Skip to main content

Intraoperative Imaging Techniques in Orthopaedic Trauma Implantology

Handbook of Orthopaedic Trauma Implantology

Abstract

This chapter describes how intraoperative imaging systems, in particular C-arm and O-arm, have influenced orthopaedic implant surgeries. Currently, these intraoperative imaging techniques permit us to assess the anatomy characteristics of structures and achieve adequate positioning of implants. They have helped the orthopaedic surgeon by simplifying surgical approaches, decreasing soft tissue dissection, and moving from open to minimally invasive surgeries. Some of the intraoperative imaging methods include plain radiographs, 2D fluoroscopy, 3D fluoroscopy, Computed Tomography (CT)–based navigation system, and the O-arm device. These imaging modalities assist the surgeon in two important ways: (1) accuracy and safety of implant positioning and (2) improvement of implants for specific orthopaedic procedures. Understanding the advantages and disadvantages of these imaging methods is crucial for improving the outcomes of orthopaedic implant surgeries. At present, these modalities have validity and utility in different segments of orthopaedic surgery, such as spinal surgery, pelvic and acetabular surgery, and foot and ankle surgery. The major contribution of intraoperative imaging has been conversion of extensive surgical approaches to minimally invasive surgeries in different orthopaedic injuries. On balance, orthopaedic implantology is permanently growing and has a need for better intraoperative imaging at the same time. For this reason, modern devices offer more benefits in accuracy and safety than older and standard imaging techniques; however, these devices are not free from disadvantages, in particular radiation exposure and cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ojodu I, Ogunsemoyin A, Hopp S, Pohlemann T, Ige O, Akinola O. C-arm fluoroscopy in orthopaedic surgical practice. Eur J Orthop Surg Traumatol. 2018;28(8):1563–8.

    Article  PubMed  Google Scholar 

  2. Tremains MR, Georgiadis GM, Dennis MJ. Radiation exposure with use of the inverted-c-arm technique in upper-extremity surgery. JBJS. 2001;83(5):674–8.

    Article  CAS  Google Scholar 

  3. Keil H, Beisemann N, Swartman B, Vetter SY, GrĂ¼tzner PA, Franke J. Intra-operative imaging in trauma surgery. EFORT. 2018;3(10):541–9.

    Article  Google Scholar 

  4. Rock C, Linsenmaier U, Brandl R, Kotsianos D, Wirth S, Kaltschmidt R, Euler E, Mutschler W, Pfeifer KJ. Presentation of a new mobile C-arm image amplifier (Iso-C-3D): initial results with three-dimensional CT-imaging. Unfallchirurg. 2001;104(9):827–33.

    Article  CAS  PubMed  Google Scholar 

  5. Sebaaly A, Riouallon G, Zaraa M, Jouffroy P. The added value of intraoperative CT scanner and screw navigation in displaced posterior wall acetabular fracture with articular impaction. Orthop Traumatol Surg Res. 2016;102(7):947–50.

    Article  CAS  PubMed  Google Scholar 

  6. Tonetti J, Boudissa M, Kerschbaumer G, Seurat O. Role of 3D intraoperative imaging in orthopedic and trauma surgery. Orthop Traumatol Surg Res. 2020;106(1):S19–25.

    Article  PubMed  Google Scholar 

  7. Falez F, Papalia M, Greco A, et al. Minimally invasive plate osteosynthesis in proximal humeral fractures: one-year results of a prospective multicenter study. Int Orthop. 2016;40(3):579–85.

    Article  PubMed  Google Scholar 

  8. Wang G, Mao Z, Zhang L, et al. Meta-analysis of locking plate versus intramedullary nail for treatment of proximal humeral fractures. J Orthop Surg Res. 2015;10:122.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liu L, Liu GW, Ma C. Comparison of the clinical safety and efficacies of percutaneous pedicle screw fixation and open pedicle screw fixation for thoracolumbar fracture: a meta-analysis. Zhongguo Gu Shang = China J Orthop Traumatol. 2016;29(3):220–7.

