Skip to main content

Graphene Nanocomposite Based Nanoproducts

  • Living reference work entry
  • First Online:
Handbook of Consumer Nanoproducts
  • 58 Accesses

Abstract

Depending upon nanotechnology and nanomaterials, nanoproducts have created a rapidly growing consumer markets. As per current database, approximately 4400 nanoproducts are available in global markets, and major nanoproducts are being made from various metals like Ag, Ti, Zn, and Au; metal oxides such as TiO2, ZnO, and Fe2O3; carbonaceous materials; polymers; and silica in their nanoscale dimension (1–100 nm). Among these, carbon nanotubes (CNTs), fullerenes, and graphene-based nanomaterials are found to be advantageous in their functional properties including electrical conductivity and mechanical and thermal stability. Graphene is one of the promising materials for making nanocomposites suitable for manufacturing various nanoproducts toward different applications. An up-to-date information on graphene-based nanoproducts for applications in different fields is scatterly available in literature but not in a single report which is certainly needed to realize their advancements at a glance. Hence, this chapter mainly covers synthetic strategies, properties, and applications of graphene nanocomposite-based nanoproducts with an emphasis on bio-nanoproducts, sustainable nanoproducts, electronic nanodevices, sensors, optical nanodevices, and the nanoproducts for environmental remediation. Finally, the present challenges and future prospect of the nanoproducts are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ahir SV, Terentjev EM (2005) Photomechanical actuation in polymer-nanotube composites. Nat Mater 4:491–495

    Article  CAS  Google Scholar 

  2. Mallakpour S, Azadi E, Hussain CM (2020) Environmentally benign production of cupric oxide nanoparticles and various utilizations of their polymeric hybrids in different technologies. Coord Chem Rev 419:213378

    Article  CAS  Google Scholar 

  3. Huang Y, Fan X, Chen SC, Zhao N (2019) Emerging technologies of flexible pressure sensors: materials, modeling, devices, and manufacturing. Adv Funct Mater 29:1808509

    Article  CAS  Google Scholar 

  4. Wei Y, Yan B (2016) Nano products in daily life: to know what we do not know. Natl Sci Rev 3:414–415

    Article  Google Scholar 

  5. Hussain CM (2020) Handbook of functionalized nanomaterials for industrial applications, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  6. Sengul H, Theis TL, Ghosh S (2008) Toward sustainable nanoproducts: an overview of nanomanufacturing methods. J Ind Ecol 12:329–359

    Article  CAS  Google Scholar 

  7. Mallakpour S, Khadem E (2016) Carbon nanotube–metal oxide nanocomposites: fabrication, properties and applications. Chem Eng J 302:344–367

    Article  CAS  Google Scholar 

  8. Mallakpour S, Khadem E (2019) Carbon nanotubes for heavy metals removal. In: Kyzas G, Mitrpoulos AC (eds) Composite nanoadsorbents. Elsevier, Amsterdam

    Google Scholar 

  9. Mallakpour S, Rashidimoghadam S (2019) Carbon nanotubes for dyes removal. In: Kyzas G, Mitrpoulos AC (eds) Composite nanoadsorbents. Elsevier, Amsterdam

    Google Scholar 

  10. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  11. Mallakpour S, Abdolmaleki A, Borandeh S (2017) Fabrication of amino acid-based graphene-zinc oxide (ZnO) hybrid and its application for poly(ester–amide)/graphene-ZnO nanocomposite synthesis. J Thermoplast Compos Mater 30:358–380

    Article  CAS  Google Scholar 

  12. Bera S, Naskar A, Pal M, Jana S (2016) ZnO–graphene–polyaniline nanoflowers: solution synthesis, formation mechanism and electrochemical activity. RSC Adv 47:40854–40857

    Article  CAS  Google Scholar 

  13. Naskar A, Khan H, Bera S, Jana S (2017) Soft chemical synthesis, characterization and interaction of ZnO graphene nanocomposite with bovine serum albumin protein. J Mol Liq 237:113–119

    Article  CAS  Google Scholar 

  14. Bera S, Naskar A, Pal M, Jana S (2016) Low temperature synthesis of graphene hybridized surface defective hierarchical core–shell structured ZnO hollow microspheres with long-term stable and enhanced photoelectrochemical activity. RSC Adv 6:36058–36068

    Article  CAS  Google Scholar 

  15. Mallakpour S, Khadem E (2019) Linear and nonlinear behavior of crosslinked chitosan/N-doped graphene quantum dot nanocomposite films in cadmium cation uptake. Sci Total Environ 690:1245–1253

    Article  CAS  Google Scholar 

  16. Mallakpour S, Abdolmaleki A, Karshenas A (2017) Graphene oxide supported copper coordinated amino acids as novel heterogeneous catalysts for epoxidation of norbornene. Catal Commun 92:109–113

    Article  CAS  Google Scholar 

  17. Mallakpour S, Abdolmaleki A, Mahmoudian M, Ensafi AA, MokhtariAbarghoui M (2017) Synergetic effect of synthesized sulfonated polyaniline/quaternized graphene and its application as a high-performance supercapacitor electrode. J Mater Sci 52:9683–9695

    Article  CAS  Google Scholar 

  18. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375

    Article  CAS  Google Scholar 

  19. Bera S, Ghosh M, Pal M, Das N, Saha S, Dutta SK, Jana S (2014) Synthesis, characterization and cytotoxicity of europium incorporated ZnO–graphene nanocomposites on human MCF7 breast cancer cells. RSC Adv 4:37479–37490

    Article  CAS  Google Scholar 

  20. Hu C, Liu D, Xiao Y, Dai L (2018) Functionalization of graphene materials by heteroatom-doping for energy conversion and storage. Prog Nat Sci Mater Int 28:121–132

    Article  CAS  Google Scholar 

  21. Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim SK, Zboril R (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116:5464–5519

    Article  CAS  Google Scholar 

  22. Landau LD, Lifshitz EM (1986) Course of theoretical physics. In: Theory of elasticity, vol 7, 3rd edn. Pergamon Press, London

    Google Scholar 

  23. Gomez-Navarro C, Burghard M, Kern K (2008) Elastic properties of chemically derived single graphenesheets. Nano Lett 8:2045–2049

    Article  CAS  Google Scholar 

  24. Liu L, Zhang J, Zhao J, Liu F (2012) Mechanical properties of graphene oxides. Nanoscale 4:5910–5916

    Article  CAS  Google Scholar 

  25. Liang J, Huang Y, Oh J, Kozlov M, Sui D, Fang S, Baughman RH, Ma Y, Chen Y (2011) Electromechanical actuators based on graphene and graphene/Fe3O4 hybrid paper. Adv Funct Mater 21:3778–3784

    Article  CAS  Google Scholar 

  26. Berber S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616

    Article  CAS  Google Scholar 

  27. Nika DL, Pokatilov EP, Askerov AS, Balandin AA (2009) Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys Rev B 79:155413–155412

    Article  CAS  Google Scholar 

  28. Hu S-H, Chen Y-W, Hung W-T, Chen I-W, Chen S-Y (2012) Quatum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ. Adv Mater 24:1748–1754

    Article  CAS  Google Scholar 

  29. Naskar A, Bera S, Bhattacharya R, Saha P, Roy SS, Sen T, Jana S (2016) Synthesis, characterization and antibacterial activity of Ag incorporated ZnO–graphene nanocomposites. RSC Adv 6:88751–88761

    Article  CAS  Google Scholar 

  30. Naskar A, Khan H, Sarkar R, Kumar S, Halder D, Jana S (2018) Anti-biofilm activity and food packaging application of room temperature solution process based polyethylene glycol capped Ag-ZnO-graphene nanocomposite. Mater Sci Eng C 91:743–753

    Article  CAS  Google Scholar 

  31. Graphene CA (2020) Graphene CA’s breakthrough antimicrobial coatings passes primary independent test. Source: Graphene CA, May 31, 17:00 ET

    Google Scholar 

  32. Dongchen B, inventor (2017) A kind of feature Graphene handwashing liquid and preparation method thereof. Chinese patent CN106491375A

    Google Scholar 

  33. Sun H, Gao N, Dong K, Ren J, Qu X (2014) Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 8:6202–6210

    Article  CAS  Google Scholar 

  34. Goh K, Heising JK, Yuan Y, Karahan HE, Wei L, Zhai S, Koh J-X, Htin NM, Zhang F, Wang R, Fane AG, Dekker M, Dehghani F, Chen Y (2016) Sandwich-architectured poly(lactic acid)-graphene composite food packaging films. ACS Appl Mater Interfaces 8:9994–10004

    Article  CAS  Google Scholar 

  35. Tetra Pak. Tetra Pak explores graphene material for the food and beverage manufacturing industry, 2019. https://www.tetrapak.com/about/newsarchive/tetra-pak-explores-graphene-material. Accessed 20 July 2020

  36. Pandey K, Lahiani MH, Hicks VK, Hudson MK, Green MJ, Khodakovskaya M (2018) Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PLoS One 13:e0202274

    Article  CAS  Google Scholar 

  37. Hao Y, Ma C, Zhang Z, Song Y, Cao W, Guo J, Zhou G, Rui Y, Liu L, Xing B (2018) Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Environ Pollut 232:123–136

    Article  CAS  Google Scholar 

  38. Anjum NA, Singh N, Singh MK, Sayeed I, Duarte AC, Pereira E, Ahmad (2014) Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L). Sci Total Environ 472:834–841

    Article  CAS  Google Scholar 

  39. Sharma S, Singh S, Ganguli AK, Shanmugam V (2017) Anti-drift nano-stickers made of graphene oxide for targeted pesticide delivery and crop pest control. Carbon 115:781–790

    Article  CAS  Google Scholar 

  40. Tong Y, Shao L, Li X, Lu J, Sun H, Xiang S, Zhang Z, Wu Y, Wu X (2018) Adhesive and stimulus-responsive polydopamine-coated graphene oxide system for pesticide-loss control. J Agric Food Chem 66:2616–2622

    Article  CAS  Google Scholar 

  41. Wang X, Xie H, Wang Z, He K, Jing D (2019) Graphene oxide as a multifunctional synergist of insecticides against lepidopteran insect. Environ Sci Nano 6:75–84

    Article  CAS  Google Scholar 

  42. Liu C, Yu Z, Neff D, Zhamu A, Jang ZB (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868

    Article  CAS  Google Scholar 

  43. Xia J, Chen F, Li J, Tao N (2009) Measurement of the quantum capacitance of graphene. Nat Nanotechnol 4:505e509

    Google Scholar 

  44. Tang R, Yun Q, Lv W, He Y-B, You C, Su F, Ke L, Li B, Kang F, Yang Q-H (2016) How a very trace amount of graphene additive works for constructing an efficient conductive network in LiCoO2-based lithium-ion batteries. Carbon 103:356–362

    Article  CAS  Google Scholar 

  45. Song J, Yu Z, Gordin LM, Wang D (2016) Advanced sulfur cathode enabled by highly crumpled nitrogen- doped graphene sheets for high-energy-density lithium–sulfur batteries. Nano Lett 16:864–870

    Article  CAS  Google Scholar 

  46. Palumbo S, Silvestri L, Ansaldo A, Brescia R, Bonaccorso F, Pellegrini V (2019) Silicon-few layer graphene nanocomposite as high-capacity and high-rate anode in lithium-ion batteries. ACS Appl Energy Mater 2:1793–1802

    Article  CAS  Google Scholar 

  47. Zhang C, An S, Li W, Xu H, Hao W, Liu W, Li Z, Qiu X (2020) Hierarchical mesoporous iron fluoride and reduced graphene oxide nanocomposite as cathode materials for high-performance sodium-ion batteries. ACS Appl Mater Interfaces 12:17538–17546

    Article  CAS  Google Scholar 

  48. Goler S, Coletti C, Tozzini V, Piazza V, Mashoff T, Beltram F, Pellegrini V, Heun S (2013) Influence of graphene curvature on hydrogen adsorption: toward hydrogen storage devices. J Phys Chem C 117:11506–11513

    Article  CAS  Google Scholar 

  49. Hector LG Jr, Herbst JF (2008) Density functional theory for hydrogen storage materials: successes and opportunities. J Phys Condens Matter 20:64229

    Article  CAS  Google Scholar 

  50. Rajaura RS, Srivastava S, Sharma V, Sharma PK, Lal C, Singh M, Palsania HS, Vijay YK (2016) Role of interlayer spacing and functional group on the hydrogen storage properties of graphene oxide and reduced graphene oxide. Int J Hydrog Energy 41:9454–9461

    Article  CAS  Google Scholar 

  51. Huang H, Zhu J, Zhang W, Tiwary CS, Zhang J, Zhang X, Jiang Q, He H, Wu Y, Huang W, Ajayan PM, Yan Q (2016) Controllable codoping of nitrogen and sulfur in graphene for highly efficient Li-oxygen batteries and direct methanol fuel cells. Chem Mater 28:1737–1745

    Article  CAS  Google Scholar 

  52. Kaniyoor SR (2011) Thermally exfoliated graphene based counter electrode for low cost dye sensitized solar cells. J Appl Phys 109:124308

    Article  CAS  Google Scholar 

  53. Chen H, Luo Q, Liu T, Tai M, Lin J, Murugadoss V, Lin HJ, Wang Z, Wang GN (2020) Boosting multiple interfaces by Co-doped graphene quantum dots for high efficiency and durability perovskite solar cells. ACS Appl Mater Interfaces 12:13941–13949

    Article  CAS  Google Scholar 

  54. Xie G, Zhang K, Guo B, Liu Q, Fang L, Gong JR (2013) Graphene-based materials for hydrogen generation from light-driven water splitting. Adv Mater 25:3820–3839

    Article  CAS  Google Scholar 

  55. Li J, Zhao Z, Ma Y, Qu Y (2017) Graphene and their hybrid electrocatalysts for water splitting. ChemCatChem 9:1554–1568

    Article  CAS  Google Scholar 

  56. Yan Y, Zhai D, Liu Y, Gong J, Chen J, Zan P, Zeng Z, Li S, Huang W, Chen P (2020) van der Waals heterojunction between a bottom-up grown doped graphene quantum dot and graphene for photoelectrochemical water splitting. ACS Nano 14:1185–1195

    Article  CAS  Google Scholar 

  57. Jiang R, Baker DR, Tran DT, Li J, Leff AC, Zhang S (2020) Multimetallic FeCoNiOx nanoparticles covered with nitrogen-doped graphene layers as trifunctuonal catalysts for hydrogen evolution and oxygen reduction and evolution. ACS Appl Nano Mater 3:7119–7129

    Article  CAS  Google Scholar 

  58. Karim MR, Rahman MM, Asiri AM, Hayami S (2020) Branched alkylamine–reduced graphene oxide hybrids as a dual proton-electron conductor and organic-only water-splitting photocatalyst. ACS Appl Mater Interfaces 12:10829–10838

    Article  CAS  Google Scholar 

  59. Duggen L, Willatzen M, Wang ZL (2018) Mechanically bent graphene as an effective piezoelectric nanogenerator. J Phys Chem C 122:20581–20588

    Article  CAS  Google Scholar 

  60. Llinas JP, Fairbrother A, Barin GB, Shi W, Lee K, Wu S, Choi BY, Braganza R, Lear J, Kau N, Choi W, Chen C, Pedramrazi Z, Dumslaff T, Narita A, Feng X, Müllen K, Fischer F, Zettl A, Ruffieux P, Yablonovitch E, Crommie M, Fasel R, Bokor J (2017) Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat Commun 8:633

