Skip to main content

Inter-Organismal Signaling in the Rhizosphere

  • Chapter
  • First Online:
Rhizosphere Biology: Interactions Between Microbes and Plants

Abstract

Each plant coexists with its associated microbes as a holobiont. Microbes inhabit all parts of the plant, including roots, stems, and leaves. The ability of microbes to colonize a particular plant species is fueled by release of signals by either or both partners that are only recognized by the right partner. It is now becoming increasingly clear that at least some microbe-to-plant signals can promote plant growth. This chapter focuses on the current trends in the use of plant–microbe signal compounds for sustainable agriculture, and also gives a brief description of potential areas for future research. The chapter begins with an introduction to the holobiont, with major focus on the beneficial plant–microbe interactions. The chapter then goes on to describe the various signals involved in the well studied legume–rhizobia and plant–mycorrhizal symbioses. Signals involved in other beneficial plant–microbe interactions; microbe–microbe signal interactions are also described, however, these areas are only beginning to be understood. Further into the chapter, the role of plant–microbe signals in plant growth and development under stressed and non-stressed conditions is described, listing various examples of microbes that promote growth of various crop species. The authors also mention limitations to microbial inoculant efficacy especially under field conditions, as well as the pros and cons of using single microbes, microbial consortia, and plant–microbial signals. The conclusion summarizes the chapter and gives suggestions on what future research on signal compounds needs to focus on, for optimal utilization in agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar OM, Beker MP, Blanco FA et al (2015) Interaction between host and rhizobial strains: affinities and coevolution. In: De Bruijn F (ed) Biological nitrogen fixation, vol 1. Wiley, New York, pp 203–208

    Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Google Scholar 

  • Aiman S, Shehroz M, Munir M et al (2018) Species-wide genome mining of Pseudomonas putida for potential secondary metabolites and drug-like natural product characterization. J Proteom Bioinform 11:1–7

    Google Scholar 

  • Alain K, Querellou J (2009) Cultivating the uncultured: limits, advances and future challenges. Extremophiles 13:583–594. https://doi.org/10.1007/s00792-009-0261-3

    Article  PubMed  Google Scholar 

  • Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Bioch 80:160–167

    CAS  Google Scholar 

  • Ali S, Chaudhary A, Rizwan M et al (2015) Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.). Environ Sci Pollut R 22:10669–10678

    CAS  Google Scholar 

  • Almaraz JJ, Zhou X, Souleimanov A et al (2007) Gas exchange characteristics and dry matter accumulation of soybean treated with Nod factors. J Plant Physiol 164:1391–1393

    CAS  Google Scholar 

  • Ambreetha S, Chinnadurai C, Marimuthu P et al (2018) Plant-associated Bacillus modulates the expression of auxin-responsive genes of rice and modifies the root architecture. Rhizosphere 5:57–66

    Google Scholar 

  • Antolin-Llovera M, Ried MK, Binder A et al (2012) Receptor kinase signaling pathways in plant-microbe interactions. Annu Rev Phytopathol 50:451–473

    PubMed  CAS  Google Scholar 

  • Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 6:959–978

    PubMed  PubMed Central  CAS  Google Scholar 

  • Awasthi R, Kaushal N, Vadez V et al (2014) Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Funct Plant Biol 41:1148–1167

    PubMed  CAS  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G et al (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473. https://doi.org/10.3389/fpls.2018.01473

  • Bai Y, Souleimanov A, Smith DL (2002) An inducible activator produced by a Serratia proteamaculans strain and its soybean growth-promoting activity under greenhouse conditions. J Exp Bot 53:1495–1502

    PubMed  CAS  Google Scholar 

  • Bai Y, Zhou X, Smith DL (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1781

    Google Scholar 

  • Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav 7:79–85

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    PubMed  CAS  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biol Fert Soils 45:405–413

    Google Scholar 

  • Baris O, Sahin F, Turan M et al (2014) Use of plant-growth-promoting rhizobacteria (PGPR) seed inoculation as alternative fertilizer inputs in wheat and barley production. Commun Soil Sci Plant 45:2457–2467

    CAS  Google Scholar 

  • Bashan Y, González LE (1999) Long-term survival of the plant-growth-promoting bacteria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Appl Microbiol Biot 51:262–266

    CAS  Google Scholar 

  • Bashan Y, Levanony H (1989) Factors affecting adsorption of Azospirillum brasilense Cd to root hairs as compared with root surface of wheat. Can J Microbiol 35:936–944

    CAS  Google Scholar 

  • Bashan Y, Holguin G, De-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can J Microbiol 50:521–577

    PubMed  CAS  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    PubMed  CAS  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68(1):1–3

    PubMed  CAS  Google Scholar 

  • Bertrand S, Bohni N, Schnee S et al (2014) Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 32:1180–1204

    PubMed  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microb Biot 28:1327–1350

    CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    PubMed  CAS  Google Scholar 

  • Bogino PC, Nievas FL, Giordano W (2015) A review: quorum sensing in Bradyrhizobium. Appl Soil Ecol 94:49–58

    Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48

    PubMed  Google Scholar 

  • Borriss R (2015) Towards a new generation of commercial microbial disease control and plant growth promotion products. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Cham

    Google Scholar 

  • Bradáčová K, Florea AS, Bar-Tal A et al (2019) Microbial consortia versus single-strain inoculants: an advantage in PGPM-assisted tomato production? Agronomy 9:105

    Google Scholar 

  • Brencic A, Winans SC (2005) Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol R 69:155–194

    CAS  Google Scholar 

  • Broughton WJ, Zhang F, Perret X et al (2003) Signals exchanged between legumes and Rhizobium: agricultural uses and perspectives. Plant Soil 252:129–137

    CAS  Google Scholar 

  • Bucher M, Wegmueller S, Drissner D (2009) Chasing the structures of small molecules in arbuscular mycorrhizal signaling. Curr Opin Plant Biol 12:500–507

