Skip to main content

Recent Advances in the Critical Role of the Sterol Efflux Transporters ABCG5/G8 in Health and Disease

  • Chapter
  • First Online:
Lipid Transfer in Lipoprotein Metabolism and Cardiovascular Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1276))

Abstract

Cardiovascular disease is characterized by lipid accumulation, inflammatory response, cell death, and fibrosis in the arterial wall and is the leading cause of morbidity and mortality worldwide. Cholesterol gallstone disease is caused by complex genetic and environmental factors and is one of the most prevalent and costly digestive diseases in the USA and Europe. Although sitosterolemia is a rare inherited lipid storage disease, its genetic studies led to identification of the sterol efflux transporters ABCG5/G8 that are located on chromosome 2p21 in humans and chromosome 17 in mice. Human and animal studies have clearly demonstrated that ABCG5/G8 play a critical role in regulating hepatic secretion and intestinal absorption of cholesterol and plant sterols. Sitosterolemia is caused by a mutation in either the ABCG5 or the ABCG8 gene alone, but not in both simultaneously. Polymorphisms in the ABCG5/G8 genes are associated with abnormal plasma cholesterol metabolism and may play a key role in the genetic determination of plasma cholesterol concentrations. Moreover, ABCG5/G8 is a new gallstone gene, LITH9. Gallstone-associated variants in ABCG5/G8 are involved in the pathogenesis of cholesterol gallstones in European, Asian, and South American populations. In this chapter, we summarize the latest advances in the critical role of the sterol efflux transporters ABCG5/G8 in regulating hepatic secretion of biliary cholesterol, intestinal absorption of cholesterol and plant sterols, the classical reverse cholesterol transport, and the newly established transintestinal cholesterol excretion, as well as in the pathogenesis and pathophysiology of ABCG5/G8-related metabolic diseases such as sitosterolemia, cardiovascular disease, and cholesterol gallstone disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette (transporter)

ACAT2:

Acyl-CoA: cholesterol acyltransferase isoform 2

APO:

Apolipoprotein

CSI:

Cholesterol saturation index

CYP7A1:

Cholesterol 7α-hydroxylase

CYP27A1:

Sterol 27-hydroxylase

FABPpm:

Plasma membrane-associated fatty acid-binding protein

FATP4:

Fatty acid transport protein 4

FXR:

Farnesoid X receptor

HDL:

High-density lipoprotein

HMGCR:

3-Hydroxy-3-methylglutaryl coenzyme A reductase

LDL:

Low-density lipoprotein

LXR:

Liver X receptor

MTTP:

Microsomal triglyceride transfer protein

NPC1L1:

Niemann-Pick C1 like 1 (protein)

PPAR-δ:

Peroxisome proliferator-activated receptor-delta

QTL:

Quantitative trait locus

SR-BI:

Scavenger receptor class B type I

TICE:

Transintestinal cholesterol excretion

VLDL:

Very-low-density lipoprotein

References

  1. Wang DQ, Neuschwander-Tetri BA, Portincasa P (2012) The biliary system. Morgan & Claypool Life Sciences, Princeton

    Google Scholar 

  2. Wang DQ (2007) Regulation of intestinal cholesterol absorption. Annu Rev Physiol 69:221–248

    CAS  PubMed  Google Scholar 

  3. Panel TNCEPE (2001) Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285(19):2486–2497

    Google Scholar 

  4. Grundy SM, Cleeman JI, Merz CN, Brewer HB Jr, Clark LT, Hunninghake DB, Pasternak RC, Smith SC Jr, Stone NJ (2004) Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines. J Am Coll Cardiol 44(3):720–732

    PubMed  Google Scholar 

  5. Smith SC Jr, Allen J, Blair SN, Bonow RO, Brass LM, Fonarow GC, Grundy SM, Hiratzka L, Jones D, Krumholz HM et al (2006) AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update: endorsed by the National Heart, Lung, and Blood Institute. Circulation 113(19):2363–2372

    PubMed  Google Scholar 

  6. Greenland P, Alpert JS, Beller GA, Benjamin EJ, Budoff MJ, Fayad ZA, Foster E, Hlatky MA, Hodgson JM, Kushner FG et al (2010) 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 56(25):e50–103

    PubMed  Google Scholar 

  7. Martin SS, Metkus TS, Horne A, Blaha MJ, Hasan R, Campbell CY, Yousuf O, Joshi P, Kaul S, Miller M et al (2012) Waiting for the National Cholesterol Education Program Adult Treatment Panel IV Guidelines, and in the meantime, some challenges and recommendations. Am J Cardiol 110(2):307–313

    PubMed  Google Scholar 

  8. Berge KE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J, Kwiterovich P, Shan B, Barnes R, Hobbs HH (2000) Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290(5497):1771–1775

    CAS  PubMed  Google Scholar 

  9. Lee MH, Lu K, Hazard S, Yu H, Shulenin S, Hidaka H, Kojima H, Allikmets R, Sakuma N, Pegoraro R et al (2001) Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat Genet 27(1):79–83

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee MH, Lu K, Patel SB (2001) Genetic basis of sitosterolemia. Curr Opin Lipidol 12(2):141–149

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu L, Hammer RE, Li-Hawkins J, Von Bergmann K, Lutjohann D, Cohen JC, Hobbs HH (2002) Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci U S A 99(25):16237–16242

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu L, Li-Hawkins J, Hammer RE, Berge KE, Horton JD, Cohen JC, Hobbs HH (2002) Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest 110(5):671–680

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang J, Mitsche MA, Lutjohann D, Cohen JC, Xie XS, Hobbs HH (2015) Relative roles of ABCG5/ABCG8 in liver and intestine. J Lipid Res 56(2):319–330

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang DQ, Portincasa P (2017) Gallstones: recent advances in epidemiology, pathogenesis, diagnosis and management. Nova Biomedical, New York

    Google Scholar 

  15. Lammert F, Gurusamy K, Ko CW, Miquel JF, Mendez-Sanchez N, Portincasa P, van Erpecum KJ, van Laarhoven CJ, Wang DQ (2016) Gallstones. Nat Rev Dis Primers 2:16024

    PubMed  Google Scholar 

  16. Wang DQ, Cohen DE, Carey MC (2009) Biliary lipids and cholesterol gallstone disease. J Lipid Res 50(Suppl):S406–S411

    PubMed  PubMed Central  Google Scholar 

  17. Ruhl CE, Everhart JE (2011) Gallstone disease is associated with increased mortality in the United States. Gastroenterology 140(2):508–516

    PubMed  Google Scholar 

  18. Peery AF, Crockett SD, Barritt AS, Dellon ES, Eluri S, Gangarosa LM, Jensen ET, Lund JL, Pasricha S, Runge T et al (2015) Burden of gastrointestinal, liver, and pancreatic diseases in the United States. Gastroenterology 149(7):1731–41 e3

    PubMed  PubMed Central  Google Scholar 

  19. Portincasa P, Wang DQ (2016) In: Podolsky DK, Camilleri M, Fitz JG, Kalloo AN, Shanahan F, Wang TC (eds) Yamada’s Atlas of gastroenterology. Wiley-Blackwell, Hoboken, pp 335–353

    Google Scholar 

  20. Portincasa P, Di Ciaula A, de Bari O, Garruti G, Palmieri VO, Wang DQ (2016) Management of gallstones and its related complications. Expert Rev Gastroenterol Hepatol 10(1):93–112

    CAS  PubMed  Google Scholar 

  21. Di Ciaula A, Wang DQ, Portincasa P (2018) An update on the pathogenesis of cholesterol gallstone disease. Curr Opin Gastroenterol 34(2):71–80

    PubMed  Google Scholar 

  22. Di Ciaula A, Wang DQ, Garruti G, Wang HH, Grattagliano I, de Bari O, Portincasa P (2014) Therapeutic reflections in cholesterol homeostasis and gallstone disease: a review. Curr Med Chem 21(12):1435–1447

    PubMed  Google Scholar 

  23. Wang DQ, Afdhal NH (2014) In: Feldman M, Friedman LS, Brandt L (eds) Sleisenger and Fordtran’s gastrointestinal and liver disease. Elsevier Saunders, Philadelphia, pp 1100–1133

    Google Scholar 

  24. Portincasa P, Ciaula AD, Bonfrate L, Wang DQH (2012) Therapy of gallstone disease: what it was, what it is, what it will be. World J Gastrointest Pharmacol Ther 3(2):7–20

    PubMed  PubMed Central  Google Scholar 

  25. Wittenburg H, Lyons MA, Li R, Churchill GA, Carey MC, Paigen B (2003) FXR and ABCG5/ABCG8 as determinants of cholesterol gallstone formation from quantitative trait locus mapping in mice. Gastroenterology 125(3):868–881

