Skip to main content

Bioinformatics in Plant Pathology

  • Chapter
  • First Online:
Emerging Trends in Plant Pathology

Abstract

Unprecedented success and availability of enormous next-generation sequencing data of host-pathogen in the public domain give us opportunities to understand the disease system biologically. The availability of genome data of host-pathogen in popular depository systems provides strong and proper help to retrieve, annotate, analyze and identify the functional elements for characterization at gene and genome levels for application development. The primary goal of bioinformatics is to enhance the understanding of biological processes using sequence pattern recognition, biological data mining, machine learning algorithms for biological datasets and visualization of biological data and molecules. Significant research efforts in the field include databases, software and tools development, genome analysis, anthropology, forensic genetics, sequence alignment, gene finding, genome assembly, drug design, drug discovery, protein structure alignment, protein structure prediction, gene expression analysis, microarray data analysis, protein–protein interactions and genome-wide association studies. Scientists, Paulien Hogeweg and Ben Hesper coined the term in 1970 to refer to the study of biological information processes in biotic systems. Margaret Oakley Dayhoff, the mother and father of bioinformatics compiled one of the first protein sequence databases. Elvin A. Kabat, the scientist who pioneered biological sequence analysis, developed the approach in 1970. Bioinformatics tools, techniques and databases can be used to identify potential genes, and target protein for host–pathogen interaction, drug designing and discovery and harvesting biological information from the plant genomes and their genes. Bioinformatics applications can be very beneficial in the improvement of crops and helpful for the development of designer crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alioto T (2012) Gene prediction. Methods Mol Biol 855:175–201

    Article  CAS  PubMed  Google Scholar 

  • Aljanabi S (2001) Genomics and plant breeding. Biotechnol Annu Rev 7:195–238

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Batley J, Edwards D (2016) The application of genomics and bioinformatics to accelerate crop improvement in a changing climate. Curr Opin Plant Biol 30:78–81

    Article  PubMed  Google Scholar 

  • Bawono P, Dijkstra M, Pirovano W, Feenstra A, Abeln S, Heringa J (2017) Multiple sequence alignment. Methods Mol Biol 1525:167–189

    Article  CAS  PubMed  Google Scholar 

  • Berman HM (2008) The protein data bank: a historical perspective. Acta Crystallogr A 64(Pt 1):88–95

    Article  CAS  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger ME, Arsova B, Usadel B (2018) Plant genome and transcriptome annotations: from misconceptions to simple solutions. Brief Bioinform 19:437–449

    CAS  PubMed  Google Scholar 

  • Bolser D, Staines DM, Pritchard E, Kersey P (2016) Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data. Methods Mol Biol 1374:115–140

    Article  CAS  PubMed  Google Scholar 

  • Bolser DM, Staines DM, Perry E, Kersey PJ (2017) Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomic data. Methods Mol Biol 1533:1–31

    Article  CAS  PubMed  Google Scholar 

  • Cavasotto CN, Phatak SS (2009) Homology modeling in drug discovery: current trends and applications. Drug Discov Today 14:676–683

    Article  CAS  PubMed  Google Scholar 

  • Chen YP, Chen F (2008) Using bioinformatics techniques for gene identification in drug discovery and development. Curr Drug Metab 9:567–573

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Anderson JB, DeWeese-Scott C, Fedorova ND, Geer LY, He S, Hurwitz DI, Jackson JD, Jacobs AR, Lanczycki CJ, Liebert CA, Liu C, Madej T, Marchler-Bauer A, Marchler GH, Mazumder R, Nikolskaya AN, Rao BS, Panchenko AR, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Vasudevan S, Wang Y, Yamashita RA, Yin JJ, Bryant SH (2003) MMDB: Entrez’s 3D-structure database. Nucleic Acids Res 31:474–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough E, Barrett T (2016) The gene expression omnibus database. Methods Mol Biol 1418:93–110

    Article  PubMed  PubMed Central  Google Scholar 

  • De Las Rivas J, Fontanillo C (2010) Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol 6(6):e1000807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Ruyck J, Brysbaert G, Blossey R, Lensink MF (2016) Molecular docking as a popular tool in drug design, an in silico travel. Adv Appl Bioinforma Chem 9:1–11

    Google Scholar 

  • Demuth JP, Hahn MW (2009) The life and death of gene families. BioEssays 31:29–39

    Article  PubMed  Google Scholar 

  • Dong Q, Schlueter SD, Brendel V (2004) PlantGDB, plant genome database and analysis tools. Nucleic Acids Res 32(Database issue):D354–D359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duvick J, Fu A, Muppirala U, Sabharwal M, Wilkerson MD, Lawrence CJ, Lushbough C, Brendel V (2008) PlantGDB: a resource for comparative plant genomics. Nucleic Acids Res 36(Database issue):D959–D965

    CAS  PubMed  Google Scholar 

  • Eisenberg D, Lüthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404

    Article  CAS  PubMed  Google Scholar 

  • Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD (2015) Molecular docking and structure-based drug design strategies. Molecules 20:13384–13421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • França TC (2015) Homology modeling: an important tool for the drug discovery. J Biomol Struct Dyn 33(8):1780–1793

    Article  PubMed  CAS  Google Scholar 

  • Galperin MY, Fernández-Suárez XM (2012) The 2012 nucleic acids research database issue and the online molecular biology database collection. Nucleic Acids Res 40(Database issue):D1–D8

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt C, Schmidt R, Schneider K (2005) Plant genome analysis: the state of the art. Int Rev Cytol 247:223–284

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves JP, Madeira SC, Oliveira AL (2009) BiGGEsTS: integrated environment for biclustering analysis of time series gene expression data. BMC Res Notes 2:124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 9:1–5

    Article  CAS  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(Database issue):D1178–D1186

    Article  CAS  PubMed  Google Scholar 

  • Gschwend DA, Good AC, Kuntz ID (1996) Molecular docking towards drug discovery. J Mol Recognit 9:175–186

    Article  CAS  PubMed  Google Scholar 

  • Guedes IA, de Magalhães CS, Dardenne LE (2014) Receptor-ligand molecular docking. Biophys Rev 6:75–87

    Article  CAS  PubMed  Google Scholar 

  • Hardison RC (2003) Comparative genomics. PLoS Biol 1:E58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Higgins DG, Thompson JD, Gibson TJ (1996) Using CLUSTAL for multiple sequence alignments. Methods Enzymol 266:383–402

    Article  CAS  PubMed  Google Scholar 

  • Jones G, Willett P (1995) Docking small-molecule ligands into active sites. Curr Opin Biotechnol 6:652–656

    Article  CAS  PubMed  Google Scholar 

  • King GJ (2004) Bioinformatics: harvesting information for plant and crop science. Semin Cell Dev Biol 15:721–731

    Article  CAS  PubMed  Google Scholar 

  • Kodama Y, Mashima J, Kaminuma E, Gojobori T, Ogasawara O, Takagi T, Okubo K, Nakamura Y (2012) The DNA Data Bank of Japan launches a new resource, the DDBJ Omics Archive of functional genomics experiments. Nucleic Acids Res 40(Database issue):D38–D42

    Article  CAS  PubMed  Google Scholar 

  • Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12:255–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krieger E, Vriend G (2014) YASARA view – molecular graphics for all devices – from smartphones to workstations. Bioinformatics 30:2981–2982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krieger E, Nabuurs SB, Vriend G (2003) Homology modeling. Methods Biochem Anal 44:509–523

    CAS  PubMed  Google Scholar 

  • Kroemer RT (2007) Structure-based drug design: docking and scoring. Curr Protein Pept Sci 8:312–328

    Article  CAS  PubMed  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuntal BK, Aparoy P, Reddanna P (2010) Easy modeller: a graphical interface to MODELLER. BMC Res Notes 3:226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laskowski RA, Hutchinson EG, Michie AD, Wallace AC, Jones ML, Thornton JM (1997) PDBsum: a web-based database of summaries and analyses of all PDB structures. Trends Biochem Sci 22(12):488–490. PubMed PMID: 9433130

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM (2017) PDBsum: structural summaries of PDB entries. Protein Sci 27:129–134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50:437–450

    Article  CAS  PubMed  Google Scholar 

  • Lybrand TP (1995) Ligand-protein docking and rational drug design. Curr Opin Struct Biol 5:224–228

    Article  CAS  PubMed  Google Scholar 

  • Lyons E, Freeling M (2008) How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant J 53:661–673

    Article  CAS  PubMed  Google Scholar 

  • Macindoe G, Mavridis L, Venkatraman V, Devignes MD, Ritchie DW (2010) HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Res 38(Web Server issue):W445–W449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47(W1):W636–W641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:D200–D203

    Article  CAS  PubMed  Google Scholar 

  • Martinez M (2013) From plant genomes to protein families: computational tools. Comput Struct Biotechnol J 8:e201307001

    Article  PubMed  PubMed Central  Google Scholar 

  • McClure MA, Vasi TK, Fitch WM (1994) Comparative analysis of multiple protein-sequence alignment methods. Mol Biol Evol 11:571–592

