Skip to main content

Removal of Air Pollutants Using Graphene Nanocomposite

  • Chapter
  • First Online:
Environmental Remediation Through Carbon Based Nano Composites

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Currently, environmental pollution becomes a global issue because of rapid industrial and socioeconomic development in developing countries. The quality of air is determined by many factors like temperature, humidity, and the concentration of the pollutants. These factors affect the quality of the air and continuously contaminate the fresh air. Wastewater treatment is also an urgent need to regulate the air pollution present in the environment. In the present studies, graphene, composite, nanofibers, and adsorbents are trending for remediation of water pollutants found in water. At the same time, researchers tried to control air pollution by using the same materials. In this chapter, we mainly focus on the air pollution and their respective pollutants as, carbon dioxide (CO2), nitrogen oxide (NOx), sulfur dioxide SO2, particulate matter (PM2.5 and PM10), lead, and the volatile organic compounds (VOCs). These are the main constituents of air pollution. Several filters and ion-based composites, hybrids functionalization, and synthesis methodologies are using toward keeping the indoor and outdoor air quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACFs:

Activated carbon fiber

rGO:

Reduced graphene oxide

GF-ASS:

Graphite furnace atomic absorption spectroscopy

GQDs:

Graphene quantum dots

MWCNT:

Multiwalled carbon nanotube

PMS:

Peroxymonosulfate

HM:

Hydrated manganese oxide

PS:

Polystyrene

PAN:

Polyacrylonitrile

IMA-rGO:

Ion-mediated assembled reduced graphene oxide

MSp@SiO2NH2:

3-aminopropyltrimethoxysilane functionalized magnetic sporopollenin

HEPA:

High-efficiency particulate air filters

SCR:

Selective catalytic reduction

MDEA:

Methyl diethanolamine

SOA:

Secondary organic aerosol

SPR:

Surface plasmon resonance

ACI:

Activated carbon injection

WFGD:

Wet flue gas desulfurization

MDEA:

Methyl diethanolamine

BGCs:

Bismuth oxybromide and graphene nanocomposite

NBOC/GQDs:

N-doped Bi2O2CO3/graphene quantum dots composite.

References

  1. Ai Z, Ho W, Lee S (2011) Efficient visible-light photocatalytic removal of NO with hene naposites. J Phys Chem C 115:25330–25337

    Article  CAS  Google Scholar 

  2. Alghamdi A, Alshahrani A, Khdary N, Alharthi F, Alattas H, Adil S (2018) Enhanced CO2 adsorption by nitrogen-doped graphene oxide sheets (N-GOs) prepared by employing polymeric precursors. Materials 11:578

    Article  Google Scholar 

  3. Andruse, Rosenfeld D (2008) Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols.Earth Sci Rev 89:13–41

    Google Scholar 

  4. Aroua MK, Leong SP, Teo LY, Yin CY, Daud WM (2008) Real-time deteion of kilyof adsorption of lead (II) onto palm shell-based activated carbon using ion selective electrode. Bioresou Technol 99:5786–5792

    Article  CAS  Google Scholar 

  5. Bishnoi S, Rochelle GT (2000) Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility. Chem Eng Sci 55:5531–5543

    Article  CAS  Google Scholar 

  6. Boyd AD, Hmielowski JD, David P (2017) Public perceptions of carbon capture and storage in canada results of a national survey. Int J Greenh Gas Control 67:1–9

    Article  Google Scholar 

  7. Brook RD, Rajagopalan S, Pope CA III, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121:2331–2378

    Article  CAS  Google Scholar 

  8. Cao Y, Zhao Y, Lv Z, Song F, Zhong Q (2015) Preparation and enhanced CO2 adsorption capacity of UiO-66/graphene oxide composites. J Ind Eng Chem 27:102–107

    Article  CAS  Google Scholar 

  9. Chen A, Yu Y, Zhang Y, Zang W, Yu Y, Zhang Y, Shen S, Zhang J (2014) Aqueous-phase synthesis of nitrogen-doped ordered mesoporous carbon nanospheres as an efficient adsorbent for acidic gases. Carbon 80:19–27