    PubMed  CAS  Google Scholar 

  • Cacciari I, Lippi D, Pietrosanti T et al (1989) Phytohormone-like substances produced by single and mixed diazotrophic cultures of Azospirillum and Arthrobacter. Plant Soil 115:151–153

    CAS  Google Scholar 

  • Caetano-Anollés G, Crist-Estes D, Bauer W (1988) Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J Bacteriol 170:3164–3169

    PubMed  PubMed Central  Google Scholar 

  • Çakmakçı R, Dönmez MF, Erdoğan Ü (2007) The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turk J Agric For 31:189–199

    Google Scholar 

  • Calatrava-Morales N, Mcintosh M, Soto M (2018) Regulation mediated by N-Acyl Homoserine Lactone quorum sensing signals in the Rhizobium-Legume symbiosis. Genes-Basel 9:263

    PubMed Central  Google Scholar 

  • Cassan F, Perrig D, Sgroy V et al (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35

    CAS  Google Scholar 

  • Chagas FO, De Cassia PR, Caraballo-Rodríguez AM et al (2018) Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 47:1652–1704

    PubMed  CAS  Google Scholar 

  • Chauhan H, Bagyaraj D, Selvakumar G et al (2015) Novel plant growth promoting rhizobacteria – prospects and potential. Appl Soil Ecol 95:38–53

    Google Scholar 

  • Chen C, Mciver J, Yang Y et al (2007) Foliar application of lipo-chitooligosaccharides (Nod factors) to tomato (Lycopersicon esculentum) enhances flowering and fruit production. Can J Plant Sci 87:365–372

    CAS  Google Scholar 

  • Chmielowska-Bąk J, Gzyl J, Rucińska-Sobkowiak R et al (2014) The new insights into cadmium sensing. Front Plant Sci 5:245

    PubMed  PubMed Central  Google Scholar 

  • Choudhary DK, Prakash A, Johri B (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47:289–297

    PubMed  CAS  Google Scholar 

  • Ciais P, Reichstein M, Viovy N et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529

    PubMed  CAS  Google Scholar 

  • Combes-Meynet E, Pothier JF, Moënne-Loccoz Y et al (2011) The Pseudomonas secondary metabolite 2, 4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. Mol Plant Microbe In 24:271–284

    CAS  Google Scholar 

  • Contesto C, Desbrosses G, Lefoulon C et al (2008) Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Sci 175:178–189

    CAS  Google Scholar 

  • Cook D, Dreyer D, Bonnet D et al (1995) Transient induction of a peroxidase gene in Medicago truncatula precedes infection by Rhizobium meliloti. Plant Cell 7:43–55

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cooper J (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365

    PubMed  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR et al (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    PubMed  CAS  Google Scholar 

  • D’haeze W, Holsters M (2004) Surface polysaccharides enable bacteria to evade plant immunity. Trends Microbiol 12:555–561

    PubMed  Google Scholar 

  • Daguerre Y, Plett JM, Veneault-Fourrey C (2017) Signaling pathways driving the development of ectomycorrhizal symbiosis. In: Martin F (ed) Molecular mycorrhizal symbiosis. Wiley, New York, pp 141–157

    Google Scholar 

  • Dal Cortivo C, Barion G, Ferrari M et al (2018) Effects of field inoculation with vam and bacteria consortia on root growth and nutrients uptake in common wheat. Sustainability-Basel 10:3286

    CAS  Google Scholar 

  • Damodaran T, Rai R, Jha S et al (2014) Rhizosphere and endophytic bacteria for induction of salt tolerance in gladiolus grown in sodic soils. J Plant Interact 9:577–584

    CAS  Google Scholar 

  • Davies PJ (ed) (2004) Plant hormones: biosynthesis, signal transduction, action! Springer, Cham

    Google Scholar 

  • Dénarié J, Cullimore J (1993) Lipo-oligosaccharide nodulation factors: a new class of signaling molecules mediating recognition and morphogenesis. Cell 74:951–954

    PubMed  Google Scholar 

  • Dinesh R, Anandaraj M, Kumar A et al (2015) Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiol Res 173:34–43

    PubMed  Google Scholar 

  • Dubrovsky JG, Sauer M, Napsucialy-Mendivil S et al (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci USA 105:8790–8794

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dyachok J, Tobin A, Price N et al (2000) Rhizobial Nod factors stimulate somatic embryo development in Picea abies. Plant Cell Rep 19:290–297

    PubMed  CAS  Google Scholar 

  • Dyachok JV, Wiweger M, Kenne L et al (2002) Endogenous Nod-factor-like signal molecules promote early somatic embryo development in Norway spruce. Plant Physiol 128:523–533

    PubMed  PubMed Central  CAS  Google Scholar 

  • Edathil TT, Manian S, Udaiyan K (1996) Interaction of multiple VAM fungal species on root colonization, plant growth and nutrient status of tomato seedlings (Lycopersicon esculentum Mill.). Agr Ecosyst Environ 59:63–68

    Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fert Soils 45:563–571

    Google Scholar 

  • El Zahar HF, Marol C, Berge O et al (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221

    Google Scholar 

  • El Zemrany H, Czarnes S, Hallett PD et al (2007) Early changes in root characteristics of maize (Zea mays) following seed inoculation with the PGPR Azospirillum lipoferum CRT1. Plant Soil 291:109–118

    Google Scholar 

  • Esseling JJ, Lhuissier FG, Emons AMC (2004) A nonsymbiotic root hair tip growth phenotype in NORK-mutated legumes: implications for nodulation factor-induced signaling and formation of a multifaceted root hair pocket for bacteria. Plant Cell 16:933–944

    PubMed  PubMed Central  CAS  Google Scholar 

  • Etesami H (2018) Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotox Environ Safe 147:175–191

    CAS  Google Scholar 

  • Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore, pp 163–200

    Google Scholar 

  • Etesami H, Alikhani HA, Hosseini HM (2015) Indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase: bacterial traits required in rhizosphere, rhizoplane and/or endophytic competence by beneficial bacteria. In: Maheshwari D (ed) Bacterial metabolites in sustainable agroecosystem. Springer, Cham, pp p183–p258

    Google Scholar 

  • Fahad S, Hussain S, Matloob A et al (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404

    CAS  Google Scholar 

  • Fan D, Schwinghamer T, Smith DL (2018) Isolation and diversity of culturable rhizobacteria associated with economically important crops and uncultivated plants in Québec, Canada. Syst Appl Microbiol 41:629–640

    PubMed  Google Scholar 

  • Farag MA, Zhang H, Ryu C-M (2013) Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. J Chem Ecol 39:1007–1018

    PubMed  PubMed Central  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N et al (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:153–188

    Google Scholar 

  • Fraysse N, Couderc F, Poinsot V (2003) Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis. Eur J Biochem 270:1365–1380

    PubMed  CAS  Google Scholar 

  • Frison EA (2016) From uniformity to diversity: a paradigm shift from industrial agriculture to diversified agroecological systems. IPES-Food, Louvain-la-Neuve, p 96

    Google Scholar 

  • Fujishige NA, Kapadia NN, De Hoff PL et al (2006) Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56:195–206

    PubMed  CAS  Google Scholar 

  • Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol 68:280–300

    CAS  Google Scholar 

  • Gamalero E, Glick BR (2012) Ethylene and abiotic stress tolerance in plants. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, Cham, pp 395–412

    Google Scholar 

  • Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169:13–22

    PubMed  PubMed Central  CAS  Google Scholar 

  • García De Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    PubMed  Google Scholar 

  • Garg N, Geetanjali (2009) Symbiotic nitrogen fixation in legume nodules: process and signaling. A review. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds) Sustainable agriculture. Springer, Dordrecht, pp 519–531

    Google Scholar 

  • Genre A, Chabaud M, Balzergue C et al (2013) Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol 198:190–202

    PubMed  Google Scholar 

  • Glick BR (2004) Bacterial ACC deaminase and the alleviation of plant stress. Adv Appl Microbiol 56:291–312

    PubMed  CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    PubMed  CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J et al (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    CAS  Google Scholar 

  • Gong H, Meng D, Li X et al (2013) Soil degradation and food security coupled with global climate change in northeastern China. Chin Geogr Sci 23:562–573

    Google Scholar 

  • Gough C, Bécard G (2016) Strigolactones and lipo-chitooligosaccharides as molecular communication signals in the arbuscular mycorrhizal symbiosis. In: Martin F (ed) Molecular mycorrhizal symbiosis. Wiley, Hoboken, pp 107–124

    Google Scholar 

  • Gough C, Cullimore J (2011) Lipo-chitooligosaccharide signaling in endosymbiotic plant-microbe interactions. Mol Plant Microbe Interact 24:867–878

    PubMed  CAS  Google Scholar 

  • Gowdy J, Baveye P (2019) An evolutionary perspective on industrial and sustainable agriculture. In: Lemaire G, Carvalho PCDF, Kronberg S, Recous S (eds) Agroecosystem diversity, reconciling contemporary agriculture and environmental quality. Elsevier, New York, pp 425–433

    Google Scholar 

  • Gray E, Smith D (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Bioch 37:395–412

    CAS  Google Scholar 

  • Gray E, Lee K, Di Falco M et al (2006) A novel bacteriocin, thuricin 17, produced by PGPR strain Bacillus thuringiensis NEB17: isolation and classification. J Appl Microbiol 100:545–554

    PubMed  CAS  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK et al (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microbial Biochem Technol 7:096–102

    CAS  Google Scholar 

  • Gusain YS, Singh U, Sharma A (2015) Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.). Afr J Biotechnol 14:764–773

    CAS  Google Scholar 

  • Gutjahr C, Novero M, Guether M et al (2009) Presymbiotic factors released by the arbuscular mycorrhizal fungus Gigaspora margarita induce starch accumulation in Lotus japonicus roots. New Phytol 183:53–61

    PubMed  CAS  Google Scholar 

  • Guzmán-Guzmán P, Porras-Troncoso MD, Olmedo-Monfil V et al (2018) Trichoderma species: versatile plant symbionts. Phytopathology 109:6–16

    PubMed  Google Scholar 

  • Gyogluu C, Boahen SK, Dakora FD (2016) Response of promiscuous-nodulating soybean (Glycine max L. Merr.) genotypes to Bradyrhizobium inoculation at three field sites in Mozambique. Symbiosis 69:81–88

    CAS  Google Scholar 

  • Hagai E, Dvora R, Havkin-Blank T et al (2014) Surface-motility induction, attraction and hitchhiking between bacterial species promote dispersal on solid surfaces. ISME J 8:147–1151

    Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    PubMed  CAS  Google Scholar 

  • Hartmann A, Rothballer M, Hense BA et al (2014) Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front Plant Sci 5:131

    PubMed  PubMed Central  Google Scholar 

  • Hener C, Hummel S, Suarez J et al (2018) d-Amino acids are exuded by Arabidopsis thaliana roots to the rhizosphere. Int J Mol Sci 19:1109

    PubMed Central  Google Scholar 

  • Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biot 97:8859–8873

    CAS  Google Scholar 

  • Hong Y, Glick BR, Pasternak J (1991) Plant-microbial interaction under gnotobiotic conditions: a scanning electron microscope study. Curr Microbiol 23:111–114

    Google Scholar 

  • Huang X, Zhang N, Yong X et al (2012) Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiol Res 167:135–143

    PubMed  CAS  Google Scholar 

  • Huang XF, Chaparro JM, Reardon KF et al (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275

    Google Scholar 

  • Huang AC, Jiang T, Liu YX et al (2019) A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364:eaau6389

    PubMed  CAS  Google Scholar 

  • Hungria M, Nishi C, Cohn J et al (1996) Comparison between parental and variant soybean Bradyrhizobium strains with regard to the production of lipo-chitin nodulation signals, early stages of root infection, nodule occupancy, and N2 fixation rates. Plant Soil 186:331–341

    CAS  Google Scholar 

  • Hussain A, Hasnain S (2009) Cytokinin production by some bacteria: its impact on cell division in cucumber cotyledons. Afr J Microbiol Res 3:704–712

    CAS  Google Scholar 

  • Idris EE, Iglesias DJ, Talon M et al (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact 20:619–626

    PubMed  CAS  Google Scholar 

  • Ikoyi I, Fowler A, Schmalenberger A (2018) One-time phosphate fertilizer application to grassland columns modifies the soil microbiota and limits its role in ecosystem services. Sci Total Environ 630:849–858

    PubMed  CAS  Google Scholar 

  • Ilangumaran G, Smith DL (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci 8:1768

    PubMed  PubMed Central  Google Scholar 

  • Inui H, Yamaguchi Y, Hirano S (1997) Elicitor actions of N-acetylchitooligosaccharides and laminarioligosaccharides for chitinase and l-phenylalanine ammonia-lyase induction in rice suspension culture. Biosci Biotech Bioch 61:975–978

    CAS  Google Scholar 

  • Islam F, Ali B, Farooq MA et al (2017) Plant-microbe interaction in oilseed crops. In: Ahmad P (ed) Oilseed crops: yield and adaptations under environmental stress. Wiley, New York, pp 184–206

    Google Scholar 

  • Jacoud C, Job D, Wadoux P et al (1999) Initiation of root growth stimulation by Azospirillum lipoferum CRT1 during maize seed germination. Can J Microbiol 45:339–342

    CAS  Google Scholar 

  • Janczarek M, Rachwał K, Marzec A et al (2015) Signal molecules and cell-surface components involved in early stages of the legume-rhizobium interactions. Appl Soil Ecol 85:94–113

    Google Scholar 

  • Jing H, Strader LC (2019) Interplay of auxin and cytokinin in lateral root development. Int J Mol Sci 20:486

    PubMed Central  CAS  Google Scholar 

  • Junior L, Andrade M (2015) Legume-rhizobia signal exchange: promiscuity and environmental effects. Front Microbiol 6:945

    Google Scholar 

  • Kang S-M, Khan AL, Waqas M et al (2014a) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682

    Google Scholar 

  • Kang S-M, Radhakrishnan R, Khan AL et al (2014b) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Bioch 84:115–124

    CAS  Google Scholar 

  • Kape R, Parniske M, Werner D (1991) Chemotaxis and nod gene activity of Bradyrhizobium japonicum in response to hydroxycinnamic acids and isoflavonoids. Appl Environ Microbiol 57:316–319

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kapoor R, Kaur M (2016) Cytokinins production by fluorescent Pseudomonas isolated from rhizospheric soils of Malus and Pyrus. Afr J Microbiol Res 10:1274–1279

    CAS  Google Scholar 

  • Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66:35–42

    CAS  Google Scholar 

  • Ker K, Seguin P, Driscoll BT et al (2014) Evidence for enhanced N availability during switchgrass establishment and seeding year production following inoculation with rhizosphere endophytes. Arch Agron Soil Sci 60:1553–1563

    CAS  Google Scholar 

  • Khalilzadeh R, Seyed Sharifi R, Jalilian J (2018) Growth, physiological status, and yield of salt-stressed wheat (Triticum aestivum L.) plants affected by biofertilizer and cycocel applications. Arid Land Res Manag 32:71–90

    CAS  Google Scholar 

  • Khan W, Prithiviraj B, Smith DL (2008) Nod factor [Nod Bj V (C18: 1, MeFuc)] and lumichrome enhance photosynthesis and growth of corn and soybean. J Plant Physiol 165:1342–1351

    PubMed  CAS  Google Scholar 

  • Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    PubMed  CAS  Google Scholar 

  • Knack J, Wilcox L, Delaux P-M et al (2015) Microbiomes of streptophyte algae and bryophytes suggest that a functional suite of microbiota fostered plant colonization of land. Int J Plant Sci 176:405–420

    Google Scholar 

  • Konappa NM, Maria M, Uzma F et al (2016) Lactic acid bacteria mediated induction of defense enzymes to enhance the resistance in tomato against Ralstonia solanacearum causing bacterial wilt. Sci Hortic 207:183–192

    CAS  Google Scholar 

  • Kuan KB, Othman R, Rahim KA et al (2016) Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS One 11:e0152478

    PubMed  PubMed Central  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review. J Plant Nutr Soil Sci 163:421–431

    CAS  Google Scholar 

  • Lee KD, Gray EJ, Mabood F et al (2009) The class IId bacteriocin thuricin-17 increases plant growth. Planta 229:747–755

    PubMed  CAS  Google Scholar 

  • Liang Y, Cao Y, Tanaka K et al (2013) Nonlegumes respond to rhizobial Nod factors by suppressing the innate immune response. Science 341:1384–1387

    PubMed  CAS  Google Scholar 

  • Lim J-H, Kim S-D (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29:201

    PubMed  PubMed Central  Google Scholar 

  • Limpens E, Mirabella R, Fedorova E et al (2005) Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2. Proc Natl Acad Sci USA 102:10375–10380

    PubMed  CAS  PubMed Central  Google Scholar 

  • Limpens E, Van Zeijl A, Geurts R (2015) Lipochitooligosaccharides modulate plant host immunity to enable endosymbioses. Annu Rev Phytopathol 53:311–334

    PubMed  CAS  Google Scholar 

  • Lindsay J (2007) The effect of lipo-chitooligosaccharide from Bradyrhizobium japonicum, on soybean salicylic acid, pathogen-related protein activity and gene expression. Master’s Thesis, McGill University

    Google Scholar 

  • Lipiec J, Doussan C, Nosalewicz A et al (2013) Effect of drought and heat stresses on plant growth and yield: a review. Int Agrophys 27:463–477

    Google Scholar 

  • López-Ráez JA, Charnikhova T, Fernández I et al (2011) Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. J Plant Physiol 168:294–297

    PubMed  Google Scholar 

  • Loureiro C, Medema MH, Van Der Oost J et al (2018) Exploration and exploitation of the environment for novel specialized metabolites. Curr Opin Biotech 50:206–213

    PubMed  CAS  Google Scholar 

  • Lu T, Ke M, Lavoie M et al (2018) Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6:231

    PubMed  PubMed Central  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    PubMed  CAS  Google Scholar 

  • Lynch D, Smith DL (1993) Early seedling and seasonal N2-fixing symbiotic activity of two soybean [Glycine max (L.) Merr.] cultivars inoculated with Bradyrhizobium strains of diverse origin. Plant Soil 157:289–303

    Google Scholar 

  • Mabood F, Smith DL (2005) Pre-incubation of Bradyrhizobium japonicum with jasmonates accelerates nodulation and nitrogen fixation in soybean (Glycine max) at optimal and suboptimal root zone temperatures. Physiol Plantarum 125:311–323

    CAS  Google Scholar 

  • Mabood F, Zhou X, Smith D (2006) Bradyrhizobium japonicum preincubated with methyl jasmonate increases soybean nodulation and nitrogen fixation. Agron J 98:289–294

    Google Scholar 

  • Mabood F, Zhou X, Smith DL (2014) Microbial signaling and plant growth promotion. Can J Plant Sci 94:1051–1063

    CAS  Google Scholar 

  • Machackova I, Chauvaux N, Dewitte W et al (1997) Diurnal fluctuations in ethylene formation in Chenopodium rubrum. Plant Physiol 113:981–985

    PubMed  PubMed Central  CAS  Google Scholar 

  • Macías-Rodríguez L, Guzmán-Gómez A, García-Juárez P et al (2018) Trichoderma atroviride promotes tomato development and alters the root exudation of carbohydrates, which stimulates fungal growth and the biocontrol of the phytopathogen Phytophthora cinnamomi in a tripartite interaction system. FEMS Microbiol Ecol 94:fiy137

    Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    PubMed  CAS  Google Scholar 

  • Martin F, Kohler A, Murat C et al (2016) Unearthing the roots of ectomycorrhizal symbioses. Nat Rev Microbiol 14:760

    PubMed  CAS  Google Scholar 

  • Marulanda A, Barea J-M, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124

    CAS  Google Scholar 

  • Matiru VN, Dakora FD (2005) The rhizosphere signal molecule lumichrome alters seedling development in both legumes and cereals. New Phytol 166:439–444

    PubMed  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    CAS  Google Scholar 

  • Maymon M, Martínez-Hidalgo P, Tran SS et al (2015) Mining the phytomicrobiome to understand how bacterial coinoculations enhance plant growth. Front Plant Sci 6:784

    PubMed  PubMed Central  Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    PubMed  CAS  Google Scholar 

  • Miah SJ, Hoque A, Paul A et al (2014) Unsafe use of pesticide and its impact on health of farmers: a case study in Burichong Upazila. IOSR J Environ Sci Toxicol Food Technol 21:22–30

    Google Scholar 

  • Miransari M (2013) Soil microbes and the availability of soil nutrients. Acta Physiol Plant 35:3075–3084

    CAS  Google Scholar 

  • Miransari M, Balakrishnan P, Smith D et al (2006) Overcoming the stressful effect of low pH on soybean root hair curling using lipochitooligosacharides. Commun Soil Sci Plant 37:1103–1110

    CAS  Google Scholar 

  • Mishra S, Upadhyay S, Shukla RK (2017) The role of strigolactones and their potential cross-talk under hostile ecological conditions in plants. Front Physiol 7:691

    PubMed  PubMed Central  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    PubMed  CAS  Google Scholar 

  • Mnif W, Hassine AIH, Bouaziz A et al (2011) Effect of endocrine disruptor pesticides: a review. Int J Env Res Public Health 8(6):2265–2303

    CAS  Google Scholar 

  • Mo YY, Gross DC (1991) Plant signal molecules activate the syrB gene, which is required for syringomycin production by Pseudomonas syringae pv. syringae. J Bacteriol 173:5784–5792

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mohanty SK, Arthikala M-K, Nanjareddy K et al (2018) Plant-symbiont interactions: the functional role of expansins. Symbiosis 74:1–10

    CAS  Google Scholar 

  • Moubayidin L, Di Mambro R, Sabatini S (2009) Cytokinin-auxin crosstalk. Trends Plant Sci 14:557–562

    PubMed  CAS  Google Scholar 

  • Moussa Z, El-Hersh MS, El-Khateeb AY (2017) Induction of potato resistance against bacterial wilt disease using saccharomyces cerevisiae. Biotechnology 16:57–68

    CAS  Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops – what is the cost? New Phytol 208:668–673

    PubMed  CAS  Google Scholar 

  • Nabti E, Sahnoune M, Ghoul M et al (2010) Restoration of growth of durum wheat (Triticum durum var. waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. J Plant Growth Regul 29:6–22

    CAS  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA et al (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    PubMed  Google Scholar 

  • Nagahashi G, Douds DD Jr (2011) The effects of hydroxy fatty acids on the hyphal branching of germinated spores of AM fungi. Fungal Biol 115:351–358

    PubMed  CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth T (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    CAS  Google Scholar 

  • Naveed M, Mitter B, Reichenauer TG et al (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39

    CAS  Google Scholar 

  • Neal AL, Ahmad S, Gordon-Weeks R et al (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PloS One 7:e35498

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nelson LM (2004) Plant growth promoting rhizobacteria (PGPR): prospects for new inoculants. Crop Manag 3

    Google Scholar 

  • Nelson MS, Sadowsky MJ (2015) Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes. Front Plant Sci 6:491

    PubMed  PubMed Central  Google Scholar 

  • Netzker T, Fischer J, Weber J et al (2015) Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol 6:299

    PubMed  PubMed Central  Google Scholar 

  • Nicolopoulou-Stamati P, Maipas S, Kotampasi C et al (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 4:148

    PubMed  PubMed Central  Google Scholar 

  • Nobbe F, Hiltner L (1896) Inoculation of the soil for cultivating leguminous plants. US Patent 570,813A

    Google Scholar 

  • Oláh B, Brière C, Bécard G et al (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207

    PubMed  Google Scholar 

  • Olanrewaju OS, Ayangbenro AS, Glick BR et al (2019) Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biot 103:1155–1166

    CAS  Google Scholar 

  • Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252

    PubMed  CAS  Google Scholar 

  • Ortíz-Castro R, López-Bucio J (2019) Phytostimulation and root architectural responses to quorum-sensing signals and related molecules from rhizobacteria. Plant Sci 284:135–142

    PubMed  Google Scholar 

  • Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L et al (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    PubMed  PubMed Central  Google Scholar 

  • Ovchinnikova E, Journet E-P, Chabaud M et al (2011) IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago spp. Mol Plant Microbe Interact 24:1333–1344

    PubMed  CAS  Google Scholar 

  • Pan B, Smith D (2000) Preincubation of B. japonicum cells with genistein reduces the inhibitory effects of mineral nitrogen on soybean nodulation and nitrogen fixation under field conditions. Plant Soil 223:237–244

    Google Scholar 

  • Park Y-G, Mun B-G, Kang S-M et al (2017) Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One 12:e0173203

    PubMed  PubMed Central  Google Scholar 

  • Parniske M (2005) Plant-fungal associations: Cue for the branching connection. Nature 435:750

    PubMed  CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763

    PubMed  CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    PubMed  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can J Microbiol 48:635–642

    PubMed  CAS  Google Scholar 

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34:737–752

    Google Scholar 

  • Peck MC, Fisher RF, Long SR (2006) Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J Bacteriol 188:5417–5427

    PubMed  PubMed Central  CAS  Google Scholar 

  • Penmetsa RV, Frugoli JA, Smith LS et al (2003) Dual genetic pathways controlling nodule number in Medicago truncatula. Plant Physiol 131:998–1008

    PubMed  PubMed Central  CAS  Google Scholar 

  • Péret B, De Rybel B, Casimiro I et al (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14:399–408

    PubMed  Google Scholar 

  • Pérez-Jaramillo JE, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol 90:635–644

    PubMed  Google Scholar 

  • Perrig D, Boiero M, Masciarelli O et al (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biot 75:1143–1150

    CAS  Google Scholar 

  • Pieterse CM, Dicke M (2007) Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci 12:564–569

    PubMed  CAS  Google Scholar 

  • Pieterse CM, Van Wees SC, Van Pelt JA et al (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL et al (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    PubMed  CAS  Google Scholar 

  • Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9:263–266

    PubMed  CAS  Google Scholar 

  • Pozo MJ, Van Der Ent S, Van Loon L et al (2008) Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol 180:511–523

    PubMed  CAS  Google Scholar 

  • Prithiviraj B, Zhou X, Souleimanov A et al (2003) A host-specific bacteria-to-plant signal molecule (Nod factor) enhances germination and early growth of diverse crop plants. Planta 216:437–445

    PubMed  CAS  Google Scholar 

  • Prudent M, Salon C, Souleimanov A et al (2015) Soybean is less impacted by water stress using Bradyrhizobium japonicum and thuricin-17 from Bacillus thuringiensis. Agron Sustain Dev 35:749–757

    CAS  Google Scholar 

  • Qin Y, Druzhinina IS, Pan X et al (2016) Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol Adv 34:1245–1259

    PubMed  CAS  Google Scholar 

  • Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43:1183–1191

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rana A, Saharan B, Nain L et al (2012) Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Sci Plant Nutr 58:573–582

    CAS  Google Scholar 

  • Reid DE, Ferguson BJ, Hayashi S et al (2011) Molecular mechanisms controlling legume autoregulation of nodulation. Ann Bot 108:789–795

    PubMed  PubMed Central  CAS  Google Scholar 

  • Remans R, Beebe S, Blair M et al (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302:149–161

    CAS  Google Scholar 

  • Ribaudo CM, Krumpholz EM, Cassán FD et al (2006) Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene. J Plant Growth Regul 25:175–185

    CAS  Google Scholar 

  • Riefler M, Novak O, Strnad M et al (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rodrı́guez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    PubMed  Google Scholar 

  • Rolli E, Marasco R, Vigani G et al (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17:316–331

    PubMed  Google Scholar 

  • Rosenzweig C, Elliott J, Deryng D et al (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci USA 111:3268–3273

    PubMed  CAS  Google Scholar 

  • Rosier A, Medeiros FH, Bais HP (2018) Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plant-microbe interactions. Plant Soil 428:35–55

    CAS  Google Scholar 

  • Roughley R, Date R (1986) The effect of strain of Rhizobium and of temperature on nodulation and early growth of Trifolium semipilosum. Exp Agr 22:123–131

    Google Scholar 

  • Saha M, Sarkar S, Sarkar B et al (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut R 23:3984–3999

    CAS  Google Scholar 

  • Salomon MV, Bottini R, De Souza Filho GA et al (2014) Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine. Physiol Plantarum 151:359–374

    CAS  Google Scholar 

  • Sanborn M, Kerr K, Sanin L et al (2007) Non-cancer health effects of pesticides: systematic review and implications for family doctors. Can Fam Physician 53:1712–1720

    PubMed  PubMed Central  CAS  Google Scholar 

  • Santoyo G, Orozco-Mosqueda MD, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Techn 22:855–872

    Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    PubMed  CAS  Google Scholar 

  • Saravanakumar D, Kavino M, Raguchander T et al (2011) Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol Plant 33:203–209

    CAS  Google Scholar 

  • Sarma RK, Saikia R (2014) Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 377:111–126

    CAS  Google Scholar 

  • Savary S, Willocquet L, Pethybridge SJ et al (2019) The global burden of pathogens and pests on major food crops. Nature Ecol Evol 3:430

    Google Scholar 

  • Schmidt J, Röhrig H, John M et al (1993) Alteration of plant growth and development by Rhizobium nodA and nodB genes involved in the synthesis of oligosaccharide signal molecules. Plant J 4:651–658

    CAS  Google Scholar 

  • Schuhegger R, Ihring A, Gantner S et al (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    PubMed  CAS  Google Scholar 

  • Schultze M, Kondorosi Á (1996) The role of lipochitooligosaccharides in root nodule organogenesis and plant cell growth. Curr Opin Genet Dev 6:631–638

    PubMed  CAS  Google Scholar 

  • Schultze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Annu Rev Genet 32:33–57

    PubMed  CAS  Google Scholar 

  • Schwinghamer T, Souleimanov A, Dutilleul P et al (2015) The plant growth regulator lipo-chitooligosaccharide (LCO) enhances the germination of canola (Brassica napus [L.]). J Plant Growth Regul 34:183–195

    CAS  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P et al (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Bioch 60:182–194

    CAS  Google Scholar 

  • Sharma N, Singhvi R (2017) Effects of chemical fertilizers and pesticides on human health and environment: a review. Int J Agric Environ Biotechnol 10:675–679

    Google Scholar 

  • Sharma S, Chen C, Navathe S et al (2019) A halotolerant growth promoting rhizobacteria triggers induced systemic resistance in plants and defends against fungal infection. Sci Rep 9:4054

    PubMed  PubMed Central  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (eds) (2010) Mycorrhizal symbiosis, 3rd edn. Elsevier, New York, p 800

    Google Scholar 

  • Smith DL, Praslickova D, Ilangumaran G (2015a) Inter-organismal signaling and management of the phytomicrobiome. Front Plant Sci 6:722

    PubMed  PubMed Central  Google Scholar 

  • Smith DL, Subramanian S, Lamont JR et al (2015b) Signaling in the phytomicrobiome: breadth and potential. Front Plant Sci 6:709

    PubMed  PubMed Central  Google Scholar 

  • Smith DL, Gravel V, Yergeau E (2017) Signaling in the phytomicrobiome. Front Plant Sci 8:611

    PubMed  PubMed Central  Google Scholar 

  • Sonbarse PP, Sharma P, Parvatam G (2017) PGPR’s mix treatment to Moringa improved plant growth and iron content in foliage as substantiated by biochemical and molecular methods. J Plant Interact 12:526–532

    Google Scholar 

  • Souleimanov A, Prithiviraj B, Carlson R et al (2002a) Isolation and characterization of the major nod factor of Bradyrhizobium japonicum strain 532C. Microbiol Res 157:25–28

    Google Scholar 

  • Souleimanov A, Prithiviraj B, Smith D (2002b) The major Nod factor of Bradyrhizobium japonicum promotes early growth of soybean and corn. J Exp Bot 53:1929–1934

    PubMed  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    PubMed  CAS  Google Scholar 

  • Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54:257–288

    PubMed  CAS  Google Scholar 

  • Srivastava S, Bist V, Srivastava S et al (2016) Unraveling aspects of Bacillus amyloliquefaciens mediated enhanced production of rice under biotic stress of Rhizoctonia solani. Front Plant Sci 7:587

    PubMed  PubMed Central  Google Scholar 

  • Stepanova AN, Alonso JM (2009) Ethylene signaling and response: where different regulatory modules meet. Curr Opin Plant Biol 12:548–555

    PubMed  CAS  Google Scholar 

  • Stokkermans TJW, Peters NK (1994) Bradyrhizobium elkanii lipooligosaccharide signals induce complete nodule structures on Glycine soja Sieboldet Zucc. Planta 193:413–420. https://doi.org/10.1007/BF00201821

    Article  PubMed  CAS  Google Scholar 

  • Stracke S, Kistner C, Yoshida S et al (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959

    PubMed  CAS  Google Scholar 

  • Stringlis IA, Zhang H, Pieterse CM et al (2018) Microbial small molecules – Weapons of plant subversion. Nat Prod Rep 35:410–433

    PubMed  CAS  Google Scholar 

  • Strullu-Derrien C, Kenrick P, Pressel S et al (2014) Fungal associations in Horneophyton ligneri from the Rhynie Chert (c. 407 million year old) closely resemble those in extant lower land plants: novel insights into ancestral plant-fungus symbioses. New Phytol 203:964–979

    PubMed  Google Scholar 

  • Su Y-H, Liu Y-B, Zhang X-S (2011) Auxin-cytokinin interaction regulates meristem development. Mol Plant 4:616–625

    PubMed  PubMed Central  CAS  Google Scholar 

  • Subramanian S (2013) Mass spectrometry based proteome profiling to understand the effects of lipo-chito-oligosaccharide and thuricin 17 in Arabidopsis thaliana and Glycine max under salt stress. Dissertation, McGill University

    Google Scholar 

  • Subramanian S, Smith DL (2015) Bacteriocins from the rhizosphere microbiome – from an agriculture perspective. Front Plant Sci 6:909

    PubMed  PubMed Central  Google Scholar 

  • Subramanian S, Stacey G, Yu O (2007) Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci 12:282–285

    PubMed  CAS  Google Scholar 

  • Subramanian S, Ricci E, Souleimanov A et al (2016a) A proteomic approach to lipo-chitooligosaccharide and thuricin 17 effects on soybean germination – unstressed and salt stress. PLoS One 11:e0160660

    PubMed  PubMed Central  Google Scholar 

  • Subramanian S, Souleimanov A, Smith DL (2016b) Proteomic studies on the effects of lipo-chitooligosaccharide and thuricin 17 under unstressed and salt stressed conditions in Arabidopsis thaliana. Front Plant Sci 7:1314

    PubMed  PubMed Central  Google Scholar 

  • Sutherland TD, Bassam BJ, Schuller LJ et al (1990) Early nodulation signals of the wild type and symbiotic mutants of soybean (Glycine max). Mol Plant Microbe Interact 3:122–128

    CAS  Google Scholar 

  • Tahir HA, Gu Q, Wu H et al (2017) Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front Microbiol 8:171

    PubMed  PubMed Central  Google Scholar 

  • Takishita Y, Charron J-B, Smith DL (2018) Biocontrol rhizobacterium Pseudomonas sp. 23S induces systemic resistance in tomato (Solanum lycopersicum L.) against bacterial canker Clavibacter michiganensis subsp. michiganensis. Front Microbiol 9:2119

    PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Cho S-H, Lee H et al (2015) Effect of lipo-chitooligosaccharide on early growth of C4 grass seedlings. J Exp Bot 66:5727–5738

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tardieu F, Tuberosa R (2010) Dissection and modelling of abiotic stress tolerance in plants. Curr Opin Plant Biol 13:206–212

    PubMed  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648

    PubMed  CAS  Google Scholar 

  • Thuler DS, Floh EIS, Handro W et al (2003) Plant growth regulators and amino acids released by Azospirillum sp. in chemically defined media. Lett Appl Microbiol 37:174–178

    PubMed  CAS  Google Scholar 

  • Tirichine L, Imaizumi-Anraku H, Yoshida S et al (2006) Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature 441:1153

    PubMed  CAS  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. Biomed Res Int 2013:863240

    PubMed  PubMed Central  Google Scholar 

  • Tsavkelova EA, Cherdyntseva TA, Klimova SY et al (2007) Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin. Arch Microbiol 188:655–664

    PubMed  CAS  Google Scholar 

  • Turan M, Güllüce M, Çakmakçı R et al (2010) The effect of PGPR strain on wheat yield and quality parameters. Paper presented at Proceedings of 19th World Congress of Soil Science, Soil Solutions for a Changing World, CIGR-AgEng 2012, Valencia, 8–12 July 2012

    Google Scholar 

  • Turnbaugh PJ, Ley RE, Hamady M et al (2007) The human microbiome project. Nature 449:804

    PubMed  PubMed Central  CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S et al (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195

    PubMed  CAS  Google Scholar 

  • Upson JL, Zess EK, Białas A et al (2018) The coming of age of EvoMPMI: evolutionary molecular plant-microbe interactions across multiple timescales. Curr Opin Plant Biol 44:108–116

    PubMed  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud M-L et al (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    PubMed  PubMed Central  Google Scholar 

  • Venturi V, Keel C (2016) Signaling in the rhizosphere. Trends Plant Sci 21:187–198

    PubMed  CAS  Google Scholar 

  • Wang C-J, Yang W, Wang C et al (2012a) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7:e52565

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang N, Khan W, Smith DL (2012b) Changes in soybean global gene expression after application of lipo-chitooligosaccharide from Bradyrhizobium japonicum under sub-optimal temperature. PLoS One 7:e31571

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Q, Dodd IC, Belimov AA et al (2016) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Funct Plant Biol 43:161–172

    PubMed  CAS  Google Scholar 

  • Wang N, Wang L, Zhu K et al (2019) Plant root exudates are involved in Bacillus cereus AR156 mediated biocontrol against Ralstonia solanacearum. Front Microbiol 10:98

    PubMed  PubMed Central  Google Scholar 

  • Wimalawansa SJ, Wimalawansa SA (2014) Impact of changing agricultural practices on human health: chronic kidney disease of multi-factorial origin in Sri Lanka. Wudpecker J Agric Res 3:110–124

    Google Scholar 

  • Xiang N, Lawrence KS, Kloepper JW et al (2017) Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean. PLoS One 12:e0181201

    PubMed  PubMed Central  Google Scholar 

  • Xu L, Wu C, Oelmüller R, Zhang W (2018) Role of phytohormones in Piriformospora indica-induced growth promotion and stress tolerance in plants: more questions than answers. Front Microbiol 9:1646

    PubMed  PubMed Central  Google Scholar 

  • Zebelo S, Song Y, Kloepper JW et al (2016) Rhizobacteria activates (+)-δ-cadinene synthase genes and induces systemic resistance in cotton against beet armyworm (Spodoptera exigua). Plant Cell Environ 39:935–943

    PubMed  CAS  Google Scholar 

  • Zhalnina K, Louie KB, Hao Z et al (2018) Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3:470

    PubMed  CAS  Google Scholar 

  • Zhang F, Smith DL (1995) Preincubation of Bradyrhizobium japonicum with genistein accelerates nodule development of soybean at suboptimal root zone temperatures. Plant Physiol 108:961–968

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang F, Smith D (2002) Interorganismal signaling in suboptimum environments: the legume-rhizobia symbiosis. Adv Agron 76:125

    CAS  Google Scholar 

  • Zhang L, Yan C, Guo Q et al (2018) The impact of agricultural chemical inputs on environment: global evidence from informetrics analysis and visualization. Int J Low-Carbon Tech 13:338–352

    Google Scholar 

  • Zhou D, Huang XF, Chaparro JM et al (2016a) Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects. Plant Soil 401:259

    CAS  Google Scholar 

  • Zhou C, Ma Z, Zhu L et al (2016b) Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. Int J Mol Sci 17:976

    PubMed Central  Google Scholar 

  • Zhu J-K (2001a) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406

    PubMed  CAS  Google Scholar 

  • Zhu J-K (2001b) Plant salt tolerance. Trends Plant Sci 6:66–71

    PubMed  CAS  Google Scholar 

  • Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zipfel C, Oldroyd GE (2017) Plant signalling in symbiosis and immunity. Nature 543:328

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald L. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antar, M. et al. (2021). Inter-Organismal Signaling in the Rhizosphere. In: Gupta, V.V.S.R., Sharma, A.K. (eds) Rhizosphere Biology: Interactions Between Microbes and Plants. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6125-2_13

Download citation

Publish with us

Policies and ethics