Skip to main content

Pilot Contamination in Massive MIMO Communications

  • Chapter
  • First Online:
5G and Beyond Wireless Systems

Abstract

Massive multiple-input multiple-output (MIMO) has been considered as one of the most promising technologies for addressing high data rates and capacity for cellular networks in the fifth generation and beyond. In massive MIMO, the base station (BS) requires complete and accurate channel state information (CSI) for realizing the benefits of massive MIMO technology. The CSI can be obtained either through feedback from users or channel reciprocity technique. The use of non-orthogonal pilot sequences, sent by the users for determining CSI, has been the main source of pilot contamination in the uplink data communications. Various pilot contamination scenarios and their possible solutions have been extensively studied in the last few years. In this chapter, recent works in the area of mitigating the effects of pilot contamination have been presented and analyzed. Some of the higher throughput resulting algorithms and their capabilities in eliminating the effects of pilot contamination have been studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adhikary A, Nam J, Ahn J, Caire G (2013) Joint spatial division and multiplexing-the large-scale array regime. IEEE Trans Inf Theory 59(10):6441–6463. https://doi.org/10.1109/TIT.2013.2269476

    Article  MathSciNet  MATH  Google Scholar 

  • Appaiah K, Ashikhmin A, Marzetta TL (2010) Pilot contamination reduction in multi-user TDD systems. In: 2010 IEEE international conference on communications, pp 1–5. https://doi.org/10.1109/ICC.2010.5502810

  • Ashikhmin A, Marzetta T (2012) Pilot contamination precoding in multi-cell large scale antenna systems. In: 2012 IEEE International symposium on information theory proceedings, pp 1137–1141. https://doi.org/10.1109/ISIT.2012.6283031

  • Boccardi F, Heath RW, Lozano A, Marzetta TL, Popovski P (2014) Five disruptive technology directions for 5g. IEEE Commun Mag 52(2):74–80. https://doi.org/10.1109/MCOM.2014.6736746

    Article  Google Scholar 

  • Chávez-Santiago R, SzydeÅ‚ko M, Kliks A, Foukalas F, Haddad Y, Nolan KE, Kelly MY, Masonta MT, Balasingham I (2015) 5G: The convergence of wireless communications. Wirel Pers Commun 83(3):1617–1642

    Google Scholar 

  • Chen J, Berry RA, Honig ML (2007) Performance of limited feedback schemes for downlink OFDMA with finite coherence time. In: 2007 IEEE international symposium on information theory, pp 2751–2755. https://doi.org/10.1109/ISIT.2007.4557186

  • Chu S, Wang X, Yang Y (2014) Adaptive scheduling in MIMO-based heterogeneous ad hoc networks. IEEE Trans Mobile Comput 13:964–978

    Article  Google Scholar 

  • Elijah O, Leow CY, Rahman TA, Nunoo S, Iliya SZ (2016) A comprehensive survey of pilot contamination in massive MIMO-5G system. IEEE Commun Surv Tutor 18(2):905–923. https://doi.org/10.1109/COMST.2015.2504379

  • Eslami M, KrzymieÅ„ WA (2009) Limited-feedback multiuser MIMO-OFDM downlink with spatial multiplexing and per-chunk/per-antenna user scheduling. Springer, Netherlands, Dordrecht, pp 269–278

    Google Scholar 

  • Eslami M, Krzymien WA (2011) Net throughput maximization of per-chunk user scheduling for MIMO-OFDM downlink. IEEE Trans Veh Technol 60:4338–4348

    Article  Google Scholar 

  • Fakhereddin M, Sharif M, Hassibi B (2009) Reduced feedback and random beamforming for OFDM MIMO broadcast channels. IEEE Trans Commun 57:3827–3835

    Article  Google Scholar 

  • Fernandes F, Ashikhmin A, Marzetta T (2012) Interference reduction on cellular networks with large antenna arrays. In: IEEE international conference on communications (ICC), pp 1–5

    Google Scholar 

  • Fernandes F, Ashikhmin A, Marzetta TL (2013) Inter-cell interference in noncooperative tdd large scale antenna systems. IEEE J Sel Areas Commun 31(2):192–201. https://doi.org/10.1109/JSAC.2013.130208

    Article  Google Scholar 

  • Gopalakrishnan B, Jindal N (2011) An analysis of pilot contamination on multi-user MIMO cellular systems with many antennas. In: 2011 IEEE 12th international workshop on signal processing advances in wireless communications, pp 381–385. https://doi.org/10.1109/SPAWC.2011.5990435

  • Hossain E, Hasan M (2015) 5G cellular: Key enabling technologies and research challenges. IEEE Instrum Measur Mag 18(3):11–21. https://doi.org/10.1109/MIM.2015.7108393

  • Hou X, Harada A, Suda H (2012) Experimental study of advanced MU-MIMO scheme with antenna calibration for the evolving LTE TDD system. In: 2012 IEEE 23rd International symposium on personal, indoor and mobile radio communications (PIMRC), pp 2443–2448. https://doi.org/10.1109/PIMRC.2012.6362767

  • Jin S, Li M, Huang Y, Du Y, Gao X (2015) Pilot scheduling schemes for multi-cell massive multiple-input multiple-output transmission. IET Commun 9(5):689–700. https://doi.org/10.1049/iet-com.2014.0842

    Article  Google Scholar 

  • Jorswieck E, Sezgin A, Ottersten B, Paulraj A (2008) Feedback reduction in uplink MIMO OFDM systems by chunk optimization. EURASIP J Adv Sig Process 1–14. https://doi.org/10.1155/2008/597072

  • Jose J, Ashikhmin A, Marzetta TL, Vishwanath S (2011) Pilot contamination and precoding in multi-cell tdd systems. IEEE Trans Wirel Commun 10(8):2640–2651. https://doi.org/10.1109/TWC.2011.060711.101155

    Article  Google Scholar 

  • Kurras M (2013) Positioning of multi-node/multi-antenna transmission technologies. https://doi.org/10.13140/RG.2.1.1888.9201

  • Larsson EG, Edfors O, Tufvesson F, Marzetta TL (2014) Massive MIMO for next generation wireless systems. IEEE Commun Mag 52(2):186–195. https://doi.org/10.1109/MCOM.2014.6736761

    Article  Google Scholar 

  • Li Q, Niu H, Papathanassiou A, Wu G (2014) 5g network capacity: Key elements and technologies. Veh Technol Mag 9:71–78 (IEEE). https://doi.org/10.1109/MVT.2013.2295070

  • Lu L, Li GY, Swindlehurst AL, Ashikhmin A, Zhang R (2014) An overview of massive mimo: benefits and challenges. IEEE J Sel Top Sig Process 8(5):742–758. https://doi.org/10.1109/JSTSP.2014.2317671

    Article  Google Scholar 

  • Marzetta TL (2006) How much training is required for multiuser mimo? In: 2006 Fortieth Asilomar conference on signals, systems and computers, pp 359–363. https://doi.org/10.1109/ACSSC.2006.354768

  • Marzetta TL (2010) Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel Commun 9(11):3590–3600. https://doi.org/10.1109/TWC.2010.092810.091092

    Article  Google Scholar 

  • Medard M (2000) The effect upon channel capacity in wireless communications of perfect and imperfect knowledge of the channel. IEEE Trans Inf Theory 46(3):933–946. https://doi.org/10.1109/18.841172

    Article  MathSciNet  MATH  Google Scholar 

  • Min M, Kim D, Kim H, Im G (2013) Opportunistic two-stage feedback and scheduling for MIMO downlink systems. IEEE Trans Commun 61:312–324

    Article  Google Scholar 

  • Mueller RR, Vehkaperae M, Cottatellucci L (2013) Blind pilot decontamination. In: WSA 2013; 17th International ITG workshop on smart antennas, pp 1–6

    Google Scholar 

  • Naeem M, Lee D (2014) A joint antenna and user selection scheme for multiuser MIMO system. Elsevier App Soft Comput 23:366–374

    Article  Google Scholar 

  • Nam J, Ahn J, Adhikary A, Caire G (2012) Joint spatial division and multiplexing: realizing massive MIMO gains with limited channel state information. In: 2012 46th Annual conference on information sciences and systems (CISS), pp 1–6. https://doi.org/10.1109/CISS.2012.6310934

  • Ngo HQ, Marzetta TL, Larsson EG (2011) Analysis of the pilot contamination effect in very large multicell multiuser MIMO systems for physical channel models. In: 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 3464–3467. https://doi.org/10.1109/ICASSP.2011.5947131

  • Ngo HQ, Larsson EG, Marzetta TL (2013) Energy and spectral efficiency of very large multiuser mimo systems. IEEE Trans Commun 61(4):1436–1449. https://doi.org/10.1109/TCOMM.2013.020413.110848

    Article  Google Scholar 

  • Osseiran A, Boccardi F, Braun V, Kusume K, Marsch P, Maternia M, Queseth O, Schellmann M, Schotten H, Taoka H, Tullberg H, Uusitalo MA, Timus B, Fallgren M (2014) Scenarios for 5g mobile and wireless communications: the vision of the metis project. IEEE Commun Mag 52(5):26–35. https://doi.org/10.1109/MCOM.2014.6815890

    Article  Google Scholar 

  • Pattanayak P, Kumar P (2015) A computationally efficient genetic algorithm for MIMO broadcast scheduling. Elsevier Appl Comput 37:545–553

    Google Scholar 

  • Pattanayak P, Kumar P (2016) Quantized feedback MIMO scheduling for heterogeneous broadcast networks. Springer Wireless Networks, pp 1–18

    Google Scholar 

  • Pattanayak P, Kumar P (2017) Quantized feedback scheduling for MIMO-OFDM broadcast networks with subcarrier clustering. Elsevier Ad Hoc Netw 65:26–37

    Article  Google Scholar 

  • Pattanayak P, Kumar P (2018) Combined user and antenna scheduling scheme for MIMO-OFDM networks. Telecommun Syst. https://doi.org/10.1007/s11235-018-0462-0