    Article  CAS  Google Scholar 

  10. Chen F, An W, Liu L, Liang Y, Cui W (2017) Highly efficient removal of bisphenol A by a three-dimensional graphene hydrogel-AgBr@ rGO exhibiting adsorption/photocatalysis synergy. Appl Catalysis B Environ 217:65–80

    Article  CAS  Google Scholar 

  11. Chen M, Huang Y, Yao J, Cao JJ, Liu Y (2018) Visible-light-driven N-(BiO)2CO3/Graphene oxide composites with improved photocatalytic activity and selectivity for NOx removal. Appl Surf Sci 430:137–144

    Article  CAS  Google Scholar 

  12. Chun HH, Jo WK (2016) Adsorption and photocatalysis of 2-ethyl-1-hexanol over graphene oxide–TiO2 hybrids post-treated under various thermal conditions. Appl Cata B Environ 180:740–750

    Article  CAS  Google Scholar 

  13. Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL, Samet JM (2006) Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. J Am Med Assoc 295:1127–1134

    Article  CAS  Google Scholar 

  14. Espinal L, Poster DL, Wong-Ng W, Allen AJ, Green ML (2013) Measurement, standards, and data needs for CO2 capture materials: a critical review. Environ Sci Technol 47:11960–11975

    Article  CAS  Google Scholar 

  15. Fang M, Chan CK, Yao X (2009) Managing air quality in a rapidly developing nation: China. Atmos Environ 43:79–86

    Article  CAS  Google Scholar 

  16. Fisk WJ, Faulkner D, Palonen J, Seppanen O (2002) Performance and costs of particle air filtration technologies. Indoor Air 12:223–224

    Article  CAS  Google Scholar 

  17. Gurjar BR, Butler TM, Lawrence MG, Lelieveld J (2008) Evaluation of emissions and air quality in megacities. Atmos Environ 42:1593–1606

    Article  CAS  Google Scholar 

  18. Harb P, Locoge N, Thevenet F (2018) Emissions and treatment of VOCs emitted from wood-based construction materials: Impact on indoor air quality. Chem Eng J 354:641–652

    Article  CAS  Google Scholar 

  19. Harrison RM, Yin J (2000) Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci Total Environ 249:85–101

    Article  CAS  Google Scholar 

  20. Hassan AM, Ibrahim WAW, Bakar MB, Sanagi MM, Sutirman ZA, Nodeh HR, Mokhter MA (2020) New effective 3-aminopropyltrimethoxysilane functionalized magnetic sporopollenin-based silica coated graphene oxide adsorbent for removal of Pb (II) from aqueous environment. J Environ Manage 253:109658

    Article  CAS  Google Scholar 

  21. Hu J, Chen D, Li N, Xu Q, Li H, He J, Lu J (2018) Fabrication of graphitic-C3N4 quantum dots/graphene-InVO4 aerogel hybrids with enhanced photocatalytic NO removal under visible-light irradiation. Appl Catalysis B Environ 236:45–52

    Article  CAS  Google Scholar 

  22. Huang Y, Hu H, Wang S, Balogun MS, Ji H, Tong Y (2017) Low concentration nitric acid facilitate rapid electron–hole separation in vacancy-rich bismuth oxyiodide for photo-thermo-synergistic oxidation of formaldehyde. Appl Catalysis B Environ 218:700–708

    Article  CAS  Google Scholar 

  23. Huang Y, Li K, Lin Y, Tong Y, Liu H (2018) Enhanced efficiency of electron–hole separation in Bi2O2CO3 for photocatalysis via acid treatment. Chem Cat Chem 10:1982–1987

    CAS  Google Scholar 

  24. Irani V, Tavasoli A, Vahidi M (2018) Preparation of amine functionalized reduced graphene oxide/methyl diethanolamine nanofluid and its application for improving the CO2 and H2S absorption. J Colloid Interface Sci 527:57–67

    Article  CAS  Google Scholar 

  25. Iranpour R, Cox HH, Deshusses MA, Schroeder ED (2005) Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal. Environ Progress 24:254–267

    Article  CAS  Google Scholar 

  26. Janssen NA, Fischer P, Marra M, Ameling C, Cassee FR (2013) Short-term effects of PM2. 5, PM10 and PM2.5–10 on daily mortality in the Netherlands. Sci Total Environ 463:20–26

