Skip to main content

Perovskite Quantum Dots Based Lasing-Prospects and Challenges

  • Chapter
  • First Online:
Perovskite Quantum Dots

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 303))

  • 2310 Accesses

Abstract

Since the first report of stimulated emission (SE) and lasing action from colloidal perovskite quantum dots (Pe-QDs) in 2015, Pe-QDs have made great strides in constructing high-performance optically pumped lasers. By virtue of the quantum confinement effect and merits of halide perovskites, the Pe-QDs hold the promise for developing practical and cost-effective lasers based on optical pumping and even electrical injection. In this Chapter, the status and prospects of Pe-QD lasers are introduced. First of all, we present the basic photophysics of Pe-QDs that benefits light emission and SE. Then, the underlying gain mechanisms are discussed. We comprehensively introduce the emerging kinds of Pe-QD lasers based on various high-quality optical resonators. At last, we point out the existing challenges toward the development of high-performance lasers utilizing the Pe-QDs and research trends of Pe-QD lasers in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1 PA:

One-photon absorption

2 PA:

Two-photon absorption

ASE:

Amplified spontaneous emission

BnOH:

Benzyl alcohol

CB:

Conduction band

CBM:

Conduction band minimum

CIE:

Commission Internationale de l’Eclairage

CLC:

Cholesteric liquid crystal

CW:

Continuous-wave

DA:

2-hexyldecanoic acid

DBR:

Distributed bragg reflector

DFB:

Distributed feedback

FA:

Formamidinium

fs:

Femtosecond

FWHM:

Full-width at half maximum

LC:

Liquid crystal

LEDs:

Light emitting diodes

MA:

Methylammonium

NTSC:

North American national television system committee

ns:

Nanosecond

PA:

Photoinduced absorption

PAN:

Polyacrylonitrile

PB:

Photobleaching

Pe-QDs:

Perovskite quantum dots

PL:

Photoluminescence

PL QY:

Photoluminescence quantum yield

PMMA:

Poly (methyl methacrylate)

OA:

Oleic acid

OAm:

oleylamine

QD:

Quantum dot

QDs:

Quantum dots

Q factor:

Quality factor

SE:

Stimulated emission

TA:

Transient absorption

TEM:

Transmission electron microscopy

TR PL:

Time-resolved photoluminescence

VCSEL:

Vertical cavity surface emitting laser

VB:

Valence band

VBM:

Valence band maximum

WGM:

Whispering-gallery-mode

References

  1. B.R. Sutherland, E.H. Sargent, Perovskite photonic sources. Nat. Photon 10, 295 (2016)

    CAS  Google Scholar 

  2. L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, M.V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692 (2015)

    CAS  Google Scholar 

  3. S. Yakunin, L. Protesescu, F. Krieg, M.I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, M.V. Kovalenko, Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 6, 8056 (2015)

    CAS  Google Scholar 

  4. Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, H. Sun, All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv. Mater. 27, 7101 (2015)

    CAS  Google Scholar 

  5. G. Xing, N. Mathews, S.S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, T.C. Sum, Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476 (2014)

    CAS  Google Scholar 

  6. F. Igbari, Z.K. Wang, L.S. Liao, Progress of lead-free halide double perovskites. Adv. Energy Mater. 9, 1803150 (2019)

    Google Scholar 

  7. Y. Wang, M. Zhi, Y.-Q. Chang, J.-P. Zhang, Y. Chan, Stable, ultralow threshold amplified spontaneous emission from CsPbBr3 nanoparticles exhibiting trion gain. Nano Lett. 18, 4976 (2018)

    CAS  Google Scholar 

  8. T. Leijtens, G.E. Eperon, N.K. Noel, S.N. Habisreutinger, A. Petrozza, H.J. Snaith, Stability of metal halide perovskite solar cells. Adv. Energy Mater. 5, 1500963 (2015)

    Google Scholar 

  9. T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, T.J. White, Synthesis and crystal chemistry of the hybrid perovskite (CH3 NH3) PbI 3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628 (2013)

    CAS  Google Scholar 

  10. G.R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag, P. Ghosh, P. Mandal, Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Lett. 16, 4838 (2016)

    CAS  Google Scholar 

  11. X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song, H. Zeng, CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 26, 2435 (2016)

    CAS  Google Scholar 

  12. H. Dong, C. Zhang, X. Liu, J. Yao, Y.S. Zhao, Materials chemistry and engineering in metal halide perovskite lasers. Chem. Soc. Rev. 49, 951 (2020)

    CAS  Google Scholar 

  13. G. Volonakis, A.A. Haghighirad, R.L. Milot, W.H. Sio, M.R. Filip, B. Wenger, M.B. Johnston, L.M. Herz, H.J. Snaith, F. Giustino, Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett. 8, 772 (2017)

    CAS  Google Scholar 

  14. X. Li, F. Cao, D. Yu, J. Chen, Z. Sun, Y. Shen, Y. Zhu, L. Wang, Y. Wei, Y. Wu, All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small 13, 1603996 (2017)

    Google Scholar 

  15. H. Zhu, M.T. Trinh, J. Wang, Y. Fu, P.P. Joshi, K. Miyata, S. Jin, X.Y. Zhu, Organic cations might not be essential to the remarkable properties of band edge carriers in lead halide perovskites. Adv. Mater. 29, 1603072 (2017)

    Google Scholar 

  16. T.C. Jellicoe, J.M. Richter, H.F. Glass, M. Tabachnyk, R. Brady, S.E. Dutton, A. Rao, R.H. Friend, D. Credgington, N.C. Greenham, M.L. Bohm, Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 138, 2941 (2016)

    CAS  Google Scholar 

  17. G. Xing, M.H. Kumar, W.K. Chong, X. Liu, Y. Cai, H. Ding, M. Asta, M. Grätzel, S. Mhaisalkar, N. Mathews, Solution-processed tin-based perovskite for near-infrared lasing. Adv. Mater. 28, 8191 (2016)

    CAS  Google Scholar 

  18. Y. Wang, H. Sun, All-inorganic metal halide perovskite nanostructures: from photophysics to light-emitting applications. Small Methods 2, 1700252 (2018)

    Google Scholar 

  19. R.E. Brandt, J.R. Poindexter, P. Gorai, R.C. Kurchin, R.L.Z. Hoye, L. Nienhaus, M.W.B. Wilson, J.A. Polizzotti, R. Sereika, R. Žaltauskas, L.C. Lee, J.L. MacManus-Driscoll, M. Bawendi, V. Stevanović, T. Buonassisi, Searching for “Defect-Tolerant” photovoltaic materials: combined theoretical and experimental screening. Chem. Mater. 29, 4667 (2017)

    CAS  Google Scholar 

  20. J. Kang, L.W. Wang, High defect tolerance in lead halide perovskite CsPbBr3. J. Phys. Chem. Lett. 8, 489 (2017)

    CAS  Google Scholar 

  21. M.V. Kovalenko, L. Protesescu, M.I. Bodnarchuk, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745 (2017)

    CAS  Google Scholar 

  22. F. Deschler, M. Price, S. Pathak, L.E. Klintberg, D.D. Jarausch, R. Higler, S. Huttner, T. Leijtens, S.D. Stranks, H.J. Snaith, M. Atature, R.T. Phillips, R.H. Friend, High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421 (2014)

    CAS  Google Scholar 

  23. P. Liu, W. Chen, W. Wang, B. Xu, D. Wu, J. Hao, W. Cao, F. Fang, Y. Li, Y. Zeng, R. Pan, S. Chen, W. Cao, X.W. Sun, K. Wang, Halide-rich synthesized cesium lead bromide perovskite nanocrystals for light-emitting diodes with improved performance. Chem. Mater. 29, 5168 (2017)

    CAS  Google Scholar 

  24. M. Li, J. Fu, Q. Xu, T.C. Sum, Slow hot-carrier cooling in halide perovskites: prospects for hot-carrier solar cells. Adv. Mater. 31, e1802486 (2019)

    Google Scholar 

  25. N. Mondal, A. Samanta, Complete ultrafast charge carrier dynamics in photo-excited all-inorganic perovskite nanocrystals (CsPbX3). Nanoscale 9, 1878 (2017)

    CAS  Google Scholar 

  26. N.S. Makarov, S. Guo, O. Isaienko, W. Liu, I. Robel, V.I. Klimov, Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots. Nano Lett. 16, 2349 (2016)