    CAS  PubMed  Google Scholar 

  26. Wang TY, Portincasa P, Liu M, Tso P, Wang DQ (2018) Mouse models of gallstone disease. Curr Opin Gastroenterol 34(2):59–70

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang HH, Portincasa P, Afdhal NH, Wang DQ (2010) Lith genes and genetic analysis of cholesterol gallstone formation. Gastroenterol Clin N Am 39(2):185–207. vii–viii

    CAS  Google Scholar 

  28. Wang DQ, Afdhal NH (2004) Genetic analysis of cholesterol gallstone formation: searching for Lith (gallstone) genes. Curr Gastroenterol Rep 6(2):140–150

    PubMed  Google Scholar 

  29. Grunhage F, Acalovschi M, Tirziu S, Walier M, Wienker TF, Ciocan A, Mosteanu O, Sauerbruch T, Lammert F (2007) Increased gallstone risk in humans conferred by common variant of hepatic ATP-binding cassette transporter for cholesterol. Hepatology 46(3):793–801

    PubMed  Google Scholar 

  30. Wang Y, Jiang ZY, Fei J, Xin L, Cai Q, Jiang ZH, Zhu ZG, Han TQ, Zhang SD (2007) ATP binding cassette G8 T400K polymorphism may affect the risk of gallstone disease among Chinese males. Clinica Chimica Acta Int J Clin Chem 384(1–2):80–85

    CAS  Google Scholar 

  31. Kuo KK, Shin SJ, Chen ZC, Yang YH, Yang JF, Hsiao PJ (2008) Significant association of ABCG5 604Q and ABCG8 D19H polymorphisms with gallstone disease. Br J Surg 95(8):1005–1011

    CAS  PubMed  Google Scholar 

  32. Rudkowska I, Jones PJ (2008) Polymorphisms in ABCG5/G8 transporters linked to hypercholesterolemia and gallstone disease. Nutr Rev 66(6):343–348

    PubMed  Google Scholar 

  33. Katsika D, Magnusson P, Krawczyk M, Grunhage F, Lichtenstein P, Einarsson C, Lammert F, Marschall HU (2010) Gallstone disease in Swedish twins: risk is associated with ABCG8 D19H genotype. J Intern Med 268(3):279–285

    CAS  PubMed  Google Scholar 

  34. von Kampen O, Buch S, Nothnagel M, Azocar L, Molina H, Brosch M, Erhart W, von Schonfels W, Egberts J, Seeger M et al (2013) Genetic and functional identification of the likely causative variant for cholesterol gallstone disease at the ABCG5/8 lithogenic locus. Hepatology 57(6):2407–2417

    Google Scholar 

  35. Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592

    CAS  PubMed  Google Scholar 

  36. Dean M, Allikmets R (1995) Evolution of ATP-binding cassette transporter genes. Curr Opin Genet Dev 5(6):779–785

    CAS  PubMed  Google Scholar 

  37. Allikmets R, Gerrard B, Glavac D, Ravnik-Glavac M, Jenkins NA, Gilbert DJ, Copeland NG, Modi W, Dean M (1995) Characterization and mapping of three new mammalian ATP-binding transporter genes from an EST database. Mamm Genome 6(2):114–117

    CAS  PubMed  Google Scholar 

  38. Quazi F, Molday RS (2011) Lipid transport by mammalian ABC proteins. Essays Biochem 50(1):265–290

    CAS  PubMed  Google Scholar 

  39. Iida A, Saito S, Sekine A, Mishima C, Kitamura Y, Kondo K, Harigae S, Osawa S, Nakamura Y (2002) Catalog of 605 single-nucleotide polymorphisms (SNPs) among 13 genes encoding human ATP-binding cassette transporters: ABCA4, ABCA7, ABCA8, ABCD1, ABCD3, ABCD4, ABCE1, ABCF1, ABCG1, ABCG2, ABCG4, ABCG5, and ABCG8. J Hum Genet 47(6):285–310

    CAS  PubMed  Google Scholar 

  40. van Meer G, Halter D, Sprong H, Somerharju P, Egmond MR (2006) ABC lipid transporters: extruders, flippases, or flopless activators? FEBS Lett 580(4):1171–1177

    PubMed  Google Scholar 

  41. Stefkova J, Poledne R, Hubacek JA (2004) ATP-binding cassette (ABC) transporters in human metabolism and diseases. Physiol Res/Academia Scientiarum Bohemoslovaca 53(3):235–243

    CAS  Google Scholar 

  42. Marcil M, Brooks-Wilson A, Clee SM, Roomp K, Zhang LH, Yu L, Collins JA, van Dam M, Molhuizen HO, Loubster O et al (1999) Mutations in the ABC1 gene in familial HDL deficiency with defective cholesterol efflux. Lancet 354(9187):1341–1346

    CAS  PubMed  Google Scholar 

  43. Smit JJ, Schinkel AH, Oude Elferink RP, Groen AK, Wagenaar E, van Deemter L, Mol CA, Ottenhoff R, van der Lugt NM, van Roon MA et al (1993) Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75(3):451–462

    CAS  PubMed  Google Scholar 

  44. Oude Elferink RP, Ottenhoff R, van Wijland M, Smit JJ, Schinkel AH, Groen AK (1995) Regulation of biliary lipid secretion by mdr2 P-glycoprotein in the mouse. J Clin Invest 95(1):31–38

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Groen AK, Van Wijland MJ, Frederiks WM, Smit JJ, Schinkel AH, Oude Elferink RP (1995) Regulation of protein secretion into bile: studies in mice with a disrupted mdr2 p-glycoprotein gene. Gastroenterology 109(6):1997–2006

    CAS  PubMed  Google Scholar 

  46. Oude Elferink RP, Ottenhoff R, van Wijland M, Frijters CM, van Nieuwkerk C, Groen AK (1996) Uncoupling of biliary phospholipid and cholesterol secretion in mice with reduced expression of mdr2 P-glycoprotein. J Lipid Res 37(5):1065–1075

    CAS  PubMed  Google Scholar 

  47. Graf GA, Li WP, Gerard RD, Gelissen I, White A, Cohen JC, Hobbs HH (2002) Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface. J Clin Invest 110(5):659–669

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Graf GA, Yu L, Li WP, Gerard R, Tuma PL, Cohen JC, Hobbs HH (2003) ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J Biol Chem 278(48):48275–48282

    CAS  PubMed  Google Scholar 

  49. Zhang DW, Graf GA, Gerard RD, Cohen JC, Hobbs HH (2006) Functional asymmetry of nucleotide-binding domains in ABCG5 and ABCG8. J Biol Chem 281(7):4507–4516

    CAS  PubMed  Google Scholar 

  50. Miettinen TA (1980) Phytosterolaemia, xanthomatosis and premature atherosclerotic arterial disease: a case with high plant sterol absorption, impaired sterol elimination and low cholesterol synthesis. Eur J Clin Investig 10(1):27–35

    CAS  Google Scholar 

  51. Turley SD, Dietschy JM (1988) In: Arias IM, Jakoby WB, Popper H, Schachter D, Shafritz DA (eds) The liver: biology and pathobiology. Raven Press, New York, pp 617–641

    Google Scholar 

  52. Cohen DE (2009) In: Arias IM, Alter HJ, Boyer JL, Cohen DE, Fausto N, Shafritz DA, Wolkoff AW (eds) The liver: biology and pathobiology. Wiley-Blackwell, Chichester, pp 271–285

    Google Scholar 

  53. Andersen JM, Dietschy JM (1977) Regulation of sterol synthesis in 16 tissues of rat. I. Effect of diurnal light cycling, fasting, stress, manipulation of enterohepatic circulation, and administration of chylomicrons and triton. J Biol Chem 252(11):3646–3651

    CAS  PubMed  Google Scholar 

  54. Andersen JM, Dietschy JM (1977) Regulation of sterol synthesis in 15 tissues of rat. II. Role of rat and human high and low density plasma lipoproteins and of rat chylomicron remnants. J Biol Chem 252(11):3652–3659

    CAS  PubMed  Google Scholar 

  55. Dietschy JM (1984) Regulation of cholesterol metabolism in man and in other species. Klin Wochenschr 62(8):338–345

    CAS  PubMed  Google Scholar 

  56. Spady DK, Dietschy JM (1985) Rates of cholesterol synthesis and low-density lipoprotein uptake in the adrenal glands of the rat, hamster and rabbit in vivo. Biochim Biophys Acta 836(2):167–175

    CAS  PubMed  Google Scholar 

  57. Dietschy JM, Turley SD (2002) Control of cholesterol turnover in the mouse. J Biol Chem 277(6):3801–3804

    CAS  PubMed  Google Scholar 

  58. Spady DK, Turley SD, Dietschy JM (1985) Rates of low density lipoprotein uptake and cholesterol synthesis are regulated independently in the liver. J Lipid Res 26(4):465–472

    CAS  PubMed  Google Scholar 

  59. Spady DK, Turley SD, Dietschy JM (1985) Receptor-independent low density lipoprotein transport in the rat in vivo. Quantitation, characterization, and metabolic consequences. J Clin Invest 76(3):1113–1122

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Turley SD, Dietschy JM (2003) Sterol absorption by the small intestine. Curr Opin Lipidol 14(3):233–240

    CAS  PubMed  Google Scholar 

  61. Wang DQ, Cohen DE (2008) In: Ballantyne CM (ed) Lipidology in the treatment and prevention of cardiovascular disease (Clinical lipidology: a companion to Braunwald’s heart disease). Elsevier Saunders, Philadelphia, pp 26–44

    Google Scholar 

  62. Tso P, Fujimoto K (1991) The absorption and transport of lipids by the small intestine. Brain Res Bull 27(3–4):477–482

    CAS  PubMed  Google Scholar 

  63. Wang DQ, Lee SP (2008) Physical chemistry of intestinal absorption of biliary cholesterol in mice. Hepatology 48(1):177–185

    CAS  PubMed  Google Scholar 

  64. Wang DQ, Paigen B, Carey MC (2001) Genetic factors at the enterocyte level account for variations in intestinal cholesterol absorption efficiency among inbred strains of mice. J Lipid Res 42(11):1820–1830

    CAS  PubMed  Google Scholar 

  65. Bhattacharyya AK, Eggen DA (1987) Relationships between dietary cholesterol, cholesterol absorption, cholesterol synthesis, and plasma cholesterol in rhesus monkeys. Atherosclerosis 67(1):33–39

    CAS  PubMed  Google Scholar 

  66. Trautwein EA, Forgbert K, Rieckhoff D, Erbersdobler HF (1999) Impact of beta-cyclodextrin and resistant starch on bile acid metabolism and fecal steroid excretion in regard to their hypolipidemic action in hamsters. Biochim Biophys Acta 1437(1):1–12

    CAS  PubMed  Google Scholar 

  67. Turley SD, Daggy BP, Dietschy JM (1996) Effect of feeding psyllium and cholestyramine in combination on low density lipoprotein metabolism and fecal bile acid excretion in hamsters with dietary-induced hypercholesterolemia. J Cardiovasc Pharmacol 27(1):71–79

    CAS  PubMed  Google Scholar 

  68. Turley SD, Daggy BP, Dietschy JM (1991) Cholesterol-lowering action of psyllium mucilloid in the hamster: sites and possible mechanisms of action. Metab Clin Exp 40(10):1063–1073

    CAS  PubMed  Google Scholar 

  69. Admirand WH, Small DM (1968) The physicochemical basis of cholesterol gallstone formation in man. J Clin Invest 47(5):1043–1052

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Carey MC, Small DM (1978) The physical chemistry of cholesterol solubility in bile. Relationship to gallstone formation and dissolution in man. J Clin Invest 61(4):998–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang DQ, Carey MC (1996) Characterization of crystallization pathways during cholesterol precipitation from human gallbladder biles: identical pathways to corresponding model biles with three predominating sequences. J Lipid Res 37(12):2539–2549

    CAS  PubMed  Google Scholar 

  72. Wang DQ, Cohen DE, Lammert F, Carey MC (1999) No pathophysiologic relationship of soluble biliary proteins to cholesterol crystallization in human bile. J Lipid Res 40(3):415–425

    CAS  PubMed  Google Scholar 

  73. Goldstein JL, Brown MS (1975) Lipoprotein receptors, cholesterol metabolism, and atherosclerosis. Arch Pathol 99(4):181–184

    CAS  PubMed  Google Scholar 

  74. Brown MS, Goldstein JL (1984) How LDL receptors influence cholesterol and atherosclerosis. Sci Am 251(5):58–66

    CAS  PubMed  Google Scholar 

  75. Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem 52:223–261

    CAS  PubMed  Google Scholar 

  76. Brown MS, Kovanen PT, Goldstein JL (1981) Regulation of plasma cholesterol by lipoprotein receptors. Science 212(4495):628–635

    CAS  PubMed  Google Scholar 

  77. Small DM (1977) Cellular mechanisms for lipid deposition in atherosclerosis (first of two parts). N Engl J Med 297(16):873–877

    CAS  PubMed  Google Scholar 

  78. Small DM (1988) George Lyman Duff memorial lecture. Progression and regression of atherosclerotic lesions. Insights from lipid physical biochemistry. Arteriosclerosis 8(2):103–129

    CAS  PubMed  Google Scholar 

  79. Small DM, Shipley GG (1974) Physical-chemical basis of lipid deposition in atherosclerosis. Science 185(147):222–229

    CAS  PubMed  Google Scholar 

  80. Goldstein JL, Brown MS (1987) Regulation of low-density lipoprotein receptors: implications for pathogenesis and therapy of hypercholesterolemia and atherosclerosis. Circulation 76(3):504–507

    CAS  PubMed  Google Scholar 

  81. Portincasa P, Moschetta A, Di Ciaula A, Pontrelli D, Sasso RC, Wang HH, Wang DQ (2008) In: Borzellino G, Cordiano C (eds) Biliary lithiasis: basic science, current diagnosis and management. Springer, Milano, pp 19–49

    Google Scholar 

  82. Portincasa P, Moschetta A, Palasciano G (2006) Cholesterol gallstone disease. Lancet 368(9531):230–239

    CAS  PubMed  Google Scholar 

  83. Portincasa P, Moschetta A, Palasciano G (2002) From lipid secretion to cholesterol crystallization in bile. Relevance in cholesterol gallstone disease. Ann Hepatol 1(3):121–128

    PubMed  Google Scholar 

  84. Portincasa P, Moschetta A, van Erpecum KJ, Calamita G, Margari A, vanBerge-Henegouwen GP, Palasciano G (2003) Pathways of cholesterol crystallization in model bile and native bile. Dig Liver Dis 35(2):118–126

    CAS  PubMed  Google Scholar 

  85. Afdhal NH, Smith BF (1990) Cholesterol crystal nucleation: a decade-long search for the missing link in gallstone pathogenesis. Hepatology 11(4):699–702

    CAS  PubMed  Google Scholar 

  86. Holan KR, Holzbach RT, Hermann RE, Cooperman AM, Claffey WJ (1979) Nucleation time: a key factor in the pathogenesis of cholesterol gallstone disease. Gastroenterology 77(4 Pt 1):611–617

    CAS  PubMed  Google Scholar 

  87. Holzbach RT (1995) Cholesterol nucleation in bile. Ital J Gastroenterol 27(2):101–105

    CAS  PubMed  Google Scholar 

  88. Holzbach RT (1990) Nucleation of cholesterol crystals in native bile. Hepatology 12(3 Pt 2):155S–159S. discussion 9S–61S

    CAS  PubMed  Google Scholar 

  89. Holzbach RT (1986) Recent progress in understanding cholesterol crystal nucleation as a precursor to human gallstone formation. Hepatology 6(6):1403–1406

    CAS  PubMed  Google Scholar 

  90. Holzbach RT (1984) Factors influencing cholesterol nucleation in bile. Hepatology 4(5 Suppl):173S–176S

    CAS  PubMed  Google Scholar 

  91. Holzbach RT, Busch N (1991) Nucleation and growth of cholesterol crystals. Kinetic determinants in supersaturated native bile. Gastroenterol Clin N Am 20(1):67–84

    CAS  Google Scholar 

  92. Crawford JM, Mockel GM, Crawford AR, Hagen SJ, Hatch VC, Barnes S, Godleski JJ, Carey MC (1995) Imaging biliary lipid secretion in the rat: ultrastructural evidence for vesiculation of the hepatocyte canalicular membrane. J Lipid Res 36(10):2147–2163

    CAS  PubMed  Google Scholar 

  93. Crawford AR, Smith AJ, Hatch VC, Oude Elferink RP, Borst P, Crawford JM (1997) Hepatic secretion of phospholipid vesicles in the mouse critically depends on mdr2 or MDR3 P-glycoprotein expression. Visualization by electron microscopy. J Clin Invest 100(10):2562–2567

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Crawford JM (1996) Role of vesicle-mediated transport pathways in hepatocellular bile secretion. Semin Liver Dis 16(2):169–189

    CAS  PubMed  Google Scholar 

  95. Oude Elferink RP, Beuers U (2011) Targeting the ABCB4 gene to control cholesterol homeostasis. Expert Opin Ther Targets 15(10):1173–1182

    CAS  PubMed  Google Scholar 

  96. Langheim S, Yu L, von Bergmann K, Lutjohann D, Xu F, Hobbs HH, Cohen JC (2005) ABCG5 and ABCG8 require MDR2 for secretion of cholesterol into bile. J Lipid Res 46(8):1732–1738

    CAS  PubMed  Google Scholar 

  97. Dikkers A, Tietge UJ (2010) Biliary cholesterol secretion: more than a simple ABC. World J Gastroenterol 16(47):5936–5945

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lammert F, Wang DQ, Hillebrandt S, Geier A, Fickert P, Trauner M, Matern S, Paigen B, Carey MC (2004) Spontaneous cholecysto- and hepatolithiasis in Mdr2-/- mice: a model for low phospholipid-associated cholelithiasis. Hepatology 39(1):117–128

    PubMed  Google Scholar 

  99. Oude Elferink RP, Paulusma CC (2007) Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein). Pflugers Arch – Eur J Physiol 453(5):601–610

    CAS  Google Scholar 

  100. Davit-Spraul A, Gonzales E, Baussan C, Jacquemin E (2010) The spectrum of liver diseases related to ABCB4 gene mutations: pathophysiology and clinical aspects. Semin Liver Dis 30(2):134–146

    CAS  PubMed  Google Scholar 

  101. Gonzales E, Davit-Spraul A, Baussan C, Buffet C, Maurice M, Jacquemin E (2009) Liver diseases related to MDR3 (ABCB4) gene deficiency. Front Biosci 14:4242–4256

    CAS  Google Scholar 

  102. Stapelbroek JM, van Erpecum KJ, Klomp LW, Houwen RH (2010) Liver disease associated with canalicular transport defects: current and future therapies. J Hepatol 52(2):258–271

    CAS  PubMed  Google Scholar 

  103. Paulusma CC, Elferink RP, Jansen PL (2010) Progressive familial intrahepatic cholestasis type 1. Semin Liver Dis 30(2):117–124

    CAS  PubMed  Google Scholar 

  104. Jansen PL, Sturm E (2003) Genetic cholestasis, causes and consequences for hepatobiliary transport. Liver Int 23(5):315–322

    CAS  PubMed  Google Scholar 

  105. Rosmorduc O, Hermelin B, Boelle PY, Parc R, Taboury J, Poupon R (2003) ABCB4 gene mutation-associated cholelithiasis in adults. Gastroenterology 125(2):452–459

    PubMed  Google Scholar 

  106. Rosmorduc O, Hermelin B, Poupon R (2001) MDR3 gene defect in adults with symptomatic intrahepatic and gallbladder cholesterol cholelithiasis. Gastroenterology 120(6):1459–1467

    CAS  PubMed  Google Scholar 

  107. Rosmorduc O, Poupon R (2007) Low phospholipid associated cholelithiasis: association with mutation in the MDR3/ABCB4 gene. Orphanet J Rare Dis 2:29

    Google Scholar 

  108. Wang DQ, Carey MC (1996) Complete mapping of crystallization pathways during cholesterol precipitation from model bile: influence of physical-chemical variables of pathophysiologic relevance and identification of a stable liquid crystalline state in cold, dilute and hydrophilic bile salt-containing systems. J Lipid Res 37(3):606–630

    CAS  PubMed  Google Scholar 

  109. Carey MC, Cahalane MJ (1988) In: Arias IM, Jakoby WB, Popper H, Schachter D, Shafritz DA (eds) The liver: biology and pathobiology. Raven Press, New York, pp 573–616

    Google Scholar 

  110. Hofmann AF, Hagey LR (2008) Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci 65(16):2461–2483

    CAS  PubMed  Google Scholar 

  111. Chiang JY (2009) Bile acids: regulation of synthesis. J Lipid Res 50(10):1955–1966

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Hofmann AF (2009) The enterohepatic circulation of bile acids in mammals: form and functions. Front Biosci 14:2584–2598

    CAS  Google Scholar 

  113. Hofmann AF (2009) In: Arias IM, Alter HJ, Boyer JL, Cohen DE, Fausto N, Shafritz DA, Wolkoff AW (eds) The liver: biology and pathobiology. Wiley-Blackwell, Chichester, pp 290–304

    Google Scholar 

  114. Suchy FJ, Ananthanarayanan M (2006) Bile salt excretory pump: biology and pathobiology. J Pediatr Gastroenterol Nutr 43(Suppl 1):S10–S16

    CAS  PubMed  Google Scholar 

  115. Trauner M, Boyer JL (2003) Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 83(2):633–671

    CAS  PubMed  Google Scholar 

  116. Gerloff T, Stieger B, Hagenbuch B, Madon J, Landmann L, Roth J, Hofmann AF, Meier PJ (1998) The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem 273(16):10046–10050

    CAS  PubMed  Google Scholar 

  117. Wang R, Salem M, Yousef IM, Tuchweber B, Lam P, Childs SJ, Helgason CD, Ackerley C, Phillips MJ, Ling V (2001) Targeted inactivation of sister of P-glycoprotein gene (spgp) in mice results in nonprogressive but persistent intrahepatic cholestasis. Proc Natl Acad Sci U S A 98(4):2011–2016

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang R, Lam P, Liu L, Forrest D, Yousef IM, Mignault D, Phillips MJ, Ling V (2003) Severe cholestasis induced by cholic acid feeding in knockout mice of sister of P-glycoprotein. Hepatology 38(6):1489–1499

    CAS  PubMed  Google Scholar 

  119. Cohen DE, Leighton LS, Carey MC (1992) Bile salt hydrophobicity controls vesicle secretion rates and transformations in native bile. Am J Physiol 263(3 Pt 1):G386–G395

    CAS  PubMed  Google Scholar 

  120. Cohen DE, Leonard MR, Carey MC (1994) In vitro evidence that phospholipid secretion into bile may be coordinated intracellularly by the combined actions of bile salts and the specific phosphatidylcholine transfer protein of liver. Biochemistry 33(33):9975–9980

    CAS  PubMed  Google Scholar 

  121. Fuchs M, Carey MC, Cohen DE (1997) Evidence for an ATP-independent long-chain phosphatidylcholine translocator in hepatocyte membranes. Am J Physiol 273(6 Pt 1):G1312–G1319

    CAS  PubMed  Google Scholar 

  122. Carey MC, Cohen DE (1995) Update on physical state of bile. Ital J Gastroenterol 27(2):92–100

    CAS  PubMed  Google Scholar 

  123. Somjen GJ, Marikovsky Y, Lelkes P, Gilat T (1986) Cholesterol-phospholipid vesicles in human bile: an ultrastructural study. Biochim Biophys Acta 879(1):14–21

    CAS  PubMed  Google Scholar 

  124. Mazer NA, Carey MC, Kwasnick RF, Benedek GB (1979) Quasielastic light scattering studies of aqueous biliary lipid systems. Size, shape, and thermodynamics of bile salt micelles. Biochemistry 18(14):3064–3075

    CAS  PubMed  Google Scholar 

  125. Mazer NA, Benedek GB, Carey MC (1980) Quasielastic light-scattering studies of aqueous biliary lipid systems. Mixed micelle formation in bile salt-lecithin solutions. Biochemistry 19(4):601–615

    CAS  PubMed  Google Scholar 

  126. Mazer NA, Schurtenberg P, Carey MC, Preisig R, Weigand K, Kanzig W (1984) Quasi-elastic light scattering studies of native hepatic bile from the dog: comparison with aggregative behavior of model biliary lipid systems. Biochemistry 23(9):1994–2005

    CAS  PubMed  Google Scholar 

  127. Somjen GJ, Gilat T (1985) Contribution of vesicular and micellar carriers to cholesterol transport in human bile. J Lipid Res 26(6):699–704

    CAS  PubMed  Google Scholar 

  128. Somjen GJ, Gilat T (1983) A non-micellar mode of cholesterol transport in human bile. FEBS Lett 156(2):265–268

    CAS  PubMed  Google Scholar 

  129. Bhattacharyya AK, Connor WE (1974) Beta-sitosterolemia and xanthomatosis. A newly described lipid storage disease in two sisters. J Clin Invest 53(4):1033–1043

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Berge KE (2003) Sitosterolemia: a gateway to new knowledge about cholesterol metabolism. Ann Med 35(7):502–511

    CAS  PubMed  Google Scholar 

  131. Berge KE, von Bergmann K, Lutjohann D, Guerra R, Grundy SM, Hobbs HH, Cohen JC (2002) Heritability of plasma noncholesterol sterols and relationship to DNA sequence polymorphism in ABCG5 and ABCG8. J Lipid Res 43(3):486–494

    CAS  PubMed  Google Scholar 

  132. Salen G, Patel S, Batta AK (2002) Sitosterolemia. Cardiovas Drug Rev 20(4):255–270

    CAS  Google Scholar 

  133. Salen G, Shefer S, Nguyen L, Ness GC, Tint GS, Batta AK (1997) Sitosterolemia. Subcell Biochem 28:453–476

    CAS  PubMed  Google Scholar 

  134. Salen G, Shefer S, Nguyen L, Ness GC, Tint GS, Shore V (1992) Sitosterolemia. J Lipid Res 33(7):945–955

    CAS  PubMed  Google Scholar 

  135. Salen G, Shore V, Tint GS, Forte T, Shefer S, Horak I, Horak E, Dayal B, Nguyen L, Batta AK et al (1989) Increased sitosterol absorption, decreased removal, and expanded body pools compensate for reduced cholesterol synthesis in sitosterolemia with xanthomatosis. J Lipid Res 30(9):1319–1330

    CAS  PubMed  Google Scholar 

  136. Lu K, Lee MH, Yu H, Zhou Y, Sandell SA, Salen G, Patel SB (2002) Molecular cloning, genomic organization, genetic variations, and characterization of murine sterolin genes Abcg5 and Abcg8. J Lipid Res 43(4):565–578

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Lu K, Lee MH, Hazard S, Brooks-Wilson A, Hidaka H, Kojima H, Ose L, Stalenhoef AF, Mietinnen T, Bjorkhem I et al (2001) Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. Am J Hum Genet 69(2):278–290

    PubMed  PubMed Central  Google Scholar 

  138. Nguyen LB, Shefer S, Salen G, Ness GC, Tint GS, Zaki FG, Rani I (1990) A molecular defect in hepatic cholesterol biosynthesis in sitosterolemia with xanthomatosis. J Clin Invest 86(3):923–931

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Salen G, Horak I, Rothkopf M, Cohen JL, Speck J, Tint GS, Shore V, Dayal B, Chen T, Shefer S (1985) Lethal atherosclerosis associated with abnormal plasma and tissue sterol composition in sitosterolemia with xanthomatosis. J Lipid Res 26(9):1126–1133

    CAS  PubMed  Google Scholar 

  140. Yu L, Gupta S, Xu F, Liverman AD, Moschetta A, Mangelsdorf DJ, Repa JJ, Hobbs HH, Cohen JC (2005) Expression of ABCG5 and ABCG8 is required for regulation of biliary cholesterol secretion. J Biol Chem 280(10):8742–8747

    CAS  PubMed  Google Scholar 

  141. Wang HH, Patel SB, Carey MC, Wang DQ (2007) Quantifying anomalous intestinal sterol uptake, lymphatic transport, and biliary secretion in Abcg8(-/-) mice. Hepatology 45(4):998–1006

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Klett EL, Lu K, Kosters A, Vink E, Lee MH, Altenburg M, Shefer S, Batta AK, Yu H, Chen J et al (2004) A mouse model of sitosterolemia: absence of Abcg8/sterolin-2 results in failure to secrete biliary cholesterol. BMC Med 2:5

    PubMed  PubMed Central  Google Scholar 

  143. Lutjohann D, Bjorkhem I, Beil UF, von Bergmann K (1995) Sterol absorption and sterol balance in phytosterolemia evaluated by deuterium-labeled sterols: effect of sitostanol treatment. J Lipid Res 36(8):1763–1773

    CAS  PubMed  Google Scholar 

  144. Gould RG, Jones RJ, LeRoy GV, Wissler RW, Taylor CB (1969) Absorbability of beta-sitosterol in humans. Metab Clin Exp 18(8):652–662

    CAS  PubMed  Google Scholar 

  145. Plosch T, Bloks VW, Terasawa Y, Berdy S, Siegler K, Van Der Sluijs F, Kema IP, Groen AK, Shan B, Kuipers F et al (2004) Sitosterolemia in ABC-transporter G5-deficient mice is aggravated on activation of the liver-X receptor. Gastroenterology 126(1):290–300

    PubMed  Google Scholar 

  146. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M (1996) Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271(5248):518–520

    CAS  PubMed  Google Scholar 

  147. Wang DQ, Carey MC (2002) Susceptibility to murine cholesterol gallstone formation is not affected by partial disruption of the HDL receptor SR-BI. Biochim Biophys Acta 1583(2):141–150

    CAS  PubMed  Google Scholar 

  148. Kozarsky KF, Donahee MH, Rigotti A, Iqbal SN, Edelman ER, Krieger M (1997) Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature 387(6631):414–417

    CAS  PubMed  Google Scholar 

  149. Wang DQ, Cohen DE (2015) In: Ballantyne CM (ed) Clinical lipidology: a companion to Braunwald’s heart disease. Elsevier Saunders, Philadephia, pp 25–42

    Google Scholar 

  150. Altmann SW, Davis HR Jr, Zhu LJ, Yao X, Hoos LM, Tetzloff G, Iyer SP, Maguire M, Golovko A, Zeng M et al (2004) Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303(5661):1201–1204

    CAS  PubMed  Google Scholar 

  151. Davis HR Jr, Altmann SW (2009) Niemann-Pick C1 Like 1 (NPC1L1) an intestinal sterol transporter. Biochim Biophys Acta 1791(7):679–683

    CAS  PubMed  Google Scholar 

  152. Davis HR Jr, Basso F, Hoos LM, Tetzloff G, Lally SM, Altmann SW (2008) Cholesterol homeostasis by the intestine: lessons from Niemann-Pick C1 Like 1 [NPC1L1]. Atheroscler Suppl 9(2):77–81

    CAS  PubMed  Google Scholar 

  153. Davis HR Jr, Zhu LJ, Hoos LM, Tetzloff G, Maguire M, Liu J, Yao X, Iyer SP, Lam MH, Lund EG et al (2004) Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem 279(32):33586–33592

    CAS  PubMed  Google Scholar 

  154. Garcia-Calvo M, Lisnock J, Bull HG, Hawes BE, Burnett DA, Braun MP, Crona JH, Davis HR Jr, Dean DC, Detmers PA et al (2005) The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc Natl Acad Sci U S A 102(23):8132–8137

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Graf GA, Cohen JC, Hobbs HH (2004) Missense mutations in ABCG5 and ABCG8 disrupt heterodimerization and trafficking. J Biol Chem 279(23):24881–24888

    CAS  PubMed  Google Scholar 

  156. Hubacek JA, Berge KE, Cohen JC, Hobbs HH (2001) Mutations in ATP-cassette binding proteins G5 (ABCG5) and G8 (ABCG8) causing sitosterolemia. Hum Mutat 18(4):359–360

    CAS  PubMed  Google Scholar 

  157. Duan LP, Wang HH, Ohashi A, Wang DQ (2006) Role of intestinal sterol transporters Abcg5, Abcg8, and Npc1l1 in cholesterol absorption in mice: gender and age effects. Am J Physiol Gastrointest Liver Physiol 290(2):G269–G276

    CAS  PubMed  Google Scholar 

  158. Duan LP, Wang HH, Wang DQ (2004) Cholesterol absorption is mainly regulated by the jejunal and ileal ATP-binding cassette sterol efflux transporters Abcg5 and Abcg8 in mice. J Lipid Res 45(7):1312–1323

    CAS  PubMed  Google Scholar 

  159. Lammert F, Wang DQ (2005) New insights into the genetic regulation of intestinal cholesterol absorption. Gastroenterology 129(2):718–734

    PubMed  Google Scholar 

  160. Brown MS, Brannan PG, Bohmfalk HA, Brunschede GY, Dana SE, Helgeson J, Goldstein JL (1975) Use of mutant fibroblasts in the analysis of the regulation of cholesterol metabolism in human cells. J Cell Physiol 85(2 Pt 2 Suppl 1):425–436

    CAS  PubMed  Google Scholar 

  161. Brown MS, Dana SE, Dietschy JM, Siperstein MD (1973) 3-Hydroxy-3-methylglutaryl coenzyme A reductase. Solubilization and purification of a cold-sensitive microsomal enzyme. J Biol Chem 248(13):4731–4738

    CAS  PubMed  Google Scholar 

  162. Brown MS, Dana SE, Goldstein JL (1975) Receptor-dependent hydrolysis of cholesteryl esters contained in plasma low density lipoprotein. Proc Natl Acad Sci U S A 72(8):2925–2929

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Brown MS, Dana SE, Goldstein JL (1975) Cholesterol ester formation in cultured human fibroblasts. Stimulation by oxygenated sterols. J Biol Chem 250(10):4025–4027

    CAS  PubMed  Google Scholar 

  164. Brown MS, Dana SE, Goldstein JL (1974) Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem 249(3):789–796

    CAS  PubMed  Google Scholar 

  165. Brown MS, Dana SE, Goldstein JL (1973) Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts by lipoproteins. Proc Natl Acad Sci U S A 70(7):2162–2166

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Dietschy JM, Spady DK (1984) Measurement of rates of cholesterol synthesis using tritiated water. J Lipid Res 25(13):1469–1476

    CAS  PubMed  Google Scholar 

  167. Dietschy JM, Spady DK (1984) Regulation of low density lipoprotein uptake and degradation in different animals species. Agents Actions Suppl 16:177–190

    CAS  PubMed  Google Scholar 

  168. Dietschy JM, Spady DK, Stange EF (1983) Quantitative importance of different organs for cholesterol synthesis and low-density-lipoprotein degradation. Biochem Soc Trans 11(6):639–641

    CAS  PubMed  Google Scholar 

  169. Dietschy JM, Turley SD, Spady DK (1993) Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J Lipid Res 34(10):1637–1659

    CAS  PubMed  Google Scholar 

  170. Turley SD, Spady DK, Dietschy JM (1997) Identification of a metabolic difference accounting for the hyper- and hyporesponder phenotypes of cynomolgus monkey. J Lipid Res 38(8):1598–1611

    CAS  PubMed  Google Scholar 

  171. Turley SD, Spady DK, Dietschy JM (1997) Regulation of fecal bile acid excretion in male golden Syrian hamsters fed a cereal-based diet with and without added cholesterol. Hepatology 25(4):797–803

    Google Scholar 

  172. Turley SD, Spady DK, Dietschy JM (1995) Role of liver in the synthesis of cholesterol and the clearance of low density lipoproteins in the cynomolgus monkey. J Lipid Res 36(1):67–79

    CAS  PubMed  Google Scholar 

  173. Spady DK, Dietschy JM (1983) Sterol synthesis in vivo in 18 tissues of the squirrel monkey, guinea pig, rabbit, hamster, and rat. J Lipid Res 24(3):303–315

    CAS  PubMed  Google Scholar 

  174. Heinemann T, Axtmann G, von Bergmann K (1993) Comparison of intestinal absorption of cholesterol with different plant sterols in man. Eur J Clin Investig 23(12):827–831

    CAS  Google Scholar 

  175. McNamara DJ, Kolb R, Parker TS, Batwin H, Samuel P, Brown CD, Ahrens EH Jr (1987) Heterogeneity of cholesterol homeostasis in man. Response to changes in dietary fat quality and cholesterol quantity. J Clin Invest 79(6):1729–1739

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Kesaniemi YA, Miettinen TA (1987) Cholesterol absorption efficiency regulates plasma cholesterol level in the Finnish population. Eur J Clin Investig 17(5):391–395

    CAS  Google Scholar 

  177. Sehayek E, Nath C, Heinemann T, McGee M, Seidman CE, Samuel P, Breslow JL (1998) U-shape relationship between change in dietary cholesterol absorption and plasma lipoprotein responsiveness and evidence for extreme interindividual variation in dietary cholesterol absorption in humans. J Lipid Res 39(12):2415–2422

    CAS  PubMed  Google Scholar 

  178. Miettinen TA, Tilvis RS, Kesaniemi YA (1990) Serum plant sterols and cholesterol precursors reflect cholesterol absorption and synthesis in volunteers of a randomly selected male population. Am J Epidemiol 131(1):20–31

    CAS  PubMed  Google Scholar 

  179. Bosner MS, Lange LG, Stenson WF, Ostlund RE Jr (1999) Percent cholesterol absorption in normal women and men quantified with dual stable isotopic tracers and negative ion mass spectrometry. J Lipid Res 40(2):302–308

    CAS  PubMed  Google Scholar 

  180. Hallikainen MA, Sarkkinen ES, Gylling H, Erkkila AT, Uusitupa MI (2000) Comparison of the effects of plant sterol ester and plant stanol ester-enriched margarines in lowering serum cholesterol concentrations in hypercholesterolaemic subjects on a low-fat diet. Eur J Clin Nutr 54(9):715–725

    CAS  PubMed  Google Scholar 

  181. Gremaud G, Dalan E, Piguet C, Baumgartner M, Ballabeni P, Decarli B, Leser ME, Berger A, Fay LB (2002) Effects of non-esterified stanols in a liquid emulsion on cholesterol absorption and synthesis in hypercholesterolemic men. Eur J Nutr 41(2):54–60

    CAS  PubMed  Google Scholar 

  182. Maki KC, Davidson MH, Umporowicz DM, Schaefer EJ, Dicklin MR, Ingram KA, Chen S, McNamara JR, Gebhart BW, Ribaya-Mercado JD et al (2001) Lipid responses to plant-sterol-enriched reduced-fat spreads incorporated into a National Cholesterol Education Program Step I diet. Am J Clin Nutr 74(1):33–43

    CAS  PubMed  Google Scholar 

  183. Miettinen TA, Puska P, Gylling H, Vanhanen H, Vartiainen E (1995) Reduction of serum cholesterol with sitostanol-ester margarine in a mildly hypercholesterolemic population. N Engl J Med 333(20):1308–1312

    CAS  PubMed  Google Scholar 

  184. Wang DQ, Neuschwander-Tetri BA, Portincasa P (2017) The biliary system. Morgan & Claypool Life Sciences, Princeton

    Google Scholar 

  185. Kosters A, Frijters RJ, Schaap FG, Vink E, Plosch T, Ottenhoff R, Jirsa M, De Cuyper IM, Kuipers F, Groen AK (2003) Relation between hepatic expression of ATP-binding cassette transporters G5 and G8 and biliary cholesterol secretion in mice. J Hepatol 38(6):710–716

    CAS  PubMed  Google Scholar 

  186. Wang HH, Lammert F, Schmitz A, Wang DQ (2010) Transgenic overexpression of Abcb11 enhances biliary bile salt outputs, but does not affect cholesterol cholelithogenesis in mice. Eur J Clin Investig 40(6):541–551

    CAS  Google Scholar 

  187. Glomset JA, Janssen ET, Kennedy R, Dobbins J (1966) Role of plasma lecithin: cholesterol acyltransferase in the metabolism of high density lipoproteins. J Lipid Res 7(5):638–648

    CAS  PubMed  Google Scholar 

  188. Rader DJ (2014) New therapies for coronary artery disease: genetics provides a blueprint. Sci Transl Med 6(239):239ps4

    PubMed  Google Scholar 

  189. Tuteja S, Rader DJ (2014) High-density lipoproteins in the prevention of cardiovascular disease: changing the paradigm. Clin Pharmacol Ther 96(1):48–56

    CAS  PubMed  Google Scholar 

  190. Rader DJ, Hovingh GK (2014) HDL and cardiovascular disease. Lancet 384(9943):618–625

    CAS  PubMed  Google Scholar 

  191. Rader DJ (2014) Spotlight on HDL biology: new insights in metabolism, function, and translation. Cardiovasc Res 103(3):337–340

    CAS  PubMed  Google Scholar 

  192. Rosenson RS, Brewer HB Jr, Davidson WS, Fayad ZA, Fuster V, Goldstein J, Hellerstein M, Jiang XC, Phillips MC, Rader DJ et al (2012) Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation 125(15):1905–1919

    PubMed  PubMed Central  Google Scholar 

  193. Lewis GF, Rader DJ (2005) New insights into the regulation of HDL metabolism and reverse cholesterol transport. Circ Res 96(12):1221–1232

    CAS  PubMed  Google Scholar 

  194. Rader DJ, Alexander ET, Weibel GL, Billheimer J, Rothblat GH (2009) The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res 50(Suppl):S189–S194

    PubMed  PubMed Central  Google Scholar 

  195. Khera AV, Rader DJ (2010) Future therapeutic directions in reverse cholesterol transport. Curr Atheroscler Rep 12(1):73–81

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Degoma EM, Rader DJ (2011) Novel HDL-directed pharmacotherapeutic strategies. Nat Rev Cardiol 8(5):266–277

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Rader DJ (2006) Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest 116(12):3090–3100

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Rosenson RS, Brewer HB Jr, Ansell B, Barter P, Chapman MJ, Heinecke JW, Kontush A, Tall AR, Webb NR (2013) Translation of high-density lipoprotein function into clinical practice: current prospects and future challenges. Circulation 128(11):1256–1267

    PubMed  Google Scholar 

  199. Toth PP, Barter PJ, Rosenson RS, Boden WE, Chapman MJ, Cuchel M, D'Agostino RB Sr, Davidson MH, Davidson WS, Heinecke JW et al (2013) High-density lipoproteins: a consensus statement from the National Lipid Association. J Clin Lipidol 7(5):484–525

    PubMed  Google Scholar 

  200. Birner-Gruenberger R, Schittmayer M, Holzer M, Marsche G (2014) Understanding high-density lipoprotein function in disease: recent advances in proteomics unravel the complexity of its composition and biology. Prog Lipid Res 56C:36–46

    Google Scholar 

  201. Stanley MM, Pineda EP, Cheng SH (1959) Serum cholesterol esters and intestinal cholesterol secretion and absorption in obstructive jaundice due to cancer. N Engl J Med 261:368–373

    CAS  PubMed  Google Scholar 

  202. Kruit JK, Plosch T, Havinga R, Boverhof R, Groot PH, Groen AK, Kuipers F (2005) Increased fecal neutral sterol loss upon liver X receptor activation is independent of biliary sterol secretion in mice. Gastroenterology 128(1):147–156

    CAS  PubMed  Google Scholar 

  203. Temel RE, Sawyer JK, Yu L, Lord C, Degirolamo C, McDaniel A, Marshall S, Wang N, Shah R, Rudel LL et al (2010) Biliary sterol secretion is not required for macrophage reverse cholesterol transport. Cell Metab 12(1):96–102

    CAS  PubMed  PubMed Central  Google Scholar 

  204. de Boer JF, Schonewille M, Boesjes M, Wolters H, Bloks VW, Bos T, van Dijk TH, Jurdzinski A, Boverhof R, Wolters JC et al (2017) Intestinal farnesoid X receptor controls transintestinal cholesterol excretion in mice. Gastroenterology 152(5):1126–1138. e6

    PubMed  Google Scholar 

  205. de Boer JF, Schonewille M, Dikkers A, Koehorst M, Havinga R, Kuipers F, Tietge UJ, Groen AK (2017) Transintestinal and biliary cholesterol secretion both contribute to macrophage reverse cholesterol transport in rats-brief report. Arterioscler Thromb Vasc Biol 37(4):643–646

    PubMed  Google Scholar 

  206. Le May C, Berger JM, Lespine A, Pillot B, Prieur X, Letessier E, Hussain MM, Collet X, Cariou B, Costet P (2013) Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler Thromb Vasc Biol 33(7):1484–1493

    PubMed  Google Scholar 

  207. Jakulj L, van Dijk TH, de Boer JF, Kootte RS, Schonewille M, Paalvast Y, Boer T, Bloks VW, Boverhof R, Nieuwdorp M et al (2016) Transintestinal cholesterol transport is active in mice and humans and controls ezetimibe-induced fecal neutral sterol excretion. Cell Metab 24(6):783–794

    CAS  PubMed  Google Scholar 

  208. Wang DQ, Portincasa P, Tso P (2017) Transintestinal cholesterol excretion (TICE): a secondary, non-biliary pathway contributing to reverse cholesterol transport. Hepatology

    Google Scholar 

  209. Shulman RS, Bhattacharyya AK, Connor WE, and Fredrickson DS. Beta-sitosterolemia and xanthomatosis. N Engl J Med 1976;294(9):482-3.

    Google Scholar 

  210. Hidaka H, Nakamura T, Aoki T, Kojima H, Nakajima Y, Kosugi K, Hatanaka I, Harada M, Kobayashi M, Tamura A et al (1990) Increased plasma plant sterol levels in heterozygotes with sitosterolemia and xanthomatosis. J Lipid Res 31(5):881–888

    CAS  PubMed  Google Scholar 

  211. Cobb MM, Salen G, Tint GS (1997) Comparative effect of dietary sitosterol on plasma sterols and cholesterol and bile acid synthesis in a sitosterolemic homozygote and heterozygote subject. J Am Coll Nutr 16(6):605–613

    CAS  PubMed  Google Scholar 

  212. Connor WE, Lin DS, Pappu AS, Frohlich J, Gerhard G (2005) Dietary sitostanol and campestanol: accumulation in the blood of humans with sitosterolemia and xanthomatosis and in rat tissues. Lipids 40(9):919–923

    CAS  PubMed  Google Scholar 

  213. Salen G, Kwiterovich PO Jr, Shefer S, Tint GS, Horak I, Shore V, Dayal B, Horak E (1985) Increased plasma cholestanol and 5 alpha-saturated plant sterol derivatives in subjects with sitosterolemia and xanthomatosis. J Lipid Res 26(2):203–209

    CAS  PubMed  Google Scholar 

  214. Patel SB, Salen G, Hidaka H, Kwiterovich PO, Stalenhoef AF, Miettinen TA, Grundy SM, Lee MH, Rubenstein JS, Polymeropoulos MH et al (1998) Mapping a gene involved in regulating dietary cholesterol absorption. The sitosterolemia locus is found at chromosome 2p21. J Clin Invest 102(5):1041–1044

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Salen G, Tint GS, Shefer S, Shore V, Nguyen L (1992) Increased sitosterol absorption is offset by rapid elimination to prevent accumulation in heterozygotes with sitosterolemia. Arterioscler Thromb 12(5):563–568

    CAS  PubMed  Google Scholar 

  216. Robins SJ, Fasulo JM (1997) High density lipoproteins, but not other lipoproteins, provide a vehicle for sterol transport to bile. J Clin Invest 99(3):380–384

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Belamarich PF, Deckelbaum RJ, Starc TJ, Dobrin BE, Tint GS, Salen G (1990) Response to diet and cholestyramine in a patient with sitosterolemia. Pediatrics 86(6):977–981

    CAS  PubMed  Google Scholar 

  218. Nguyen LB, Cobb M, Shefer S, Salen G, Ness GC, Tint GS (1991) Regulation of cholesterol biosynthesis in sitosterolemia: effects of lovastatin, cholestyramine, and dietary sterol restriction. J Lipid Res 32(12):1941–1948

    CAS  PubMed  Google Scholar 

  219. Cobb MM, Salen G, Tint GS, Greenspan J, Nguyen LB (1996) Sitosterolemia: opposing effects of cholestyramine and lovastatin on plasma sterol levels in a homozygous girl and her heterozygous father. Metab Clin Exp 45(6):673–679

    CAS  PubMed  Google Scholar 

  220. Parsons HG, Jamal R, Baylis B, Dias VC, Roncari D (1995) A marked and sustained reduction in LDL sterols by diet and cholestyramine in beta-sitosterolemia. Clin Invest Med 18(5):389–400

    CAS  PubMed  Google Scholar 

  221. Hidaka H, Kojima H, Kawabata T, Nakamura T, Konaka K, Kashiwagi A, Kikkawa R, Shigeta Y (1995) Effects of an HMG-CoA reductase inhibitor, pravastatin, and bile sequestering resin, cholestyramine, on plasma plant sterol levels in hypercholesterolemic subjects. J Atheroscler Thromb 2(1):60–65

    CAS  PubMed  Google Scholar 

  222. Salen G, Starc T, Sisk CM, Patel SB (2006) Intestinal cholesterol absorption inhibitor ezetimibe added to cholestyramine for sitosterolemia and xanthomatosis. Gastroenterology 130(6):1853–1857

    PubMed  Google Scholar 

  223. Salen G, von Bergmann K, Lutjohann D, Kwiterovich P, Kane J, Patel SB, Musliner T, Stein P, Musser B (2004) Ezetimibe effectively reduces plasma plant sterols in patients with sitosterolemia. Circulation 109(8):966–971

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Tsubakio-Yamamoto K, Nishida M, Nakagawa-Toyama Y, Masuda D, Ohama T, Yamashita S (2010) Current therapy for patients with sitosterolemia – effect of ezetimibe on plant sterol metabolism. J Atheroscler Thromb 17(9):891–900

    CAS  PubMed  Google Scholar 

  225. Iyer SP, Yao X, Crona JH, Hoos LM, Tetzloff G, Davis HR Jr, Graziano MP, Altmann SW (2005) Characterization of the putative native and recombinant rat sterol transporter Niemann-Pick C1 Like 1 (NPC1L1) protein. Biochim Biophys Acta 1722(3):282–292

    CAS  PubMed  Google Scholar 

  226. Sudhop T, Lutjohann D, Kodal A, Igel M, Tribble DL, Shah S, Perevozskaya I, von Bergmann K (2002) Inhibition of intestinal cholesterol absorption by ezetimibe in humans. Circulation 106(15):1943–1948

    CAS  PubMed  Google Scholar 

  227. Sudhop T, von Bergmann K (2002) Cholesterol absorption inhibitors for the treatment of hypercholesterolaemia. Drugs 62(16):2333–2347

    CAS  PubMed  Google Scholar 

  228. Pandor A, Ara RM, Tumur I, Wilkinson AJ, Paisley S, Duenas A, Durrington PN, Chilcott J (2009) Ezetimibe monotherapy for cholesterol lowering in 2,722 people: systematic review and meta-analysis of randomized controlled trials. J Intern Med 265(5):568–580

    CAS  PubMed  Google Scholar 

  229. Lusis AJ (2000) Atherosclerosis. Nature 407(6801):233–241

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Emerging Risk Factors Collaboration, Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK, Thompson A, Wood AM, Lewington S, Sattar N et al (2009) Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302(18):1993–2000

    Google Scholar 

  231. Allen JK (2000) Genetics and cardiovascular disease. Nurs Clin North Am 35(3):653–662

    CAS  PubMed  Google Scholar 

  232. Chico TJ, Milo M, Crossman DC (2010) The genetics of cardiovascular disease: new insights from emerging approaches. J Pathol 220(2):186–197

    CAS  PubMed  Google Scholar 

  233. Cymet T (2010) Genetics of cardiovascular disease. Compr Ther 36:18–19

    PubMed  Google Scholar 

  234. Hajar R (2020) Genetics in cardiovascular disease. Heart Views 21(1):55–56

    PubMed  PubMed Central  Google Scholar 

  235. Kathiresan S, Srivastava D (2012) Genetics of human cardiovascular disease. Cell 148(6):1242–1257

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Katsuya T, Harrap SB, Ogihara T (2011) Genetics of hypertension and cardiovascular disease. Int J Hypertens 2010:951254

    PubMed  PubMed Central  Google Scholar 

  237. Sabeva NS, Liu J, Graf GA (2009) The ABCG5 ABCG8 sterol transporter and phytosterols: implications for cardiometabolic disease. Curr Opin Endocrinol Diabetes Obes 16(2):172–177

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Klett EL, Patel S (2003) Genetic defenses against noncholesterol sterols. Curr Opin Lipidol 14(4):341–345

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Patel SB, Graf GA, Temel RE (2018) ABCG5 and ABCG8: more than a defense against xenosterols. J Lipid Res 59(7):1103–1113

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Patel SB (2014) Recent advances in understanding the STSL locus and ABCG5/ABCG8 biology. Curr Opin Lipidol 25(3):169–175

    CAS  PubMed  Google Scholar 

  241. Wilund KR, Yu L, Xu F, Hobbs HH, Cohen JC (2004) High-level expression of ABCG5 and ABCG8 attenuates diet-induced hypercholesterolemia and atherosclerosis in Ldlr-/- mice. J Lipid Res 45(8):1429–1436

    CAS  PubMed  Google Scholar 

  242. Wu JE, Basso F, Shamburek RD, Amar MJ, Vaisman B, Szakacs G, Joyce C, Tansey T, Freeman L, Paigen BJ et al (2004) Hepatic ABCG5 and ABCG8 overexpression increases hepatobiliary sterol transport but does not alter aortic atherosclerosis in transgenic mice. J Biol Chem 279(22):22913–22925

    CAS  PubMed  Google Scholar 

  243. Basso F, Freeman LA, Ko C, Joyce C, Amar MJ, Shamburek RD, Tansey T, Thomas F, Wu J, Paigen B et al (2007) Hepatic ABCG5/G8 overexpression reduces apoB-lipoproteins and atherosclerosis when cholesterol absorption is inhibited. J Lipid Res 48(1):114–126

    CAS  PubMed  Google Scholar 

  244. Hubacek JA, Berge KE, Stefkova J, Pitha J, Skodova Z, Lanska V, Poledne R (2004) Polymorphisms in ABCG5 and ABCG8 transporters and plasma cholesterol levels. Physiol Res/Academia Scientiarum Bohemoslovaca 53(4):395–401

    CAS  Google Scholar 

  245. Gylling H, Hallikainen M, Pihlajamaki J, Agren J, Laakso M, Rajaratnam RA, Rauramaa R, Miettinen TA (2004) Polymorphisms in the ABCG5 and ABCG8 genes associate with cholesterol absorption and insulin sensitivity. J Lipid Res 45(9):1660–1665

    CAS  PubMed  Google Scholar 

  246. Jakulj L, Vissers MN, Tanck MW, Hutten BA, Stellaard F, Kastelein JJ, Dallinga-Thie GM (2010) ABCG5/G8 polymorphisms and markers of cholesterol metabolism: systematic review and meta-analysis. J Lipid Res 51(10):3016–3023

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, Peto R, Barnes EH, Keech A et al (2010) Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376(9753):1670–1681

    Google Scholar 

  248. Grundy SM, Cleeman JI, Merz CN, Brewer HB Jr, Clark LT, Hunninghake DB, Pasternak RC, Smith SC Jr, Stone NJ (2004) Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 110(2):227–239

    PubMed  Google Scholar 

  249. Barter PJ, Brewer HB Jr, Chapman MJ, Hennekens CH, Rader DJ, Tall AR (2003) Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler Thromb Vasc Biol 23(2):160–167

    CAS  PubMed  Google Scholar 

  250. Wang HH, Portincasa P, Wang DQ (2008) Molecular pathophysiology and physical chemistry of cholesterol gallstones. Front Biosci 13:401–423

    CAS  PubMed  Google Scholar 

  251. Wang HH, Li T, Portincasa P, Ford DA, Neuschwander-Tetri BA, Tso P, Wang DQ (2017) New insights into the role of Lith genes in the formation of cholesterol-supersaturated bile. Liver Res 1(1):42–53

    Google Scholar 

  252. Wittenburg H, Lyons MA, Li R, Kurtz U, Mossner J, Churchill GA, Carey MC, Paigen B (2005) Association of a lithogenic Abcg5/Abcg8 allele on Chromosome 17 (Lith9) with cholesterol gallstone formation in PERA/EiJ mice. Mamm Genome 16(7):495–504

    CAS  PubMed  Google Scholar 

  253. Wittenburg H, Lyons MA, Paigen B, Carey MC (2003) Mapping cholesterol gallstone susceptibility (Lith) genes in inbred mice. Dig Liver Dis 35(Suppl 3):S2–S7

    CAS  PubMed  Google Scholar 

  254. Jiang ZY, Parini P, Eggertsen G, Davis MA, Hu H, Suo GJ, Zhang SD, Rudel LL, Han TQ, Einarsson C (2008) Increased expression of LXR alpha, ABCG5, ABCG8, and SR-BI in the liver from normolipidemic, nonobese Chinese gallstone patients. J Lipid Res 49(2):464–472

    CAS  PubMed  Google Scholar 

  255. von Schonfels W, Buch S, Wolk M, Aselmann H, Egberts JH, Schreiber S, Krawczak M, Becker T, Hampe J, Schafmayer C (2013) Recurrence of gallstones after cholecystectomy is associated with ABCG5/8 genotype. J Gastroenterol 48(3):391–396

    Google Scholar 

  256. Wang HH, Li X, Patel SB, Wang DQ (2016) Evidence that the adenosine triphosphate-binding cassette G5/G8-independent pathway plays a determinant role in cholesterol gallstone formation in mice. Hepatology 64(3):853–864

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Repa JJ, Berge KE, Pomajzl C, Richardson JA, Hobbs H, Mangelsdorf DJ (2002) Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J Biol Chem 277(21):18793–18800

    CAS  PubMed  Google Scholar 

  258. Yu L, York J, von Bergmann K, Lutjohann D, Cohen JC, Hobbs HH (2003) Stimulation of cholesterol excretion by the liver X receptor agonist requires ATP-binding cassette transporters G5 and G8. J Biol Chem 278(18):15565–15570

    CAS  PubMed  Google Scholar 

  259. Uppal H, Zhai Y, Gangopadhyay A, Khadem S, Ren S, Moser JA, Xie W (2008) Activation of liver X receptor sensitizes mice to gallbladder cholesterol crystallization. Hepatology 47(4):1331–1342

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by research grants DK101793, DK106249, DK114516, and AA025737 (to DQ-HW), as well as P30 DK041296 (to Marion Bessin Liver Research Center), all from the National Institutes of Health (US Public Health Service). This chapter was modified from the paper published by our group in Annals of Hepatology (Helen H. Wang, Gabriella Garruti, Min Liu, Piero Portincasa, David Q.-H. Wang. 2017; 16 (Suppl. 1): s28–s43). The related contents are re-used with the permission.

Conflict of Interest

There is no conflict of interest to disclose for all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Q.-H. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, H.H., Liu, M., Portincasa, P., Wang, D.QH. (2020). Recent Advances in the Critical Role of the Sterol Efflux Transporters ABCG5/G8 in Health and Disease. In: Jiang, XC. (eds) Lipid Transfer in Lipoprotein Metabolism and Cardiovascular Disease. Advances in Experimental Medicine and Biology, vol 1276. Springer, Singapore. https://doi.org/10.1007/978-981-15-6082-8_8

Download citation

Publish with us

Policies and ethics