    Article  Google Scholar 

  27. Jia Y, Li S, Gao J, Zhu G, Zhang F, Shi X, Huang Y, Liu C (2019) Highly efficient (BiO)2CO3-BiO2−x-graphene photocatalysts: Z-Scheme photocatalytic mechanism for their enhanced photocatalytic removal of NO. Appl Catalysis B Environ. 240:241–252

    Article  CAS  Google Scholar 

  28. Jung W, Lee JS, Han S, Ko SH, Kim T, Kim YH (2018) An efficient reduced graphene-oxide filter for PM2.5 removal. J Mater Chem A 6:16975–16982

    Article  CAS  Google Scholar 

  29. Khan A, Szulejko JE, Samaddar P, Kim KH, Eom W, Ambade SB, Han TH (2019) The effect of diverse metal oxides in graphene composites on the adsorption isotherm of gaseous benzene. Environ Res 172:367–374

    Article  CAS  Google Scholar 

  30. Kintisch E (2008) The greening of synfuels. Science 320:306–308

    Article  CAS  Google Scholar 

  31. Krishna K, Makkee M (2005) Coke formation over zeolite and CeO2-zeolite and its influence on selective catalytic reduction of NOx. Appl Catal B Environ 62:35–44

    Article  Google Scholar 

  32. Li J, Zhang Q, Lai AC, Zeng L (2016) Study on photocatalytic performance of cerium–graphene oxide–titanium dioxide composite film for formaldehyde removal. phys status solidi (a) 213:3157–3164

    Google Scholar 

  33. Li M, Lu B, Ke QF, Guo YJ, Guo YP (2017) Synergetic effect between adsorption and photodegradation on nanostructured TiO2/activated carbon fiber felt porous composites for toluene removal. J Hazard Mater 333:88–98

    Article  CAS  Google Scholar 

  34. Li N, Xia T, Nel AE (2008) The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radical Biol Med 44:1689–1699

    Article  CAS  Google Scholar 

  35. Li Q, Li X, Jiang J, Duan L, Ge S, Zhang Q, Deng J, Wang S, Hao J (2016) Semi-coke briquettes: towards reducing emissions of primary PM2.5, particulate carbon, and carbon monoxide from household coal combustion in China. Sci Rep 6:19306

    Google Scholar 

  36. Li X, Le Z, Chen X, Li Z, Wang W, Liu X, Wu A, Xu P, Zhang D (2018) Graphene oxide enhanced amine-functionalized titanium metal organic framework for visible-light-driven photocatalytic oxidation of gaseous pollutants. Appl Catalysis B Environ 236:501–518

    Article  CAS  Google Scholar 

  37. Lim ST, Kim JH, Lee CY, Koo S, Jerng DW, Wongwises S, Ahn HS (2019) Mesoporous graphene adsorbents for the removal of toluene and xylene at various concentrations and its reusability. Sci rep 9:1–12

    Article  Google Scholar 

  38. Liu B, Zhao W, Jiang Q, Ao Z, An T (2019) Enhanced adsorption mechanism of carbonyl-containing volatile organic compounds on Al-decorated porous graphene monolayer: a density functional theory calculation study. Sustain Mater Technol 21:e00103

    CAS  Google Scholar 

  39. Liu RF, Li WB, Peng AY (2018) A facile preparation of TiO2/ACF with CTi bond and abundant hydroxyls and its enhanced photocatalytic activity for formaldehyde removal. Appl Surf Sci 427:608–616

    Article  CAS  Google Scholar 

  40. Liu Y, Yu S, Zhao Z, Dong F, Dong XA, Zhou Y (2017) N-Doped Bi2O2CO3/graphene quantum dot composite photocatalyst: enhanced visible-light photocatalytic no oxidation and in situ drifts studies. J Phys Chem C 121:12168–12177

    Article  CAS  Google Scholar 

  41. Mahowald N (2011) Aerosol indirect effect on biogeochemical cycles and climate. Science 334:794–796

    Article  CAS  Google Scholar 

  42. Mansouri M, Atashi H, Tabrizi FF, Mansouri G, Setareshenas N (2014) Fischer-Tropsch synthesis on cobalt–manganese nanocatalyst: studies on rate equations and operation conditions. Int J Ind Chem 5:1–9

    Article  Google Scholar 

  43. Mao J, Tang Y, Wang Y, Huang J, Dong X, Chen Z, Lai Y (2019) Particulate matter capturing via naturally dried zif-8/graphene aerogels under harsh conditions. IScience 16:133 − 44

    Google Scholar 

  44. Miao JL, Li CB, Liu HH, Zhang XX (2018) MnO2/MWCNTs Nanocomposites as highly efficient catalyst for indoor formaldehyde removal. J Nano Nanotechnol 18:3982–3990

    Article  CAS  Google Scholar 

  45. Mohan S, Kumar V, Singh DK, Hasan SH (2017) Effective removal of lead ions using graphene oxide-MgO nanohybrid from aqueous solution: isotherm, kinetic and thermodynamic modeling of adsorption. J Environ Chem Eng 5:2259–2273

    Article  CAS  Google Scholar 

  46. Nan D, Liu J, Ma W (2015) Electrospun phenolic resin-based carbon ultrafine fibers with abundant ultra-small micropores for CO2 adsorption. Chem Eng J 276:44–50

    Article  CAS  Google Scholar 

  47. Nel A (2005) Air pollution-related illness: effects of particles. Science 308:804–806

    Article  CAS  Google Scholar 

  48. Ouzzine M, Romero-Anaya AJ, Lillo-Rodenas MA, Linares-Solano A (2014) Spherical activated carbon as an enhanced support for TiO2/AC photocatalysts. Carbon 67:104–118

    Article  CAS  Google Scholar 

  49. Pal P, Banat F (2016) Comparison of thermal degradation between fresh and industrial aqueous methyldiethanolamine with continuous injection of H2S/CO2 in high pressure reactor. J Nat Gas Sci Eng 29:479–487

    Article  CAS  Google Scholar 

  50. Pi L, Jiang R, Zhou W, Zhu H, Xiao W, Wang D, Mao X (2015) g-C3N4 modified biochar as an adsorptive and photocatalytic material for decontamination of aqueous organic pollutants. Appl Surf Sci 358:231–239

    Article  CAS  Google Scholar 

  51. Polichetti G, Cocco S, Spinali A, Trimarco V, Nunziata A (2009) Effects of particulate matter (PM10, PM2. 5 and PM1) on the cardiovascular system. Toxicology 261:1–8

    Article  CAS  Google Scholar 

  52. Qian Q, Gong C, Zhang Z, Yuan G (2015) Removal of VOCs by activated carbon microspheres derived from polymer: a comparative study. Adsorption 21:333–341

    Article  CAS  Google Scholar 

  53. Senthilkumar R, Vijayaraghavan K, Thilakavathi M, Iyer PVR, Velan M (2007) Application of seaweeds for the removal of lead from aqueous solution. Biochem Eng J 33:211–216

    Article  CAS  Google Scholar 

  54. Rallo M, Lopez-Anton MA, Contreras ML, Maroto-Valer MM (2012) Hg0 policy and regulations for coal-fired power plants. Environ Sci Pollut Res 19:1084–1096

    Article  CAS  Google Scholar 

  55. Ravishankar H, Wang J, Shu L, Jegatheesan V (2016) Removal of Pb (II) ions using polymer based graphene oxide magnetic nano-sorbent. Process Saf Environ Prot 104:472–80

    Google Scholar 

  56. Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100:4927–4932

    Article  CAS  Google Scholar 

  57. Shan D, Deng S, Zhao T, Wang B, Wang Y, Huang J, Yu G, Winglee J, Wiesner MR (2016) Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. J Hazard Mater 305:156–163

    Article  CAS  Google Scholar 

  58. Sharma VK, Sohn M, Anquandah GAK, Nesnas N (2012) Kinetics of the oxidation of sucralose and related carbohydrates by ferrate(VI). Chemosphere 87:644–648

    Article  CAS  Google Scholar 

  59. Shen KP, Li MH (1992) Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine. J Chem Eng Data 37:96–100

    Article  CAS  Google Scholar 

  60. Sheng LY (2016) China statistical yearbook. China Statistics Press Beijing

    Google Scholar 

  61. Shi Y, Ji Y, Sun H, Hui F, Hu J, Wu Y, Fang J, Lin H, Wang J, Duan H, Lanza M (2015) Nanoscale characterization of PM2.5 airborne pollutants reveals high adhesiveness and aggregation capability of soot particles. Sci Rep 5:11232

    Google Scholar 

  62. Skalska K, Miller JS, Ledakowicz S (2010) Trends in NOx abatement: a review. Sci Total Environ 408:3976–3989

    Article  CAS  Google Scholar 

  63. Son B, Yang W, Breysse P, Chung T, Lee Y (2004) Estimation of occupational and nonoccupational nitrogen dioxide exposure for Korean taxi drivers using a microenvironmental model. Environ Res 94:291–296

    Article  CAS  Google Scholar 

  64. Songolzadeh M, Soleimani M, Takht Ravanchi M, Songolzadeh R (2014) Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions. Sci World J 2014:1–34

    Article  Google Scholar 

  65. Srisang W, Pouryousefi F, Osei PA, Decardi-Nelson B, Tontiwachwuthikul Akachuku A, Idem PR (2018) CO2 capture efficiency and heat duty of solid acid catalyst-aided CO2 desorption using blends of primary-tertiary amines. Int J Greenh Gas Control 69:52–59

    Article  CAS  Google Scholar 

  66. Srivastava I, Singh PK, Gupta T, Sankararamakrishnan N (2019) Preparation of mesoporous carbon composites and its highly enhanced removal capacity of toxic pollutants from air. J. Environ Chem Eng 7:103271

    Article  CAS  Google Scholar 

  67. Sui ZY, Han BH (2015) Effect of surface chemistry and textural properties on carbon dioxide uptake in hydrothermally reduced graphene oxide. Carbon 82:590–598

    Article  CAS  Google Scholar 

  68. Sun Y, Zhao Z, Dong F, Zhang W (2015) Mechanism of visible light photocatalytic NOx oxidation with plasmonic Bi cocatalyst-enhanced (BiO)2CO3 hierarchical microspheres. Phys Chem Phy 17:10383–10390

    Article  CAS  Google Scholar 

  69. Tai XH, Chook SW, Lai CW, Lee KM, Yang TCK, Chong S, Juan JC (2019) Effective photoreduction of graphene oxide for photodegradation of volatile organic compounds. RSC Adv 9:18076–18086

    Article  CAS  Google Scholar 

  70. Taner S, Pekey B, Pekey H (2013) Fine particulate matter in the indoor air of barbeque restaurants: elemental compositions, sources and health risks. Sci Total Environ 54:79–87

    Article  Google Scholar 

  71. Tian MJ, Liao F, Ke QF, Guo YJ, Guo YP (2017) Synergetic effect of titanium dioxide ultralong nanofibers and activated carbon fibers on adsorption and photodegradation of toluene. Chem Eng J 328:962–976

    Article  CAS  Google Scholar 

  72. Vandenbroucke AM, Morent R, De Geyter N, Leys C (2011) Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J Hazard Mater 195:30–54

    Article  CAS  Google Scholar 

  73. Wan S, He F, Wu J, Wan W, Gu Y, Gao B (2016) Rapid and highly selective removal of lead from water using graphene oxide-hydrated manganese oxide nanocomposites. J Hazard Mater 314:32–40

    Article  CAS  Google Scholar 

  74. Wang H, Raziq F, Qu Y, Qin C, Wang J, Jing L (2015) Role of quaternary N in N-doped graphene–Fe2O3 nanocomposites as efficient photocatalysts for CO2 reduction and acetaldehyde degradation. RSC Adv 5:85061–85064

    Article  CAS  Google Scholar 

  75. Wang Y, Li Z, Tang C, Ren H, Zhang Q, Xue M, Xiong J, Wang D, Yu Q, He Z, Wei F (2019) Few-layered mesoporous graphene for high-performance toluene adsorption and regeneration. Environ Sci Nano 6:3113–3122

    Article  CAS  Google Scholar 

  76. Wu ZB, Jiang BQ, Liu Y (2008) Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia. Appl Catal B Environ 79:347–355

    Article  CAS  Google Scholar 

  77. Xiang W, Zhang X, Chen K, Fang J, He F, Hu X, Tsang DC, Ok YS, Gao B (2020) Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs). Chem Eng J 385:123842

    Article  CAS  Google Scholar 

  78. Xie R, Ji J, Guo K, Lei D, Fan Q, Leung DY, Huang H (2019) Wet scrubber coupled with UV/PMS process for efficient removal of gaseous VOCs: Roles of sulfate and hydroxyl radicals. Chem Eng J 356:632–640

    Article  CAS  Google Scholar 

  79. Xing YF, Xu YH, Shi MH, Lian YX (2016) The impact of PM2.5 on the human respiratory system. J Thorac Dis 1:E69–E74

    Google Scholar 

  80. Xiong X, Ji N, Song C, Liu Q (2015) Preparation functionalized graphene aerogels as air cleaner filter. Procedia Eng 121:957–960

    Article  CAS  Google Scholar 

  81. Yang D, Qi SH, Devi NL, Tian F, Huo ZP, Zhu QY. Wang J (2012) Characterization of polycyclic aromatic hydrocarbons in PM2.5 and PM10 in Tanggu district, tianjinbinhai new area. China Front Earth Sci 6:324–330

    Google Scholar 

  82. Yang HQ, Xu ZH, Fan MH, Bland AE, Judkins RR (2007) Adsorbents for capturing Hg0 in coal-fired boiler flue gas. J Hazard Mater 146:1–11

    Article  CAS  Google Scholar 

  83. You CF. Xu XC (2010) Coal combustion and its pollution control in China. Energy 35:4467–4472

    Google Scholar 

  84. Yu L, Wang L, Sun X, Ye D (2018) Enhanced photocatalytic activity of rGO/TiO2 for the decomposition of formaldehyde under visible light irradiation. J Environ Sci 73:138–146

    Article  CAS  Google Scholar 

  85. Yue L, Cheng R, Ding W, Shao J, Li J, Lyu J (2019) Composited micropores constructed by amorphous TiO2 and graphene for degrading volatile organic compounds. Appl Sur Sci 471:1–7

    Article  CAS  Google Scholar 

  86. Zhang C, Yao L, Yang Z, Kong ES, Zhu X, Zhang Y (2019) Graphene oxide-modified polyacrylonitrile nanofibrous membranes for efficient air filtration. ACS Appl Nano Mater 2:3916–3924

    Article  CAS  Google Scholar 

  87. Zhang L, Jin X, Johnson AC, Giesy JP (2016) Hazard posed by metals and As in PM2.5 in air of five megacities in the Beijing-Tianjin-Hebei region of China during APEC. Environ Sci Pollu Res 23:17603–17612

    Article  CAS  Google Scholar 

  88. Zhu G, Hojamberdiev M, Zhang S, Din ST, Yang W (2019) Enhancing visible-light-induced photocatalytic activity of BiOI microspheres for NO removal by synchronous coupling with Bi metal and graphene. Appl Surf Sci 467:968–978

    Article  Google Scholar 

  89. Zhu Z, Fan W, Liu Z, Yu Y, Dong H, Huo P, Yan Y (2018) Fabrication of the metal-free biochar-based graphitic carbon nitride for improved 2-Mercaptobenzothiazole degradation activity. J Photochem Photobiol A Chem 358:284–293

    Article  CAS  Google Scholar 

  90. Zou W, Gu B, Sun S, Wang S, Li X, Zhao H, Yang P (2019) Preparation of a graphene oxide membrane for air purification. Mater Res Express Sep 6:105624

    Google Scholar 

  91. Zuo F, Zhang S, Liu H, Fong H, Yin X, Yu J, Ding B (2017) Free standing polyurethane nanofiber/nets air filters for effective PM capture. Small 46:1702139

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. K.N. Modi University, Banasthali Vidyapith, and the Central University of Gujarat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nehra, S., Sharma, R., Kumar, D. (2021). Removal of Air Pollutants Using Graphene Nanocomposite. In: Jawaid, M., Ahmad, A., Ismail, N., Rafatullah, M. (eds) Environmental Remediation Through Carbon Based Nano Composites. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6699-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6699-8_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6698-1

  • Online ISBN: 978-981-15-6699-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics