Skip to main content

Navier–Stokes-Based Image Inpainting for Restoration of Missing Data Due to Clouds

  • Conference paper
  • First Online:
Innovations in Computational Intelligence and Computer Vision

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1189))

Abstract

One of the challenges in the utilization of optical satellite images is cloud occlusions. This missing data due to clouds leads to issues in image interpretation and its utilization in different applications. For images, where sparse clouds are present, single image-based restoration is possible; however, cloud dominated images require multi-temporal images for removing clouds. Standard image interpolation-based technique for single image uses only the neighboring pixels information for restoration. The image restoration method based on image inpainting explores the local information of the entire image and propagates the same into the missing gaps. In this paper, the Navier–Stokes-based inpainting algorithm is being used for the restoration. The algorithm propagates the smoothness of the image via partial differential equations(PDEs) and at the same time preserves the edges at the boundary/features of the image. It is analyzed on different satellite images covering different types of terrains and the results show improved statistical characteristics for the restored images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Julien, J.A. Sobrino, Comparison of cloud-reconstruction methods for time series of composite NDVI data. Remote Sens. Environ. 114(3), 618–625 (2010)

    Google Scholar 

  2. N.K. Greeshma, M. Baburaj, S.N. George, Reconstruction of cloud-contaminated satellite remote sensing images using kernel pca-based image modelling. Arab. J. Geosci. 9(3), 239 (2016)

    Google Scholar 

  3. S. Shibata, M. Iiyama, A. Hashimoto, M. Minoh, Restoration of sea surface temperature images by learning-based and optical-flow-based inpainting, in 2017 IEEE International Conference on Multimedia and Expo (ICME). IEEE (2017), pp. 193–198

    Google Scholar 

  4. I. Pratama, A.E. Permanasari, I. Ardiyanto,R. Indrayani, A review of missing values handling methods on time-series data, in 2016 International Conference on Information Technology Systems and Innovation (ICITSI). IEEE (2016), pp. 1–6

    Google Scholar 

  5. H.G. Malamiri, I. Rousta, H. Olafsson, H. Zare, H. Zhang, Gap-filling of modis time series land surface temperature (LST) products using singular spectrum analysis (SSA). Atmosphere 9(9), 334 (2018)

    Google Scholar 

  6. J. Zhou, L. Jia, M. Menenti, Reconstruction of global modis ndvi time series: performance of harmonic analysis of time series (hants). Remote Sens. Environ. 163, 217–228 (2015)

    Article  Google Scholar 

  7. M. Lepot, J.-B. Aubin, F. Clemens, Interpolation in time series: an introductive overview of existing methods, their performance criteria and uncertainty assessment. Water 9(10), 796 (2017)

    Article  Google Scholar 

  8. G.E.P. Box, G.M. Jenkins, G.C. Reinsel, G.M. Ljung, Time Series Analysis: Forecasting and Control (Wiley, New York, 2015)

    Google Scholar 

  9. Christine Guillemot, Olivier Le Meur, Image inpainting: Overview and recent advances. IEEE signal processing magazine 31(1), 127–144 (2014)

    Article  Google Scholar 

  10. A. Criminisi, P. Pérez, K. Toyama, Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image Process. 13(9), 1200–1212 (2004)

    Article  Google Scholar 

  11. A. Telea, An image inpainting technique based on the fast marching method. J. Graph. Tools 9(1), 23–34 (2004)

    Article  Google Scholar 

  12. M. Bertalmio, A.L. Bertozzi, G. Sapiro, Navier–Stokes, fluid dynamics, and image and video inpainting, in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), vol. 1. IEEE (2001), p. I-I

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepti Maduskar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maduskar, D., Dube, N. (2021). Navier–Stokes-Based Image Inpainting for Restoration of Missing Data Due to Clouds. In: Sharma, M.K., Dhaka, V.S., Perumal, T., Dey, N., Tavares, J.M.R.S. (eds) Innovations in Computational Intelligence and Computer Vision. Advances in Intelligent Systems and Computing, vol 1189. Springer, Singapore. https://doi.org/10.1007/978-981-15-6067-5_56

Download citation

Publish with us

Policies and ethics