    Google Scholar 

  10. Gililland JM, Anderson LA, Boffeli SL, et al. A fluoroscopic grid in supine total hip arthroplasty. Improving cup position, limb length, and hip offset. J Arthroplast. 2012;27(8 suppl):111–6.

    Article  Google Scholar 

  11. Kaplan DJ, Patel JN, Liporace FA, Yoon RS. Intraoperative radiation safety in orthopaedics: a review of the ALARA (as low as reasonably achievable) principle. Patient Saf Surg. 2016;10(1):1–7.

    Article  Google Scholar 

  12. Rashid MS, Aziz S, Haydar S, Fleming SS, Datta A. Intra-operative fluoroscopic radiation exposure in orthopaedic trauma theatre. Eur J Orthop Surg Traumatol. 2018;28(1):9–14.

    Article  PubMed  Google Scholar 

  13. Holly LT. Image-guided spinal surgery. Int J Med Robot. 2006;2(1):7–15. https://doi.org/10.1002/rcs.69. PMID: 17520608.

    Article  PubMed  Google Scholar 

  14. Holly LT, Foley KT. Image guidance in spine surgery. Orthop Clin N Am. 2007;38(3):451–61.

    Article  Google Scholar 

  15. Diethelm L, Joettgen G, Lentz W, Voelkel L. An x-ray fluoroscope with image intensifier. Roentgen-Blaetter. 1956;9:215.

    Google Scholar 

  16. Riis J, Lehman RR, Perera RA, Quinn JR, Rinehart P, Tuten HR, Kuester V. A retrospective comparison of intraoperative CT and fluoroscopy evaluating radiation exposure in posterior spinal fusions for scoliosis. Patient Saf Surg. 2017;11(1):1–6.

    Article  Google Scholar 

  17. Ughwanogho E, Flynn JM. Current navigation modalities in spine surgery. Univ Pa Orthop J. 2010;20:65–9.

    Google Scholar 

  18. Gebhard F, Weidner A, Liener UC, Stockle U, Arand M. Navigation at the spine. Injury. 2004;35(Suppl 1):S-A35–45.

    Article  Google Scholar 

  19. Schnetzke M, Vetter SY, Beisemann N, et al. Management of syndesmotic injuries: what is the evidence? World J Orthop. 2016;7(11):718.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Franke J, von Recum J, Suda AJ, GrĂ¼tzner PA, Wendl K. Intraoperative three-dimensional imaging in the treatment of acute unstable syndesmotic injuries. J Bone Joint Surg Am. 2012;94-A(15):1386–90.

    Article  Google Scholar 

  21. Richter PH, Gebhard F, Salameh M, Schuetze K, Kraus M. Feasibility of laser-guided percutaneous pedicle screw placement in the lumbar spine using a hybrid-OR. Int J CARS. 2017;12(5):873–9.

    Article  CAS  Google Scholar 

  22. Foley KT, Simon DA, Rampersaud YR. Virtual fluoroscopy: computer-assisted fluoroscopic navigation. Spine (Phila Pa 1976). 2001;26(4):347–51.

    Article  CAS  PubMed  Google Scholar 

  23. Holly LT, Foley KT. Three-dimensional fluoroscopy-guided percutaneous thoracolumbar pedicle screw placement. Technical note. J Neurosurg. 2003;99(3 Suppl):324–9.

    PubMed  Google Scholar 

  24. Von Recum J, Wendl K, Vock B, GrĂ¼tzner PA, Franke J. Intraoperative 3D C-arm imaging. State of the art. Unfallchirurg. 2012;115(3):196–201.

    Article  Google Scholar 

  25. Richter M. Intraoperative 3D-imaging in foot and ankle trauma-clinical examples and study results. FuĂŸ Sprunggelenk. 2016;14(1):23–31.

    Article  Google Scholar 

  26. Gwak HC, Kim JG, Kim JH, Roh SM. Intraoperative three-dimensional imaging in calcaneal fracture treatment. Clin Orthop Surg. 2015;7(4):483–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kraus MD, Krischak G, Keppler P, Gebhard FT, Schuetz UH. Can computer-assisted surgery reduce the effective dose for spinal fusion and sacroiliac screw insertion? Clin Orthop Relat Res. 2010;468(9):2419–29.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Harada GK, Siyaji ZK, Younis S, Louie PK, Samartzis D, An HS. Imaging in spine surgery: current concepts and future directions. Spine Surg Relat Res. 2019;4(2):99–110. https://doi.org/10.22603/ssrr.2020-0011.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Papadopoulos EC, Girardi FP, Sama A, Sandhu HS, Cammisa FP Jr. Accuracy of single-time, multilevel registration in image-guided spinal surgery. Spine J. 2005;5(3):263–7.

    Article  PubMed  Google Scholar 

  30. Takahashi J, Hirabayashi H, Hashidate H, Ogihara N, Kato H. Accuracy of multilevel registration in image-guided pedicle screw insertion for adolescent idiopathic scoliosis. Spine. 2010;35(3):347–52.

    Article  PubMed  Google Scholar 

  31. Davidovitch RI, Weil Y, Karia R, Forman J, Looze C, Liebergall M, Egol K. Intraoperative syndesmotic reduction: three-dimensional versus standard fluoroscopic imaging. JBJS. 2013;95(20):1838–43.

    Article  Google Scholar 

  32. Lin EL, Park DK, Whang PG, An HS, Phillips FM. O-Arm surgical imaging system. Semin Spine Surg. 2008;20(3):209–13. WB Saunders

    Article  Google Scholar 

  33. Costa F, Tosi G, Attuati L, Cardia A, Ortolina A, Grimaldi M, Galbusera F, Fornari M. Radiation exposure in spine surgery using an image-guided system based on intraoperative cone-beam computed tomography: analysis of 107 consecutive cases. J Neurosurg Spine. 2016;25(5):654–9.

    Article  PubMed  Google Scholar 

  34. Prod’homme M, Sans-Merce M, Pitteloud N, Damet J, Lascombes P. Intraoperative 2D C-arm and 3D O-arm in children: a comparative phantom study. J Child Orthop. 2018;12(5):550–7.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Verma SK, Singh PK, Agrawal D, Sinha S, Gupta D, Satyarthee GD, Sharma BS. O-arm with navigation versus C-arm: a review of screw placement over 3 years at a major trauma center. Br J Neurosurg. 2016;30(6):658–61.

    Article  CAS  PubMed  Google Scholar 

  36. Ghisla S, Napoli F, Lehoczky G, Delcogliano M, Habib N, Arigoni M, Filardo G, Candrian C. Posterior pelvic ring fractures: intraoperative 3D-CT guided navigation for accurate positioning of sacro-iliac screws. Orthop Traumatol Surg Res. 2018;104(7):1063–7.

    Article  PubMed  Google Scholar 

  37. Laudato PA, Pierzchala K, Schizas C. Pedicle screw insertion accuracy using O-arm, robotic guidance, or freehand technique: a comparative study. Spine (Phila Pa 1976). 2018;43(6):E373–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Samundeeswari .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Castro Obeso, J.R., Samundeeswari, S., Saseendar, S. (2023). Intraoperative Imaging Techniques in Orthopaedic Trauma Implantology. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6278-5_44-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6278-5_44-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6278-5

  • Online ISBN: 978-981-15-6278-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Intraoperative Imaging Techniques in Orthopaedic Trauma Implantology
    Published:
    14 April 2023

    DOI: https://doi.org/10.1007/978-981-15-6278-5_44-2

  2. Original

    Intraoperative Imaging Techniques in Orthopaedic Trauma Implantology
    Published:
    16 February 2023

    DOI: https://doi.org/10.1007/978-981-15-6278-5_44-1