    CAS  Google Scholar 

  27. T.C. Sum, N. Mathews, G. Xing, S.S. Lim, W.K. Chong, D. Giovanni, H.A. Dewi, Spectral features and charge dynamics of lead halide perovskites: origins and interpretations. Acc. Chem. Res. 49, 294 (2016)

    CAS  Google Scholar 

  28. N. Mondal, A. De, S. Das, S. Paul, A. Samanta, Ultrafast carrier dynamics of metal halide perovskite nanocrystals and perovskite-composites. Nanoscale 11, 9796 (2019)

    CAS  Google Scholar 

  29. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344 (2013)

    CAS  Google Scholar 

  30. L. Wang, C. McCleese, A. Kovalsky, Y. Zhao, C. Burda, Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. J. Am. Chem. Soc. 136, 12205 (2014)

    CAS  Google Scholar 

  31. K.G. Stamplecoskie, J.S. Manser, P.V. Kamat, Dual nature of the excited state in organic–inorganic lead halide perovskites. Energy Environ. Sci. 8, 208 (2015)

    CAS  Google Scholar 

  32. M.B. Price, J. Butkus, T.C. Jellicoe, A. Sadhanala, A. Briane, J.E. Halpert, K. Broch, J.M. Hodgkiss, R.H. Friend, F. Deschler, Hot-carrier cooling and photoinduced refractive index changes in organic-inorganic lead halide perovskites. Nat. Commun. 6, 8420 (2015)

    CAS  Google Scholar 

  33. D. König, K. Casalenuovo, Y. Takeda, G. Conibeer, J. Guillemoles, R. Patterson, L. Huang, M. Green, Hot carrier solar cells: principles, materials and design. Phys. E 42, 2862 (2010)

    Google Scholar 

  34. Y. Yang, D.P. Ostrowski, R.M. France, K. Zhu, J. Van De Lagemaat, J.M. Luther, M.C. Beard, Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nat. Photon 10, 53 (2016)

    CAS  Google Scholar 

  35. M. Li, S. Bhaumik, T.W. Goh, M.S. Kumar, N. Yantara, M. Gratzel, S. Mhaisalkar, N. Mathews, T.C. Sum, Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals. Nat. Commun. 8, 14350 (2017)

    CAS  Google Scholar 

  36. K. Chen, A.J. Barker, F.L. Morgan, J.E. Halpert, J.M. Hodgkiss, Effect of carrier thermalization dynamics on light emission and amplification in organometal halide perovskites. J. Phys. Chem. Lett. 6, 153 (2015)

    CAS  Google Scholar 

  37. J. Fu, Q. Xu, G. Han, B. Wu, C.H.A. Huan, M.L. Leek, T.C. Sum, Hot carrier cooling mechanisms in halide perovskites. Nat. Commun. 8, 1300 (2017)

    Google Scholar 

  38. J.M. Richter, F. Branchi, Valduga de Almeida, F. Camargo, B. Zhao, R.H. Friend, G. Cerullo, F. Deschler, Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy. Nat. Commun. 8, 376 (2017)

    Google Scholar 

  39. J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T.W. Kee, F. Huang, Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites. Nat. Commun. 8, 1 (2017)

    Google Scholar 

  40. H. Zhu, K. Miyata, Y. Fu, J. Wang, P.P. Joshi, D. Niesner, K.W. Williams, S. Jin, X.-Y. Zhu, Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409 (2016)

    CAS  Google Scholar 

  41. J. Butkus, P. Vashishtha, K. Chen, J.K. Gallaher, S.K. Prasad, D.Z. Metin, G. Laufersky, N. Gaston, J.E. Halpert, J.M. Hodgkiss, The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals. Chem. Mater. 29, 3644 (2017)

    CAS  Google Scholar 

  42. A. Mondal, J. Aneesh, V.K. Ravi, R. Sharma, W.J. Mir, M.C. Beard, A. Nag, K. Adarsh, Ultrafast exciton many-body interactions and hot-phonon bottleneck in colloidal cesium lead halide perovskite nanocrystals. Phys. Rev. B 98, 115418 (2018)

    CAS  Google Scholar 

  43. J. Aneesh, A. Swarnkar, V. Kumar Ravi, R. Sharma, A. Nag, K. Adarsh, Ultrafast exciton dynamics in colloidal CsPbBr 3 perovskite nanocrystals: biexciton effect and Auger recombination. J. Phys. Chem. C 121, 4734 (2017)

    CAS  Google Scholar 

  44. J.A. Castañeda, G. Nagamine, E. Yassitepe, L.G. Bonato, O. Voznyy, S. Hoogland, A.F. Nogueira, E.H. Sargent, C.H.B. Cruz, L.A. Padilha, Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement. ACS Nano 10, 8603 (2016)

    Google Scholar 

  45. V.I. Klimov, Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 58, 635 (2007)

    CAS  Google Scholar 

  46. H. Zhu, Y. Yang, T. Lian, Multiexciton annihilation and dissociation in quantum confined semiconductor nanocrystals. Acc. Chem. Res. 46, 1270 (2013)

    CAS  Google Scholar 

  47. V. Klimov, A. Mikhailovsky, S. Xu, A. Malko, J. Hollingsworth, aC Leatherdale, H.J. Eisler, M. Bawendi, Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314 (2000)

    CAS  Google Scholar 

  48. S. Kondo, K. Takahashi, T. Nakanish, T. Saito, H. Asada, H. Nakagawa, High intensity photoluminescence of microcrystalline CsPbBr3 films: evidence for enhanced stimulated emission at room temperature. Curr. Appl. Phys. 7, 1 (2007)

    Google Scholar 

  49. C. Dang, J. Lee, C. Breen, J.S. Steckel, S. Coe-Sullivan, A. Nurmikko, Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat. Nanotech. 7, 335 (2012)

    CAS  Google Scholar 

  50. J.Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani, L. Manna, I. Moreels, Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nat. Nanotech. 9, 891 (2014)

    CAS  Google Scholar 

  51. Y. Wang, X. Li, X. Zhao, L. Xiao, H. Zeng, H. Sun, Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett. 16, 448 (2015)

    Google Scholar 

  52. K.E. Shulenberger, M.N. Ashner, S.K. Ha, F. Krieg, M.V. Kovalenko, W.A. Tisdale, M.G. Bawendi, Setting an upper bound to the biexciton binding energy in CsPbBr3 perovskite nanocrystals. J. Phys. Chem. Lett. 10, 5680 (2019)

    CAS  Google Scholar 

  53. A. Dey, P. Rathod, D. Kabra, Role of localized states in photoluminescence dynamics of high optical gain CsPbBr3 nanocrystals. Adv. Opt. Mater. 6, 1800109 (2018)

    Google Scholar 

  54. M.J. Tan, Y. Wang, Y. Chan, Solution-based green amplified spontaneous emission from colloidal perovskite nanocrystals exhibiting high stability. Appl. Phys. Lett. 114, 183101 (2019)

    Google Scholar 

  55. S.W. Eaton, M. Lai, N.A. Gibson, A.B. Wong, L. Dou, J. Ma, L.-W. Wang, S.R. Leone, P. Yang, Lasing in robust cesium lead halide perovskite nanowires. P. Nati. Acad. Sci. USA 113, 1993 (2016)

    CAS  Google Scholar 

  56. S. Wang, J. Yu, M. Zhang, D. Chen, C. Li, R. Chen, G. Jia, A.L. Rogach, X. Yang, Stable, strongly emitting cesium lead bromide perovskite nanorods with high optical gain enabled by an intermediate monomer reservoir synthetic strategy. Nano Lett. 19, 6315 (2019)

    Google Scholar 

  57. Y. Jia, R.A. Kerner, A.J. Grede, B.P. Rand, N.C. Giebink, Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor. Nat. Photon. 11, 784 (2017)

    CAS  Google Scholar 

  58. S.A. Veldhuis, Y.K.E. Tay, A. Bruno, S.S. Dintakurti, S. Bhaumik, S.K. Muduli, M. Li, N. Mathews, T.C. Sum, S.G. Mhaisalkar, Benzyl alcohol-treated CH3NH3PbBr3 nanocrystals exhibiting high luminescence, stability, and ultralow amplified spontaneous emission thresholds. Nano Lett. 17, 7424 (2017)

    CAS  Google Scholar 

  59. F. Yuan, Z. Wu, H. Dong, J. Xi, K. Xi, G. Divitini, B. Jiao, X. Hou, S. Wang, Q. Gong, High stability and ultralow threshold amplified spontaneous emission from formamidinium lead halide perovskite films. J. Phys. Chem. C 121, 15318 (2017)

    CAS  Google Scholar 

  60. L. Protesescu, S. Yakunin, S. Kumar, J. Bär, F. Bertolotti, N. Masciocchi, A. Guagliardi, M. Grotevent, I. Shorubalko, M.I. Bodnarchuk, Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium–cesium lead iodide nanocrystals. ACS Nano 11, 3119 (2017)

    CAS  Google Scholar 

  61. H.H. Fang, L. Protesescu, D.M. Balazs, S. Adjokatse, M.V. Kovalenko, M.A. Loi, Exciton recombination in formamidinium lead triiodide: nanocrystals versus thin films. Small 13, 1700673 (2017)

    Google Scholar 

  62. Y.-S. Park, S. Guo, N.S. Makarov, V.I. Klimov, Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano 9, 10386 (2015)

    CAS  Google Scholar 

  63. P. Papagiorgis, A. Manoli, L. Protesescu, C. Achilleos, M. Violaris, K. Nicolaides, T. Trypiniotis, M.I. Bodnarchuk, M.V. Kovalenko, A. Othonos, G. Itskos, Efficient optical amplification in the nanosecond regime from formamidinium lead iodide nanocrystals. ACS Photonics 5, 907 (2018)

    CAS  Google Scholar 

  64. L-y Huang, W.R. Lambrecht, Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3. Phys. Rev. B 88, 165203 (2013)

    Google Scholar 

  65. C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584 (2014)

    CAS  Google Scholar 

  66. F. Krieg, S.T. Ochsenbein, S. Yakunin, S. Ten Brinck, P. Aellen, A. Suess, B. Clerc, D. Guggisberg, O. Nazarenko, Y. Shynkarenko, S. Kumar, C.J. Shih, I. Infante, M.V. Kovalenko, Colloidal CsPbX3 (X = Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability. ACS Energy Lett. 3, 641 (2018)

    Google Scholar 

  67. Y. Tong, E. Bladt, M.F. Ayguler, A. Manzi, K.Z. Milowska, V.A. Hintermayr, P. Docampo, S. Bals, A.S. Urban, L. Polavarapu, J. Feldmann, Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem. Int. Ed. Engl. 55, 13887 (2016)

    CAS  Google Scholar 

  68. M. Imran, V. Caligiuri, M. Wang, L. Goldoni, M. Prato, R. Krahne, L. De Trizio, L. Manna, Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals. J. Am. Chem. Soc. 140, 2656 (2018)

    CAS  Google Scholar 

  69. D. Yan, T. Shi, Z. Zang, T. Zhou, Z. Liu, Z. Zhang, J. Du, Y. Leng, X. Tang, Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification. Small 15, e1901173 (2019)

    Google Scholar 

  70. C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, K. Sun, Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing. Nano Energy 40, 195 (2017)

    CAS  Google Scholar 

  71. Z. Liu, Z. Hu, Z. Zhang, J. Du, J. Yang, X. Tang, W. Liu, Y. Leng, Two-photon pumped amplified spontaneous emission and lasing from formamidinium lead bromine nanocrystals. ACS Photonics 6, 3150 (2019)

    CAS  Google Scholar 

  72. W. Zhao, Z. Qin, C. Zhang, G. Wang, X. Huang, B. Li, X. Dai, M. Xiao, Optical gain from biexcitons in CsPbBr3 nanocrystals revealed by two-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 10, 1251 (2019)

    CAS  Google Scholar 

  73. E.M.L.D. de Jong, G. Yamashita, L. Gomez, M. Ashida, Y. Fujiwara, T. Gregorkiewicz, Multiexciton lifetime in all-inorganic CsPbBr3 perovskite nanocrystals. J. Phys. Chem. C 121, 1941 (2017)

    Google Scholar 

  74. K. Wu, G. Liang, Q. Shang, Y. Ren, D. Kong, T. Lian, Ultrafast interfacial electron and hole transfer from CsPbBr3 perovskite quantum dots. J. Am. Chem. Soc. 137, 12792 (2015)

    CAS  Google Scholar 

  75. G.E. Eperon, E. Jedlicka, D.S. Ginger, Biexciton auger recombination differs in hybrid and inorganic halide perovskite quantum dots. J. Phys. Chem. Lett. 9, 104 (2018)

    CAS  Google Scholar 

  76. V.I. Klimov, S.A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J.A. McGuire, A. Piryatinski, Single-exciton optical gain in semiconductor nanocrystals. Nature 447, 441 (2007)

    CAS  Google Scholar 

  77. J. Navarro-Arenas, I. Suárez, V.S. Chirvony, A.F. Gualdrón-Reyes, I. Mora-Seró, J. Martínez-Pastor, Single-exciton amplified spontaneous emission in thin films of CsPbX3 (X = Br, I) perovskite nanocrystals. J. Phys. Chem. Lett. 10, 6389 (2019)

    CAS  Google Scholar 

  78. A. Pramanik, K. Gates, Y. Gao, S. Begum, P. Chandra Ray, Several orders-of-magnitude enhancement of multiphoton absorption property for CsPbX3 perovskite quantum dots by manipulating halide stoichiometry. J. Phys. Chem. C 123, 5150 (2019)

    CAS  Google Scholar 

  79. J. Chen, K. Zidek, P. Chabera, D. Liu, P. Cheng, L. Nuuttila, M.J. Al-Marri, H. Lehtivuori, M.E. Messing, K. Han, K. Zheng, T. Pullerits, Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots. J. Phys. Chem. Lett. 8, 2316 (2017)

    CAS  Google Scholar 

  80. Y. Wang, V.D. Ta, Y. Gao, T.C. He, R. Chen, E. Mutlugun, H.V. Demir, H.D. Sun, Stimulated emission and lasing from CdSe/CdS/ZnS core-multi-shell quantum dots by simultaneous three-photon absorption. Adv. Mater. 26, 2954 (2014)

    CAS  Google Scholar 

  81. W.-G. Lu, C. Chen, D. Han, L. Yao, J. Han, H. Zhong, Y. Wang, Nonlinear optical properties of colloidal CH3NH3PbBr3 and CsPbBr3 quantum dots: a comparison study using Z-scan technique. Adv. Opt. Mater. 4, 1732 (2016)

    CAS  Google Scholar 

  82. Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W.W. Yu, X. Wang, Y. Zhang, Two-photon-pumped perovskite semiconductor nanocrystal lasers. J. Am. Chem. Soc. 138, 3761 (2016)

    CAS  Google Scholar 

  83. G. Nagamine, J.O. Rocha, L.G. Bonato, A.F. Nogueira, Z. Zaharieva, A.A. Watt, C.H. de Brito Cruz, L.A. Padilha, Two-photon absorption and two-photon-induced gain in perovskite quantum dots. J. Phys. Chem. Lett. 9, 3478 (2018)

    CAS  Google Scholar 

  84. Z. Hu, Z. Liu, Y. Bian, S. Li, X. Tang, J. Du, Z. Zang, M. Zhou, W. Hu, Y. Tian, Enhanced two-photon-pumped emission from in situ synthesized nonblinking CsPbBr3/SiO2 nanocrystals with excellent stability. Adv. Opt. Mater. 6, 1700997 (2018)

    Google Scholar 

  85. T. He, J. Li, C. Ren, S. Xiao, Y. Li, R. Chen, X. Lin, Strong two-photon absorption of Mn-doped CsPbCl3 perovskite nanocrystals. Appl. Phys. Lett. 111, 211105 (2017)

    Google Scholar 

  86. S. Zou, G. Yang, T. Yang, D. Zhao, Z. Gan, W. Chen, H. Zhong, X. Wen, B. Jia, B. Zou, Template-free synthesis of high-yield Fe-doped cesium lead halide perovskite ultralong microwires with enhanced two-photon absorption. J. Phys. Chem. Lett. 9, 4878 (2018)

    CAS  Google Scholar 

  87. R. Ketavath, N.K. Katturi, S.G. Ghugal, H.K. Kolli, T. Swetha, V.R. Soma, B. Murali, Deciphering the ultrafast nonlinear optical properties and dynamics of pristine and Ni-doped CsPbBr3 colloidal two-dimensional nanocrystals. J. Phys. Chem. Lett. 10, 5577 (2019)

    CAS  Google Scholar 

  88. B. Redding, M.A. Choma, H. Cao, Speckle-free laser imaging using random laser illumination. Nat. Photonics 6, 355 (2012)

    CAS  Google Scholar 

  89. R. Dhanker, A. Brigeman, A. Larsen, R. Stewart, J.B. Asbury, N.C. Giebink, Random lasing in organo-lead halide perovskite microcrystal networks. Appl. Phys. Lett. 105, 151112 (2014)

    Google Scholar 

  90. X. Li, Y. Wang, H. Sun, H. Zeng, Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing. Adv. Mater. 29, 1701185 (2017)

    Google Scholar 

  91. S. Yuan, D. Chen, X. Li, J. Zhong, X. Xu, In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing. ACS Appl. Mater. Inter. 10, 18918 (2018)

    CAS  Google Scholar 

  92. P.K. Roy, G. Haider, H.I. Lin, Y.M. Liao, C.H. Lu, K.H. Chen, L.C. Chen, W.H. Shih, C.T. Liang, Y.F. Chen, Multicolor ultralow-threshold random laser assisted by vertical-graphene network. Adv. Opt. Mater. 6, 1800382 (2018)

    Google Scholar 

  93. M. Saliba, S.M. Wood, J.B. Patel, P.K. Nayak, J. Huang, J.A. Alexander-Webber, B. Wenger, S.D. Stranks, M.T. Horantner, J.T. Wang, R.J. Nicholas, L.M. Herz, M.B. Johnston, S.M. Morris, H.J. Snaith, M.K. Riede, Structured organic-inorganic perovskite toward a distributed feedback laser. Adv. Mater. 28, 923 (2016)

    CAS  Google Scholar 

  94. Z. Li, J. Moon, A. Gharajeh, R. Haroldson, R. Hawkins, W. Hu, A. Zakhidov, Q. Gu, Room-temperature continuous-wave operation of organometal halide perovskite lasers. ACS Nano 12, 10968 (2018)

    CAS  Google Scholar 

  95. Y. Jia, R.A. Kerner, A.J. Grede, A.N. Brigeman, B.P. Rand, N.C. Giebink, Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator. Nano Lett. 16, 4624 (2016)

    CAS  Google Scholar 

  96. L. Wang, L. Meng, L. Chen, S. Huang, X. Wu, G. Dai, L. Deng, J. Han, B. Zou, C. Zhang, Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots. J. Phys. Chem. Lett. 10, 3248 (2019)

    CAS  Google Scholar 

  97. M. Artemyev, U. Woggon, Quantum dots in photonic dots. Appl. Phys. Lett. 76, 1353 (2000)

    CAS  Google Scholar 

  98. M. Kazes, D.Y. Lewis, Y. Ebenstein, T. Mokari, U. Banin, Lasing from semiconductor quantum rods in a cylindrical microcavity. Adv. Mater. 14, 317 (2002)

    CAS  Google Scholar 

  99. K. Wang, S. Wang, S. Xiao, Q. Song, Recent advances in perovskite micro-and nanolasers. Adv. Opt Mater. 6, 1800278 (2018)

    Google Scholar 

  100. M.L. De Giorgi, M. Anni, Amplified spontaneous emission and lasing in lead halide perovskites: state of the art and perspectives. Appl. Sci. 9, 4591 (2019)

    Google Scholar 

  101. Y. Wang, X. Li, V. Nalla, H. Zeng, H. Sun, Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals. Adv. Funct. Mater. 27, 1605088 (2017)

    Google Scholar 

  102. C.-Y. Huang, C. Zou, C. Mao, K.L. Corp, Y.-C. Yao, Y.-J. Lee, C.W. Schlenker, A.K. Jen, L.Y. Lin, CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability. Acs Photonics 4, 2281 (2017)

    CAS  Google Scholar 

  103. P. Liu, X. He, J. Ren, Q. Liao, J. Yao, H. Fu, Organic-inorganic hybrid perovskite nanowire laser arrays. ACS Nano 11, 5766 (2017)

    CAS  Google Scholar 

  104. Z. Yang, J. Lu, M. ZhuGe, Y. Cheng, J. Hu, F. Li, S. Qiao, Y. Zhang, G. Hu, Q. Yang, D. Peng, K. Liu, C. Pan, Controllable growth of aligned monocrystalline CsPbBr3 microwire arrays for piezoelectric-induced dynamic modulation of single-mode lasing. Adv. Mater. 31, e1900647 (2019)

    Google Scholar 

  105. Z. Duan, Y. Wang, G. Li, S. Wang, N. Yi, S. Liu, S. Xiao, Q. Song, Chip-scale fabrication of uniform lead halide perovskites microlaser array and photodetector array. Laser Photonics Rev. 12, 1700234 (2018)

    Google Scholar 

  106. X. He, P. Liu, H. Zhang, Q. Liao, J. Yao, H. Fu, Patterning multicolored microdisk laser arrays of cesium lead halide perovskite. Adv. Mater. 29, 1604510 (2017)

    Google Scholar 

  107. J. Feng, X. Yan, Y. Zhang, X. Wang, Y. Wu, B. Su, H. Fu, L. Jiang, “Liquid Knife” to fabricate patterning single-crystalline perovskite microplates toward high-performance laser arrays. Adv. Mater. 28, 3732 (2016)

    CAS  Google Scholar 

  108. X. Liu, L. Niu, C. Wu, C. Cong, H. Wang, Q. Zeng, H. He, Q. Fu, W. Fu, T. Yu, C. Jin, Z. Liu, T.C. Sum, Periodic organic-inorganic halide perovskite microplatelet arrays on silicon substrates for room-temperature lasing. Adv. Sci. (Weinh) 3, 1600137 (2016)

    Google Scholar 

  109. C.H. Lin, Q. Zeng, E. Lafalce, S. Yu, M.J. Smith, Y.J. Yoon, Y. Chang, Y. Jiang, Z. Lin, Z.V. Vardeny, Large-area lasing and multicolor perovskite quantum dot patterns. Adv. Opt. Mater. 6, 1800474 (2018)

    Google Scholar 

  110. H. Coles, S. Morris, Liquid-crystal lasers. Nat Photon 4, 676 (2010)

    CAS  Google Scholar 

  111. S.D. Stranks, S.M. Wood, K. Wojciechowski, F. Deschler, M. Saliba, H. Khandelwal, J.B. Patel, S.J. Elston, L.M. Herz, M.B. Johnston, Enhanced amplified spontaneous emission in perovskites using a flexible cholesteric liquid crystal reflector. Nano Lett. 15, 4935 (2015)

    CAS  Google Scholar 

  112. L.-J. Chen, J.-H. Dai, J.-D. Lin, T.-S. Mo, H.-P. Lin, H.-C. Yeh, Y.-C. Chuang, S.-A. Jiang, C.-R. Lee, Wavelength-tunable and highly stable perovskite-quantum-dot-doped lasers with liquid crystal lasing cavities. ACS Appl. Mater. Inter. 10, 33307 (2018)

    CAS  Google Scholar 

  113. Z. Liu, Z. Hu, T. Shi, J. Du, J. Yang, Z. Zhang, X. Tang, Y. Leng, Stable and enhanced frequency up-converted lasing from CsPbBr3 quantum dots embedded in silica sphere. Opt. Express 27, 9459 (2019)

    CAS  Google Scholar 

  114. H. Huang, B. Chen, Z. Wang, T.F. Hung, A.S. Susha, H. Zhong, A.L. Rogach, Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chem. Sci. 7, 5699 (2016)

    CAS  Google Scholar 

  115. Y. Wang, D. Yu, Z. Wang, X. Li, X. Chen, V. Nalla, H. Zeng, H. Sun, Solution-Grown CsPbBr3/Cs4PbBr6 perovskite nanocomposites: toward temperature-insensitive optical gain. Small 13, 1701587 (2017)

    Google Scholar 

  116. H. Hu, B. Dong, W. Zhang, Low-toxic metal halide perovskites: opportunities and future challenges. J. Mater. Chem. A 5, 11436 (2017)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Y., Xia, S. (2020). Perovskite Quantum Dots Based Lasing-Prospects and Challenges. In: Zhou, Y., Wang, Y. (eds) Perovskite Quantum Dots. Springer Series in Materials Science, vol 303. Springer, Singapore. https://doi.org/10.1007/978-981-15-6637-0_11

Download citation

Publish with us

Policies and ethics