamoorthy C, Haberkern CM, Bhananker SM, et al. Anesthesia related cardiac arrest in children with heart disease: data from the Pediatric Perioperative Cardiac Arrest (POCA) registry. Anesth Analg. 2010;110:1376–82.

    Article  CAS  PubMed  Google Scholar 

  42. Miller JH, Hu HH, Pokorney A, Cornejo P, Towbin R. MRI brain signal intensity changes of a child during the course of 35 gadolinium contrast examinations. Pediatrics. 2015;136:1637–40.

    Article  Google Scholar 

  43. Levine GN, Gomes AS, Arai AE, American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization; American Heart Association Council on Clinical Cardiology; American Heart Association Council on Cardiovascular Radiology and Intervention, et al. Safety of magnetic resonance imaging in children. Heart. 2015;10:1–10.

    Google Scholar 

  44. Martin ET, Coman JA, Shellock FG, et al. Magnetic resonance imaging and cardiac pacemaker safety at 1.5-Tesla. J Am Coll Cardiol. 2004;43:1315–24.

    Article  PubMed  Google Scholar 

  45. Garg R, Powell AJ, Sena L, et al. Effects of metallic implants on magnetic resonance imaging evaluation of Fontan palliation. Am J Cardiol. 2005;95:688–91.

    Article  PubMed  Google Scholar 

  46. Kilner PJ, Geva T, Kaemmerer H, et al. Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology. Eur Heart J. 2010;31:794–805.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Margossian R, Schwartz ML, Prakash A, et al. Pediatric Heart Network Investigators. Comparison of echocardiographic and cardiac magnetic resonance imaging measurements of functional single ventricular volumes, mass, and ejection fraction (from the Pediatric Heart Network Fontan Cross-Sectional Study). Am J Cardiol. 2009;104:419–28.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rathod RH, Prakash A, Kim YY, et al. Cardiac magnetic resonance parameters predict transplantation-free survival in patients with fontan circulation. Circ Cardiovasc Imaging. 2014;7:502–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Monagle P, Cochrane A, Roberts R, et al. Fontan Anticoagulation Study Group. A multicenter, randomized trial comparing heparin/warfarin and acetylsalicylic acid as primary thromboprophylaxis for 2 years after the Fontan procedure in children. J Am Coll Cardiol. 2011;58:645–51.

    Article  CAS  PubMed  Google Scholar 

  50. Kehr E, Sono M, Chugh SS, et al. Gadolinium-enhanced magnetic resonance imaging for detection and quantification of fibrosis in human myocardium in vitro. Int J Cardiovasc Imaging. 2008;24:61–8.

    Article  PubMed  Google Scholar 

  51. Rathod RH, Prakash A, Powell AJ, et al. Myocardial fibrosis identified by cardiac magnetic resonance late gadolinium enhancement is associated with adverse ventricular mechanics and ventricular tachycardia late after Fontan operation. J Am Coll Cardiol. 2010;55:1721–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Haggerty CM, Restrepo M, Tang E, et al. Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: a computational fluid dynamics analysis. J Thorac Cardiovasc Surg. 2014;148:1481–9.

    Article  PubMed  Google Scholar 

  53. Han BK, Rigsby CK, Hlavacek A, et al. Computed tomography imaging in patients with congenital heart disease part I: rationale and utility. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT): endorsed by the Society of Pediatric Radiology (SPR) and the North American Society of Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr. 2013;7:338–53.

    Article  PubMed  Google Scholar 

  54. Fredenburg TB, Johnson TR, Cohen MD. The Fontan procedure: anatomy, complications, and manifestations of failure. Radiographics. 2011;31:453–63.

    Article  PubMed  Google Scholar 

  55. Downing TE, McDonnell A, Zhu X, et al. Cumulative medical radiation exposure throughout staged palliation of single ventricle congenital heart disease. Pediatr Cardiol. 2015;36:190–5.

    Article  PubMed  Google Scholar 

  56. Feinstein JA, Benson DW, Dubin AM, Cohen MS, Maxey DM, Mahle WT, et al. Hypoplastic left heart syndrome: current considerations and expectations. J Am Coll Cardiol. 2012;59(1 Suppl):S1–42.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Brown DW, Gauvreau K, Powell AJ, et al. Cardiac magnetic resonance versus routine cardiac catheterization before bidirectional glenn anastomosis in infants with functional single ventricle: a prospective randomized trial. Circulation. 2007;116:2718–25.

    Article  PubMed  Google Scholar 

  58. Han BK, Lesser JR. CT imaging in congenital heart disease: an approach to imaging and interpreting complex lesions after surgical intervention for tetralogy of Fallot, transposition of the great arteries, and single ventricle heart disease. J Cardiovasc Comput Tomogr. 2013;7:338–53.

    Article  PubMed  Google Scholar 

  59. Fogel MA. Is routine cardiac catheterization necessary in the management of patients with single ventricles across staged Fontan reconstruction? No! Pediatr Cardiol. 2005;26:154–8.

    Article  CAS  PubMed  Google Scholar 

  60. Frescura C, Thiene G. The new concept of univentricular heart. Frontiers Paediatr. 2014;2:1–17. https://doi.org/10.3389/fped.2014.00062.

    Article  Google Scholar 

  61. Uemura H, Ho SY, Adachi I, Yagihara T. Morphologic spectrum of ventriculoarterial connection in hearts with double inlet left ventricle: implications for surgical procedures. Ann Thorac Surg. 2008;86:1321–7.

    Article  PubMed  Google Scholar 

  62. Dianna ME, Bardo MD, Frankel DG, Kimberly E, et al. Hypoplastic left heart syndrome. Radiographics. 2001;21:705–17.

    Article  Google Scholar 

  63. Norwood WI. Hypoplastic left heart syndrome. Ann Thorac Surg. 1991;52:688–95.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Ax cine

SA cine

3D heart

Ax cine

Cor cine

3D heart

Ax cine post Fontan

Ax cine Pre Fontan

Cor cine post Fonatn

Fontan PC

MRA post Fontan

MRA preFontan

Sag cine post Fonatn

2C herniation

3D MRA moving

4C cine

Ax cine

Cor cine

CMR 4 chamber view in a case of tricuspid atresia (MP4 1964 kb)

4Ch cine

Aortic outflow

Ax cine

Cor cine

MRA

Pulmonary outflow cine

Sa cine

4Ch cine

Ax cine

Cor cine

MRA

Outflow 2 cine

Outflow cine

SA cine

Video 17.1

CMR in 13 years old boy. Single ventricle of LV morphology, hypo plastic RV, large inlet VSD and normally related great arteries. Status post BDGS and atrial septectomy for Fontan completion (PDF 827 kb)

Video 17.4

CMR in 11 years old girl. S L L, DILV, L posed aorta from hypo plastic RV with restrictive bulbo-ventricular foramen. Status post Fontan surgery (PDF 1179 kb)

Video 17.8

CMR in 11 years old girl. Heterotaxy, tricuspid atresia, DORV, hypo plastic RV. Status post bilateral BDGS for Fontan completion (PDF 824 kb)

Video 17.17

CMR in 15 years old boy. Single ventricle, common AV valve, severe pulmonary stenosis, cardiac herniation and cor triatriatum. Status post BDGS (PDF 3776 kb)

Video 17.24

CMR in 14 years old girl. DILV with Supra mitral ring and intact atrial septum, Restrictive bulbo-ventricular foramen with sub aortic obstruction. Status post BDGS (PDF 22 kb)

Video 17.32

CMR in 13 years old girl. DILV, normally related great arteries, moderate pulmonary stenosis, PAH (PDF 1484 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Christopher, J., Verma, S., Rajeshkannan, R. (2021). Imaging of Single Ventricle. In: Rajeshkannan, R., Raj, V., Viswamitra, S. (eds) CT and MRI in Congenital Heart Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-15-6755-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6755-1_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6754-4

  • Online ISBN: 978-981-15-6755-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics