Skip to main content

Emerging Plant Diseases Under Changing Climate Scenario

  • Chapter
  • First Online:
Emerging Trends in Plant Pathology

Abstract

The effect of changing climate on plant diseases has been a point of debate since long time. This changing climate may cause imbalance in the ecosystem and directly contribute to the disease development in various crops. Different climatic conditions, e.g., change in sunlight including UV light, temperature, air, rainfall, soil nutrients, carbon dioxide, ozone gas, greenhouse gas emission, and other factors, are affecting the interaction of host plant and pathogens, e.g., fungi, bacteria, virus, nematode, viroid, phytoplasma, and spiroplasma, which are opening doors for the emergence of new diseases and pathogens worldwide. These newly emerged diseases may turn out to be an epidemic under favorable conditions if not regulated wisely as changing climatic conditions are providing favorable environment to the spread and establishment of novel pathogens into new and non-native areas. By keeping all these points into consideration, this chapter focuses on correlation between climatic conditions and disease development and impact of changing climatic conditions on disease development and emergence of new pathogens around the globe. It also puts emphasis on factors responsible for emergence of novel pathogens as well as their possible management tactic to regulate their adverse outcome on agriculture and human to sustain food security in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier, New York, p 922

    Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EHT, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Article  Google Scholar 

  • Andrivon D (1996) The origin of Phytophthora infestans populations present in Europe in the 1840s: a critical review of historical and scientific evidence. Plant Path 45:1027–1035

    Article  Google Scholar 

  • Carnicer J, Coll M, Ninyerola M, Pons X, Sánchez G, Peñuelas J (2011) Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. PNAS 108:1474–1478

    Article  CAS  Google Scholar 

  • Chakraborty S, Datta S (2003) How will plant pathogens adapt to host plant resistance at elevated CO2 under a changing climate. New Pathologist 159:733–742

    Article  CAS  Google Scholar 

  • Chakraborty S, Murray GM, Magarey PA, Yonow T, O’Brien R, Croft BJ, Barbetti MJ, Sivasithamparam K, Old KM, Dudzinski MJ, Sutherst RW, Penrose LJ, Archer C, Emmentt RW (1998) Potential impact of climate change on plant diseases of economic significance to Australia. Australas Plant Pathol 27:15–35

    Article  Google Scholar 

  • Chakraborty S, Pangga IB, Lupton J, Hart L, Room PM, Yates D (2000) Production and dispersal of Colletotrichum gloeosporioides spores on Stylosanthes scabra under elevated CO2. Environ Pollut 108:381–387

    Article  CAS  Google Scholar 

  • Das T, Majumdar M, Devi RK, Rajesh T (2016) Climate change impacts on plant diseases. SAARC J Agric 14L:200–209

    Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2003) Infectious disease and amphibian population declines. Divers Distrib 9:141–150

    Article  Google Scholar 

  • Debela C, Tola M (2018) Effect of elevated CO2 and temperature on crop-disease interactions under rapid climate change. Int J Environ Sci Nat Resour 13(1):555851

    Google Scholar 

  • Deberdt P, Guyot J, Coranson-Beaudu R, Launay J, Noreskal M, Rivière P, Vigné F, Laplace D, Lebreton L, Wicker E (2014) Diversity of ralstonia solanacearum in French Guiana expands knowledge of the “emerging ecotype”. Phytopathology 104:586–596

    Article  CAS  Google Scholar 

  • Doehlemann G, Van Der Linde K, Abmann D, Schwammbach D, Mohanty A, Kahmann R (2009) Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog 5:e1000290

    Article  Google Scholar 

  • Elad Y, Pertot I (2014) Climate change impacts on plant pathogens and plant diseases. J Crop Improv 28:99–139

    Article  CAS  Google Scholar 

  • EPPO (European and Mediterranean Plant Protection Organization) (2016) PQR-EPPO database on quarantine pest. Available from: http://www.eppo.int/DATABASES/pqr/pqr.htm

  • Forbes G (2004) Global overview of late blight. In: Lizarraga C (ed) Proceedings regional workshop potato late blight East and Southeast Asia and the Pacific, Yezin, pp 3–10

    Google Scholar 

  • Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE (2006) Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol 44:489–509

    Article  CAS  Google Scholar 

  • Gaston MA (1988) Enterobacter: an emerging nosocomial pathogen. J Hosp Infect 11:197–208

    Article  CAS  Google Scholar 

  • Ghini R, Hamada E, Bettiol W (2008) Climate change and plant disease. Sci Agric 65:98–107

    Article  Google Scholar 

  • Gregory PJ, Ingram JS, Brklacich M (2005) Climate change and food security. Philos Trans R Soc Lond Ser B Biol Sci 360(1463):2139–2148

    Article  CAS  Google Scholar 

  • Grulke NE (2011) The nexus of host and pathogen phenology: understanding the disease triangle with climate change. New Phytol 189:8–11

    Article  Google Scholar 

  • Guetsky R, Kobiler I, Wang X, Perlman N, Gollop N, Quezada GA, Hadar I, Prusky D (2005) Metabolism of the flavonoid epicatechin by laccase of colletotrichum gloeosporioides and its effect on pathogenicity on avocado fruits. Phytopathology 95(11):1341–1348

    Article  CAS  Google Scholar 

  • Hernandez MR, Costa HS, Dumenyo CK, and Cooksey DA (2006) Differentiation of strains of Xylella fastidiosa infecting grape, almonds, and oleander using a multiprimer PCR assay. Plant Dis 90:1382–1388

    Google Scholar 

  • Hibberd JM, Whitebread R, Faraar JF (1996) Effect of 700 μmol mol¯1 CO2 and infection with powdery mildew on the growth and carbon partitioning of barley. New Phytol 134:309–315

    Article  Google Scholar 

  • Hopkins DL, Purcell AH (2002) Xylella fastidiosa: cause of pierce’s disease of grapevine and other emergent disease. Plant Dis 86(10):1056–1066

    Article  CAS  Google Scholar 

  • Kudela V (2009) Potential impact of climate change on geographic distribution of plant pathogenic bacteria in Central Europe. Plant Prot Sci 45:S27–S32

    Article  Google Scholar 

  • Ladányi M, and Horvath L (2010) A REVIEW OF THE POTENTIAL CLIMATE CHANGE IMPACT ON INSECT POPULATIONS – GENERAL AND AGRICULTURAL ASPECTS. Applied Ecology and Environmental Research 8 (2):143–151

    Google Scholar 

  • López RY, Pacheco IT, GonzÃlez RGG, Zul MHI, Carranza JAQ, and GarcÚa ER (2012) The effect of climate change on plant diseases. AFRICAN JOURNAL OF BIOTECHNOLOGY, 11(10), 2417–2428

    Google Scholar 

  • Masyahit M, Sijam K, Awang Y, Ghazali M (2009) First report on bacterial soft rot disease on dragon fruit (Hylocereus spp.) caused by Enterobacter cloacae in peninsular Malaysia. Int J Agric Biol 11:659–666

    Google Scholar 

  • Mina U, Sinha P (2008) Effects of climate change on plant pathogens. Environ Forensic 14(4):6–10

    Google Scholar 

  • Mnari-Hattab M, Zammouri S, Belkadhi MS, Doña DB, Nahia EB, Hajlaoui MR (2015) First report of Tomato leaf curl New Delhi virus infecting cucurbits in Tunisia. New Dis Rep 31:21

    Article  Google Scholar 

  • Moricca S, Linaldeddu BT, Ginetti B, Scanu B, Franceschini A, Ragazzi A (2016) Endemic and emerging pathogens threatening cork oak trees: management options for conserving a unique forest ecosystem. Plant Dis 100(11):2184–2193

    Article  Google Scholar 

  • Moricca S, Ragazzi A (2008) Fungal endophytes in Mediterranean oak forests: a lesson from Discula quercina. Phytopathology 98:380–386

    Article  CAS  Google Scholar 

  • Nazir N, Bhat K, Shah TA, Badri Z, Bhat F, Wani T et al (2018) Effect of climate change on plant diseases. Int J Curr Microbiol App Sci 7(6):250–256

    Article  Google Scholar 

  • Nishijima KA, Wall MM, Siderhurst MS (2007) Demonstrating pathogenicity of Enterobacter cloacae on macadamia and identifying associated volatiles of gray kernel of macadamia in Hawaii. Plant Dis 91:1221–1228

    Article  CAS  Google Scholar 

  • Nurhayati. (2013). The Effects of Climate Change on Plant Diseases and Possible Means for Their Mitigation. Paper presented at the Proceeding international seminar on climate change and food security, Palembang.

    Google Scholar 

  • Oliver RP, Solomon PS (2008) Recent fungal diseases of crop plants: is lateral gene transfer a common theme. Mol Plant-Microbe Interact 21:287–293

    Article  CAS  Google Scholar 

  • Padmanabhan SY (1973) The great Bengal famine. Annu Rev Phytopathol 11:11–24

    Article  Google Scholar 

  • Pautasso M, Döring T, Garbelotto M, Pellis L, Jeger M (2012) Impacts of climate change on plant disease – opinions and trend. Eur J Plant Pathol:1–18

    Google Scholar 

  • San Ambrosio MIF, Fernández AOA (2014) Sintomatología del virus del rizado de tomate de Nueva Delhi (Tomato leaf curl New Delhi virus, ToLCNDV) en los cultivos españoles. Phytoma España: La Revista Profes Sanidad Veg 257:36–41

    Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481

    Article  CAS  Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116

    Article  CAS  Google Scholar 

  • Tiedemann A, Firsching KH (2000) Interactive effects of elevated ozone and carbon dioxide on growth and yield of leaf rust-infected versus non-infected wheat. Environ Pollut 108:357–363

    Article  CAS  Google Scholar 

  • Ullstrup AJ (1972) The impact of the southern corn leaf blight epidemics of 1970–71. Annu Rev Phytopathol 10:37–50

    Article  Google Scholar 

  • Van den Berg RWA, Claahsen HL, Niessen M, Muytjens H, Liem K, Voss A (2000) Enterobacter cloacae outbreak in the NICU related to disinfected thermometers. J Hosp Infect 45:29–34

    Article  Google Scholar 

  • Wang H, Meng B, Han H (2010) The discussion on mulberry as a green afforestation tree species. North Sericulture 31(1):45–47

    Google Scholar 

  • Ziska HL, Bradley AB, Wallace DR, Bargeron TC, LaForest HJ, Choudhury AR et al (2018) Climate Change, Carbon Dioxide, and Pest Biology, Managing the Future: Coffee as a Case Study. Agronomy 8(152):1–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Priyadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Priyadi, M., Upadhyay, P. (2021). Emerging Plant Diseases Under Changing Climate Scenario. In: Singh, K.P., Jahagirdar, S., Sarma, B.K. (eds) Emerging Trends in Plant Pathology . Springer, Singapore. https://doi.org/10.1007/978-981-15-6275-4_2

Download citation

Publish with us

Policies and ethics