    CAS  PubMed  Google Scholar 

  • Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7:146–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metsalu T, Vilo J (2015) ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res 43:W566–W570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang HY, El-Gebali S, Fraser MI, Gough J, Haft DR, Huang H, Letunic I, Lopez R, Luciani A, Madeira F, Marchler-Bauer A, Mi H, Natale DA, Necci M, Nuka G, Orengo C, Pandurangan AP, Paysan-Lafosse T, Pesseat S, Potter SC, Qureshi MA, Rawlings ND, Redaschi N, Richardson LJ, Rivoire C, Salazar GA, Sangrador-Vegas A, Sigrist CJA, Sillitoe I, Sutton GG, Thanki N, Thomas PD, Tosatto SCE, Yong SY, Finn RD (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47:D351–D360

    Article  CAS  PubMed  Google Scholar 

  • Mochida K, Shinozaki K (2010) Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 51:497–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moody G (2004) Digital code of life: how bioinformatics is revolutionizing science, medicine, and business. Wiley, Hoboken. ISBN 978-0-471-32788-2

    Google Scholar 

  • Morris GM, Lim-Wilby M (2008) Molecular docking. Methods Mol Biol 443:365–382

    Article  CAS  PubMed  Google Scholar 

  • Mount DW (2007) Using the basic local alignment search tool (BLAST). CSH Protoc 2007:pdb.top17

    PubMed  Google Scholar 

  • NCBI Resource Coordinators (2016) Database resources of the national center for biotechnology information. Nucleic Acids Res 44:D7–D19

    Article  CAS  Google Scholar 

  • Ong Q, Nguyen P, Thao NP, Le L (2016) Bioinformatics approach in plant genomic research. Curr Genomics 17:368–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9:91–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirovano W, Heringa J (2008) Multiple sequence alignment. Methods Mol Biol 452:143–161. https://doi.org/10.1007/978-1-60327-159-2_7. Review. PubMed PMID: 18566763

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A (2012) FigTree v1. 4.0. University of Oxford, Oxford. http://tree.bio.ed.ac.uk/software/figtree/

  • Sayers EW, Agarwala R, Bolton EE, Brister JR, Canese K, Clark K, Connor R, Fiorini N, Funk K, Hefferon T, Holmes JB, Kim S, Kimchi A, Kitts PA, Lathrop S, Lu Z, Madden TL, Marchler-Bauer A, Phan L, Schneider VA, Schoch CL, Pruitt KD, Ostell J (2019) Database resources of the national center for biotechnology information. Nucleic Acids Res 47:D23–D28

    Article  CAS  PubMed  Google Scholar 

  • Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33(Web Server issue):W363–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo J, Gordish-Dressman H, Hoffman EP (2006) An interactive power analysis tool for microarray hypothesis testing and generation. Bioinformatics 22(7):808–814

    Article  CAS  PubMed  Google Scholar 

  • Sievers F, Higgins DG (2014) Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol Biol 1079:105–116

    Article  CAS  PubMed  Google Scholar 

  • Sigrist CJ, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M, Bairoch A, Bucher P (2002) PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform 3(3):265–274

    Article  CAS  PubMed  Google Scholar 

  • Sousa SF, Fernandes PA, Ramos MJ (2006) Protein-ligand docking: current status and future challenges. Proteins 65:15–26

    Article  CAS  PubMed  Google Scholar 

  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics. Chapter 2:Unit 2.3

    Google Scholar 

  • Tippmann HF (2004) Analysis for free: comparing programs for sequence analysis. Brief Bioinform 5(1):82–87

    Article  CAS  PubMed  Google Scholar 

  • Trosset JY, Cavé C (2019) In silico drug-target profiling. Methods Mol Biol 1953:89–103

    Article  CAS  PubMed  Google Scholar 

  • UniProt Consortium T (2018) UniProt: the universal protein knowledgebase. Nucleic Acids Res 46:2699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Z, Chen Y, Li Y (2004) A brief review of computational gene prediction methods. Genomics Proteomics Bioinformatics 2:216–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler DL, Smith-White B, Chetvernin V, Resenchuk S, Dombrowski SM, Pechous SW, Tatusova T, Ostell J (2005) Plant genome resources at the national center for biotechnology information. Plant Physiol 138:1280–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang Z (2006) Advances in homology protein structure modeling. Curr Protein Pept Sci 7:217–227. Review. PubMed PMID: 16787261; PubMed Central PMCID: PMC1839925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, Xu Y, Uberbacher EC (2000) Computational tools for protein modeling. Curr Protein Pept Sci 1:1–21

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Caflisch A (2015) Molecular dynamics in drug design. Eur J Med Chem 91:4–14

    Article  CAS  PubMed  Google Scholar 

URLs

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, A., Singh, S., Singh, V.K. (2021). Bioinformatics in Plant Pathology. In: Singh, K.P., Jahagirdar, S., Sarma, B.K. (eds) Emerging Trends in Plant Pathology . Springer, Singapore. https://doi.org/10.1007/978-981-15-6275-4_32

Download citation

Publish with us

Policies and ethics