    Article  CAS  Google Scholar 

  61. Sadeghzadeh S, Rezapour N (2016) The mechanical design of graphene nanodiodes and nanotransistors: geometry, temperature and strain effects. RSC Adv 6:86324–86333

    Article  CAS  Google Scholar 

  62. Calogero G, Alcón I, Papior N, Jauho A-P, Brandbyge M (2019) Quantum interference engineering of nanoporous graphene for carbon nanocircuitry. J Am Chem Soc 141:13081–13088

    Article  CAS  Google Scholar 

  63. Al-Mumen H, Li W (2018) Complementary metal-SU8-graphene method for making integrated graphene nanocircuits. Micro Nano Lett 13:465–468

    Article  CAS  Google Scholar 

  64. Graphene-Info. Graphene products: introduction and market status. https://www.graphene-info.com/graphene-products. Accessed 20 July 2020

  65. Graphene-Info. https://www.graphene-info.com. Accessed 20 July 2020

  66. Bera S, Kundu S, Khan H, Jana S (2018) Polyaniline coated graphene hybridized SnO2 nanocomposite: low temperature solution synthesis, structural property and room temperature ammonia gas sensing. J Alloys Compd 744:260–270

    Article  CAS  Google Scholar 

  67. Paragraf. Paragraf partners with CERN to demonstrate unique properties of Paragraf’s new graphene hall effect sensor. https://www.paragraf.com/news/paragraf-partners-with-cern-to-demonstrate-unique-properties-of-paragrafs-new-graphene-hall-effect-sensor/. Accessed 20 July 2020

  68. Goykhman I, Sassi U, Desiatov B, Mazurski N, Milana S, Dd F, Eiden A, Khurgin J, Shappir J, Levy U, Ferrari AC (2016) On-chip integrated, silicon–graphene plasmonic schottky photodetector with high responsivity and avalanche photogain. Nano Lett 16:3005–3013

    Article  CAS  Google Scholar 

  69. Bao Q, Zhang H, Wang B, Ni Z, Haley C, Lim YX, Wang Y, Tang DY, Loh KP (2011) Broadband graphene polarizer. Nat Photonics 5:5411–5415

    Article  CAS  Google Scholar 

  70. Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12:3602–3608

    Article  CAS  Google Scholar 

  71. Sui Z, Meng Q, Zhang X, Ma R, Cao B (2012) Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. J Mater Chem 22:8767–8771

    Article  CAS  Google Scholar 

  72. Wang C, Feng C, Gao Y, Ma X, Wu Q, Wang Z (2011) Preparation of a graphene based magnetic nanocomposite for the removal of an organic dye from aqueous solution. Chem Eng J 173:92–97

    Article  CAS  Google Scholar 

  73. Bera S, Pal M, Naskar A, Jana S (2016) Hierarchically structured ZnO-graphene hollow microspheres towards effective reusable adsorbent for organic pollutant via photodegradation process. J Alloys Compd 669:177–186

    Article  CAS  Google Scholar 

  74. Liu J, Bai H, Wang Y, Liu Z, Zhang X, Sun DD (2010) Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv Funct Mater 20:4175–4181

    Article  CAS  Google Scholar 

  75. Du J, Lai X, Yang N, Zhai J, Kisailus D, Su F, Wang D, Jiang L (2011) Hierarchically ordered macro–mesoporous TiO2–graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano 5:590–596

    Article  CAS  Google Scholar 

Download references

Acknowledgment

One of the authors (HK) thankfully acknowledges CSIR, Government of India, for providing financial support to his doctoral research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunirmal Jana .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bera, S., Naskar, A., Khan, H., Jana, S. (2021). Graphene Nanocomposite Based Nanoproducts. In: Handbook of Consumer Nanoproducts. Springer, Singapore. https://doi.org/10.1007/978-981-15-6453-6_33-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6453-6_33-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6453-6

  • Online ISBN: 978-981-15-6453-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics