Skip to main content

Powder Metallurgy Fabrication, Characterization and Wear Assessment of Al-BN-TiO2 Composites

  • Conference paper
  • First Online:
Advances in Materials and Manufacturing Engineering

Abstract

The tribological characteristics of aluminium metal matrix with different weight fraction of titanium dioxide nanopowder reinforcements along with 0.5 wt% of boron nitride nanopowder reinforcement were studied. The various weight fractions of reinforcements are 0.3 wt% TiO2 + 0.5 wt% BN, 0.5 wt% TiO2 + 0.5 wt% BN, and 0.7 wt% TiO2 + 0.5 wt% BN are added with pure aluminium. In each composition, specimens are prepared and tested on pin-on-disc tribometer for three different load and sliding velocity conditions with constant distance. The study suggests that 0.3 wt% TiO2 + 0.5 wt% of BN with aluminium provides better specific wear rate and coefficient of friction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaushik NC, Rao RN (2016) Effect of grit size on two body abrasive wear of Al 6082 hybrid composites produced by stir casting method. Tribol Int 102:52–60

    Article  CAS  Google Scholar 

  2. Prasad Reddy A, Vamsi Krishna P, Narasimha Rao R, Murthy NV (2017) Silicon carbide reinforced Aluminium metal matrix Nano composites-a review. Mater Today Proc 4:3959–3971

    Article  Google Scholar 

  3. Iredale R Manufacturing composites for automotive applications. Univ Bristol 10–11.

    Google Scholar 

  4. Surappa MK (2003) Aluminum matrix composites: challenges and opportunities. Sadhana 28: 319–334

    Google Scholar 

  5. Rohatgi P, Schultz B (2007) Light weight metal matrix composites- stretching the boundaries of metals. Mater Matters 2:16–19

    CAS  Google Scholar 

  6. Reddy AP, Krishna PV, Rao RN (2017) Al/SiC NP and Al/SiC NP/X nanocomposites fabrication and properties: a review. Proc Inst Mech Eng Part N J Nanomater Nanoeng Nanosyst 231:155–172

    CAS  Google Scholar 

  7. Soorya Prakash K, Gopal PM, Kavimani V (2017) Effect of rock dust, cenosphere and E-waste glass addition on mechanical, wear and machinability behaviour of Al 6061 hybrid composites. Indian J Eng Mater Sci 24:270–282

    Google Scholar 

  8. Al-Qutub AM, Khalil A, Saheb N, Hakeem AS (2013) Wear and friction behavior of Al6061 alloy reinforced with carbon nanotubes. Wear 297:752–761

    Article  CAS  Google Scholar 

  9. Fallahdoost H, Nouri A, Azimi A (2016) Dual functions of TiC nanoparticles on tribological performance of Al/graphite composites. J Phys Chem Solids 93:137–144

    Article  CAS  Google Scholar 

  10. Gupta P, Kumar D, Parkash O, Jha AK, Sadasivuni KK (2018) Dependence of wear behavior on sintering mechanism for Ironalumina metal matrix nanocomposites. Mater Chem Phys 220:441–448

    Article  CAS  Google Scholar 

  11. Soorya Prakash K, Sathiya Moorthy R, Gopal PM, Kavimani V (2016) Effect of reinforcement, compact pressure and hard ceramic coating on aluminium rock dust composite performance. Int J Refract Metal Hard Mater 54:223–229

    Google Scholar 

  12. Karbalaei Akbari M, Baharvandi HR, Mirzaee O (2013) Investigation of particle size and reinforcement content on mechanical properties and fracture behavior of A356-Al O composite fabricated by vortex method. J Compos Mater 48(27):3315–3330

    Google Scholar 

  13. Kumar M, Megalingam Murugan A, Baskaran V, Hanumanth Ramji KS (2015) Effect of sliding distance on dry sliding tribological behaviour of Aluminium Hybrid Metal Matrix Composite (AlHMMC): An alternate for automobile brake rotor – A Grey Relational approach. Proceedings of the Institution of Mechanical Engineers, Part J: J Eng Tribol 230 (4):402–415

    Google Scholar 

  14. Aruri D, Adepu K, Adepu K, Bazavada K (2013) Wear and mechanical properties of 6061–T6 aluminum alloy surface hybrid composites [(SiC+Gr) and (SiC+Al2O3)] fabricated by friction stir processing. J Mater Res Tech 2(4):362–369

    Google Scholar 

  15. Ravindran P, Manisekar K, Rathika P, Narayanasamy P (2013) Tribological properties of powder metallurgy – Processed aluminium self lubricating hybrid composites with SiC additions. Mater Des 45:561–570

    Google Scholar 

  16. Hekner B, Myalski J, Valle N, Botor-Probierz A, Sopicka-Lizer M, Wieczorek J (2017) Friction and wear behavior of Al-SiC(n) hybrid composites with carbon addition. Compos Part B Eng 108:291–300

    Article  CAS  Google Scholar 

  17. Hariharasakthisudhan P, Jose S, Manisekar K (2018) Dry sliding wear behaviour of single and dual ceramic reinforcements premixed with Al powder in AA6061 matrix. J Mater Res Technol: 1–9

    Google Scholar 

  18. Leng J, Wu G, ZhouQ et al (2008) Mechanical properties of SiC/gr/Al composites fabricated by squeeze casting technology. Scr Mater 59: 619–622

    Google Scholar 

  19. Carvalho O, Buciumeanu M, Madeira S, Soares D, Silva FS, Miranda G (2015) Dry sliding wear behaviour of AlSi-CNTs-SiCp hybrid composites. Tribol Int 90:148–156

    Article  CAS  Google Scholar 

  20. Basavarajappa S, Chandramohan G, Arjun M, Mukundan T, Subramanian R, Gopalakrishnan P (2007) Influence of sliding speed on the dry sliding wear behaviour and the subsurface deformation on hybrid metal matrix composite. Wear 262:1007–1012

    Article  CAS  Google Scholar 

  21. Ekambaram M, Vetrivel M, Balaji D, Afrid AS, Naveenkumar B, Manikanta DR, Amruthraj D, Krishna KJ (2018) Tribological characteristics of aluminium metal matrix with nano BN powder metallurgy composite. Mater Sci Eng 390:012085

    Google Scholar 

  22. Xue XM, Wang JT, Quan MX (1991) Mater Sci Eng A 132: 277

    Google Scholar 

  23. Shen L, Tan BJ, Willis WS, Galasso FS, Suib SL (1994) J Am Ceram Soc 77: 1011

    Google Scholar 

  24. Fujii H, Nakae H, Okada K (1993) Acta Metall Mater 41: 2963

    Google Scholar 

  25. Xue XM, Wang JT, Quan MX (1991) Mater Sci 26: 6391

    Google Scholar 

  26. Xue XM, Wang JT, Zhao FM (1992) Mater Sci Lett 11: 199

    Google Scholar 

  27. Kobashi M, Choh T (1997) J Mater Sci 32: 6283

    Google Scholar 

  28. Nicholas MG, Mortimer DA, Jones LM, Crispin RM (1990) J Mater Sci 25: 2679

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ekambaram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ekambaram, M. et al. (2021). Powder Metallurgy Fabrication, Characterization and Wear Assessment of Al-BN-TiO2 Composites. In: Rajmohan, T., Palanikumar, K., Davim, J.P. (eds) Advances in Materials and Manufacturing Engineering. Springer Proceedings in Materials, vol 7. Springer, Singapore. https://doi.org/10.1007/978-981-15-6267-9_73

Download citation

Publish with us

Policies and ethics