  • Pattanayak P, Kumar P (2019) An efficient scheduling scheme for MIMO-OFDM broadcast networks. AEU Int J Electron Commun 101:15–26. 10.1016/j.aeue.2019.01.017, http://www.sciencedirect.com/science/article/pii/S1434841118300359

  • Pattanayak P, Kumar P (2020) Computationally efficient scheduling schemes for multiple antenna systems using evolutionary algorithms and swarm optimization. In: Gandomi AH, Emrouznejad A, Jamshidi MM, Deb K, Rahimi I (eds) Evolutionary computation in scheduling. Wiley, chap 5, pp 105–135

    Google Scholar 

  • Pattanayak P, Kumar P (2016) SINR based limited feedback scheduling for MIMO-OFDM heterogeneous broadcast networks. In: Proceedings of the IEEE twenty second national conference on communication (NCC), Mar 2016

    Google Scholar 

  • Pattanayak P, Roy KM, Kumar P (2015) Analysis of a new MIMO broadcast channel limited feedback scheduling algorithm with user grouping. Springer Wirel Pers Commun 80:1079–1094

    Article  Google Scholar 

  • Pattanayak P, Trivedi VK, Chakraborty S, Kumar P (2017) BER performance of multi user scheduling for MIMO-STBC and MIMO-OFDM broadcast network with imperfect CSI. In: 2017 4th International conference on signal processing and integrated networks (SPIN), pp 66–70. https://doi.org/10.1109/SPIN.2017.8049917

  • Peng Xu, Wang J, Wang J (2013) Effect of pilot contamination on channel estimation in massive MIMO systems. In: 2013 International conference on wireless communications and signal processing, pp 1–6. https://doi.org/10.1109/WCSP.2013.6677112

  • Prasad N, Zhang H, Zhu H, Rangarajan S (2013) Multi-user MIMO scheduling in the fourth generation cellular uplink. IEEE Trans Wirel Commun 12(9):4272–4285. https://doi.org/10.1109/TWC.2013.072513.120734

  • Rusek F, Persson D, Lau BK, Larsson EG, Marzetta TL, Edfors O, Tufvesson F (2013) Scaling up mimo: opportunities and challenges with very large arrays. IEEE Sig Process Mag 30(1):40–60. https://doi.org/10.1109/MSP.2011.2178495

    Article  Google Scholar 

  • Stuber GL, Barry JR, McLaughlin SW, Li Y, Ingram MA, Pratt TG (2004) Broadband MIMO-OFDM wireless communications. Proc IEEE 92(2):271–294. https://doi.org/10.1109/JPROC.2003.821912

    Article  Google Scholar 

  • Svedman P, Wilson S, Cimini L, Ottersten B (2007) Opportunistic beamforming and scheduling for OFDMA systems. IEEE Trans Commun 55:941–952

    Article  Google Scholar 

  • Wang F, Bialkowski ME, Bialkowski KS (2013) Successive user scheduling schemes for a multiuser MIMO system employing generalized channel inversion. Springer Wirel Pers Commun 68:401–416

    Article  Google Scholar 

  • Wang H, Huang Y, Jin S, Yu F, Yang L (2013) Performance analysis on precoding and pilot scheduling in very large MIMO multi-cell systems. In: 2013 IEEE wireless communications and networking conference (WCNC), pp 2722–2726. https://doi.org/10.1109/WCNC.2013.6554992

  • Xu W, Cao Y, Zhao C (2013) Capacity analysis of MIMO group-broadcast channels with time-division scheduling. Springer Wirel Pers Commun 68:1331–1350

    Article  Google Scholar 

  • Yin H, Gesbert D, Filippou M, Liu Y (2013) A coordinated approach to channel estimation in large-scale multiple-antenna systems. IEEE J Sel Areas Commun 31(2):264–273. https://doi.org/10.1109/JSAC.2013.130214

    Article  Google Scholar 

  • Yue S, Liu J, Zhai C, Wang Q (2015) User pilot scheduling in massive MIMO systems. In: 2015 International conference on wireless communications signal processing (WCSP), pp 1–5. https://doi.org/10.1109/WCSP.2015.7341058

  • Zhang C, Zeng G (2014) Pilot contamination reduction scheme in massive MIMO multi-cell TDD systems. J Comput Syst Sci 10(15):6721–6729

    Google Scholar 

  • Zhou Z, Wang D (2016) Pilot scheduling based on water-filling algorithm in massive MIMO. In: 2016 6th International conference on electronics information and emergency communication (ICEIEC), pp 89–92. https://doi.org/10.1109/ICEIEC.2016.7589694

  • Zhu X, Wang Z, Dai L, Qian C (2015) Smart pilot assignment for massive MIMO. IEEE Commun Lett 19(9):1644–1647. https://doi.org/10.1109/LCOMM.2015.2409176

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabina Pattanayak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dey, A., Pattanayak, P., Singh Gurjar, D. (2021). Pilot Contamination in Massive MIMO Communications. In: Mandloi, M., Gurjar, D., Pattanayak, P., Nguyen, H. (eds) 5G and Beyond Wireless Systems. Springer Series in Wireless Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6390-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6390-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6389-8

  • Online ISBN: 978-981-15-6390-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics