Skip to main content

Mechanism for the Functioning of the Artificial Liver

  • Chapter
  • First Online:
Artificial Liver

Abstract

The liver is a vertebrate organ that detoxifies metabolites, synthesizes proteins, and produces biochemical substances necessary for digestion. The liver is mostly consisted of hepatocytes, regulating biochemical reactions necessary for normal life function. In the conditions of liver insufficiency, toxins could accumulate in the plasma and cause progressive encephalopathy and multiorgan dysfunction. Complications such as hyperdynamic circulation, coagulopathy failure, acute renal and respiratory insufficiency, cerebral edema, which will finally lead to brain death. Artificial liver support systems are designed to replace the detoxification functions in the liver temporally. With some artificial liver support systems, albumin is used as scavenger molecules for clearing toxins. Many studies observed that patients who received an artificial liver support system had significantly higher transplant-free survival than those who have not. Basically, artificial liver can act as “bridge” to the transplant procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li LJ, Yang Q, Huang JR, et al. Effect of artificial liver support system on patients with severe viral hepatitis: a study of four hundred cases. World J Gastroenterol. 2004;10:2984–8.

    Article  CAS  Google Scholar 

  2. Du WB, Li LJ, Huang JR, et al. Effects of artificial liver support system on patients with acute or chronic liver failure. Transplant Proc. 2005;37:4359–64.

    Article  CAS  Google Scholar 

  3. Li LJ, Liu XL, Xu XW, et al. Comparison of plasma exchange with different membrane pore sizes in the treatment of severe viral hepatitis. Ther Apher Dial. 2005;9:396–401.

    Article  Google Scholar 

  4. Cao S, Esquivel CO, Keeffe EB. New approaches to supporting the failing liver. Annu Rev Med. 1998;49:85–94.

    Article  CAS  Google Scholar 

  5. Strain AJ, Neuberger JM. A bioartificial liver--state of the art. Science. 2002;295:1005–9.

    Article  CAS  Google Scholar 

  6. Streetz KL. Bio-artificial liver devices--tentative, but promising progress. J Hepatol. 2008;48:189–91.

    Article  Google Scholar 

  7. Hao S, Xin J, Lian J, et al. Establishing a metabolomic model for the prognosis of hepatitis B virus-induced acute-on-chronic liver failure treated with different liver support systems. Metabolomics. 2010;14:1–13.

    CAS  Google Scholar 

  8. Yamagishi Y, Saito H, Ebinuma H, et al. A new prognostic formula for adult acute liver failure using computer tomography-derived hepatic volumetric analysis. J Gastroenterol. 2009;44:615–23.

    Article  Google Scholar 

  9. Pazzi P, Morsiani E, Vilei MT, et al. Serum bile acids in patients with liver failure supported with a bioartificial liver. Aliment Pharmacol Ther. 2002;16:1547–54.

    Article  CAS  Google Scholar 

  10. Rozga J, Podesta L, LePage E, et al. Control of cerebral oedema by total hepatectomy and extracorporeal liver support in fulminant hepatic failure. Lancet. 1993;342:898–9.

    Article  CAS  Google Scholar 

  11. Matsumura KN, Guevara GR, Huston H, et al. Hybrid bioartificial liver in hepatic failure: preliminary clinical report. Surgery. 1987;101:99–103.

    CAS  Google Scholar 

  12. 王英杰 (1999) 人工肝支持系统及其治疗重型肝炎的研究现状. 中华传染病杂志 17:279–81.

    Google Scholar 

  13. Dixit V, Gitnick G. Artificial liver support: state of the art. Scand J Gastroenterol Suppl. 1996;220:101–14.

    Article  CAS  Google Scholar 

  14. 李兰娟 (2001) 人工肝支持系统. 现代实用医学13:9–10.

    Google Scholar 

  15. Arkadopoulos N, Detry O, Rozga J, et al. Liver assist systems: state of the art. Int J Artif Organs. 1999;21:781–7.

    Article  Google Scholar 

  16. Demetriou AA, Brown RS Jr, Busuttil RW, et al. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg. 2004;239:660–7.

    Article  Google Scholar 

  17. Ellis AJ, Hughes RD, Wendon JA, et al. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology. 1996;24:1446–51.

    Article  CAS  Google Scholar 

  18. van de Kerkhove MP, Di Florio E, Scuderi V, et al. Phase I clinical trial with the AMC-bioartificial liver. Int J Artif Organs. 2002;25:950–9.

    Article  Google Scholar 

  19. Patzer JF. Advances in bioartificial liver assist devices. Ann N Y Acad Sci. 2002;944:320–33.

    Article  Google Scholar 

  20. Rozga J, Podesta L, LePage E, et al. A bioartificial liver to treat severe acute liver failure. Ann Surg. 1994;219:538–44.

    Article  CAS  Google Scholar 

  21. Watanabe FD, Mullon CJ, Hewitt WR, et al. Clinical experience with a bioartificial liver in the treatment of severe liver failure. A phase I clinical trial. Ann Surg. 1997;225:484–91.

    Article  CAS  Google Scholar 

  22. Li LJ, Du WB, Zhang YM, et al. Evaluation of a bioartificial liver based on a nonwoven fabric bioreactor with porcine hepatocytes in pigs. J Hepatol. 2006;44:317–24.

    Article  CAS  Google Scholar 

  23. Lv G, Zhao L, Zhang A, et al. Bioartificial liver system based on choanoid fluidized bed bioreactor improve the survival time of fulminant hepatic failure pigs. Biotechnol Bioeng. 2011;108:2229–36.

    Article  CAS  Google Scholar 

  24. Demetriou AA, Rozga J, Podesta L, et al. Early clinical experience with a hybrid bioartificial liver. Scand J Gastroenterol Suppl. 1995;208:111–7.

    Article  CAS  Google Scholar 

  25. Rahman TM, Selden C, Khalil M, et al. Alginate-encapsulated human hepatoblastoma cells in an extracorporeal perfusion system improve some systemic parameters of liver failure in a xenogeneic model. Artif Organs. 2004;28:476–82.

    Article  Google Scholar 

  26. Kelly JH, Koussayer T, He DE, et al. An improved model of acetaminophen-induced fulminant hepatic failure in dogs. Hepatology. 1992;15:329–35.

    Article  CAS  Google Scholar 

  27. Sussman NL, Chong MG, Koussayer T, et al. Reversal of fulminant hepatic-failure using an extracorporeal liver assist device. Hepatology. 1992;16:60–5.

    Article  CAS  Google Scholar 

  28. Sussman NL, Gislason GT, Conlin CA, et al. The Hepatix extracorporeal liver assist device: initial clinical experience. Artif Organs. 1994;18:390–6.

    Article  CAS  Google Scholar 

  29. Millis JM, Cronin DC, Johnson R, et al. Initial experience with the modified extracorporeal liver-assist device for patients with fulminant hepatic failure: system modifications and clinical impact. Transplantation. 2002;74:1735–46.

    Article  Google Scholar 

  30. Li J, Li LJ, Cao HC, et al. Establishment of highly differentiated immortalized human hepatocyte line with simian virus 40 large tumor antigen for liver based cell therapy. ASAIO J. 2005;51:262–8.

    Article  CAS  Google Scholar 

  31. Li J, Li L, Yu H, Cao H, et al. Growth and metabolism of human hepatocytes on biomodified collagen poly(lactic-co-glycolic acid) three-dimensional scaffold. ASAIO J. 2006;52:321–7.

    Article  CAS  Google Scholar 

  32. Yu CB, Lv GL, Pan XP, et al. In vitro large-scale cultivation and evaluation of microencapsulated immortalized human hepatocytes (HepLL) in roller bottles. Int J Artif Organs. 2009;32:272–81.

    Article  CAS  Google Scholar 

  33. Qian Y, Lanjuan L, Jianrong H, Jun L, et al. Study of severe hepatitis treated with a hybrid artificial liver support system. Int J Artif Organs. 2003;26:507–13.

    Article  CAS  Google Scholar 

  34. Gan JH, Zhou XQ, Qin AL, et al. Hybrid artificial liver support system for treatment of severe liver failure. World J Gastroenterol. 2005;11:890–4.

    Article  Google Scholar 

  35. Xu J. Advances the Research of medium weight molecular substances. Foreign Med Anesthesiol Resusc. 1996;17:3–5.

    Google Scholar 

  36. Liang XM, Shao TW, Chen CH. Pathological damage and physiological protection of bilirubin on the body. Hosp Clin J. 2012;9:4–8.

    Google Scholar 

  37. Duan Z. Artificial liver therapy. Chin Med Sci Technol Press. 2002;17:13–9.

    Google Scholar 

  38. Knell AJ, Dukes PC. Dialysis procedures in acute liver coma. Lancet. 1976;2:22–5.

    Google Scholar 

  39. Konstatin P, Chang J, Otto V. Artificial liver. Artif Organs. 1992;16:89–97.

    Google Scholar 

  40. Stangeedure J, Mitzner S, Ramlow W. A new procedure for the removal of protein bound drugs and toxins. ASAIO J. 1993;39:52–6.

    Google Scholar 

  41. Hughes RD, Williams R. Use of sorbent columns and hemofiltration in fulminant hepatic failure. Blood Purif. 1993;11:75–9.

    Article  Google Scholar 

  42. Ogrady JG, Gimson AES, Obrein CT. Controlled trials of charcoal hemoperfusion and prognofic factors in fulminant hepatic failure. Gastroenterology. 1998;94:76–80.

    Google Scholar 

  43. Hughes RD, Williams R. Clinical experience with charcoal and resin hemoperfusion. Semin Liver Dis. 1986;8:127–32.

    Google Scholar 

  44. Wallace DJ. Apheresis for lupus erythematosus. Lupus. 1999;8:76–89.

    Article  Google Scholar 

  45. Li LJ, Huang JR, Chen YM. Application of artificial liver support systems in the patients with fulminant hepatitis. Chin J Infect Dis. 1999;19:34–7.

    Google Scholar 

  46. Yu CB, Pan XP, Li LJ. Efficacy of non-biological artificial liver in treating chronic severe hepatitis. 2008-2009 Fifth International and National Conference on Hepatic Failure and Artificial Liver; 2008.

    Google Scholar 

  47. Guo YZ, Chen JJ, Li JZ. Changes of serum amino acid spectra in patients with liver failure treated by abiotic artificial liver support system. China J Infect Dis. 2011;29:55–8.

    Google Scholar 

  48. Cheng Z, Ma S, Guo J. Microecological disorder and infection. Chin J Microecol. 2011;23:370–4.

    Google Scholar 

  49. Chen Y, Yang F, Lu H, et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology. 2011;54:562–72.

    Article  Google Scholar 

  50. Gu R, Gao Z. The intestinal microecological imbalance of liver disease and its effect on the body. J Trop Med. 2010;10:359–61.

    Google Scholar 

  51. Li B, He W, Xu A. Microecological imbalance in liver cirrhosis and the application of probiotics. Guangdong Med J. 2012;33:1017–20.

    CAS  Google Scholar 

  52. Bauer TM, Schwacha H, Steinbruckner B, et al. Small intestinal bacterial overgrowth in human cirrhosis is associated with systemic endotoxemia. Am J Gastroenterol. 2002;97:2364–70.

    Article  Google Scholar 

  53. Hua J, Li J, Zeng M. The study of intestinal flora in patients with cirrhosis. Chin J Hepatol. 1998;6:79–81.

    Google Scholar 

  54. van Deventer SJ, ten Cate JW, Tytgat GN. Intestinal endotoxemia. Clinical significance. Gastroenterology. 1988;94:825–31.

    Article  Google Scholar 

  55. Guarner C, Soriano G, Tomas A, et al. Increased serum nitrite and nitrate levels in patients with cirrhosis: relationship to endotoxemia. Hepatology. 1993;18:1139–43.

    Article  CAS  Google Scholar 

  56. Li L. Infection microecology. Beijing: People’s Medical Publishing House; 2002.

    Google Scholar 

  57. The treatment indications, standards and technical guidelines of liver support system. Chin J Infect Dis; 2002.

    Google Scholar 

  58. Jimenez JV, Carrillo-Perez DL, Rosado-Canto R, et al. Electrolyte and acid-base disturbances in end-stage liver disease: a physiopathological approach. Dig Dis Sci. 2017;62:1855–71.

    Article  CAS  Google Scholar 

  59. Sterns RH. Disorders of plasma sodium--causes, consequences, and correction. N Engl J Med. 2013;372:55–65.

    Article  Google Scholar 

  60. Maiwall R, Kumar S, Sharma MK, et al. Prevalence and prognostic significance of hyperkalemia in hospitalized patients with cirrhosis. J Gastroenterol Hepatol. 2016;31:988–94.

    Article  CAS  Google Scholar 

  61. Henriksen JH, Bendtsen F, Moller S. Acid-base disturbance in patients with cirrhosis: relation to hemodynamic dysfunction. Eur J Gastroenterol Hepatol. 2015;27:920–7.

    Article  CAS  Google Scholar 

  62. Zhou N, Li J, Zhang Y, Lu J, et al. Efficacy of coupled low-volume plasma exchange with plasma filtration adsorption in treating pigs with acute liver failure: a randomised study. J Hepatol. 2015;63:378–87.

    Article  CAS  Google Scholar 

  63. Mao YC, Chen YM, Li LJ. Changes of serum cytokine levels in patients with acute on chronic liver failure treated by plasma exchange. J Clin Gastroenterol. 2011;45:55–7.

    Article  Google Scholar 

  64. Zou BL, Xu DP, Zhang Z. Imbalanced intrahepatic cytokine expression of interferon-gamma, tumor necrosis factor-alpha, and interleukin-10 in patients with acute-on-chronic liver failure associated with hepatitis B virus infection. J Clin Gastroenterol. 2009;43:98–100.

    Article  Google Scholar 

  65. Shimizu YMJ, Landeros K, Otomo N. The resistance of P. acnes--primed interferon gamma-deficient mice to low-dose lipopolysaccharide-induced acute liver injury. Hepatology. 2002;35:10–9.

    Article  Google Scholar 

  66. Tsuji H, Mukaida N, Harada A, Kaneko S. Alleviation of lipopolysaccharide-induced acute liver injury in Propionibacterium acnes-primed IFN-gamma-deficient mice by a concomitant reduction of TNF-alpha, IL-12, and IL-18 production. J Immunol. 1999;162:7–11.

    Google Scholar 

  67. Luster MIGD, Yoshida T, Kayama F. Endotoxin-induced cytokine gene expression and excretion in the liver. Hepatology. 1994;19:98–101.

    Article  Google Scholar 

  68. Streetz KLL, Grundmann D, Ramakers J. Tumor necrosis factor alpha in the pathogenesis of human and murine fulminant hepatic failure. Gastroenterology. 2000;119:14–9.

    Article  Google Scholar 

  69. Liedtke C, Trautwein C. The role of TNF and Fas dependent signaling in animal models of inflammatory liver injury and liver cancer. Eur J Cell Biol. 2012;91:8–18.

    Article  Google Scholar 

  70. Streetz KLLT, Manns MP, Trautwein C. Interleukin 6 and liver regeneration. Gut. 2000;47:4–12.

    Article  Google Scholar 

  71. Fukumura ATM, Tsuchishima M. Effect of the inductor of interleukin-6 (ME3738) on rat liver treated with ethanol. Alcohol Clin Exp Res. 2007;31:5–11.

    Article  Google Scholar 

  72. Gao DD, Fu J, Qin B. Recombinant adenovirus containing hyper-interleukin-6 and hepatocyte growth factor ameliorates acute-on-chronic liver failure in rats. World J Gastroenterol. 2016;22:6–11.

    Article  Google Scholar 

  73. Kamohara SN, Mizuguchi T, Inderbitzin D. Inhibition of signal transducer and activator transcription factor 3 in rats with acute hepatic failure. Biochem Biophys Res CommunBiochem Biophys Res Commun. 2000;273:7–12.

    Google Scholar 

  74. Kim HY, Cho ML, Choi JY. Interleukin-6 upregulates Th17 response via mTOR/STAT3 pathway in acute-on-chronic hepatitis B liver failure. J Gastroenterol. 2014;49:10–4.

    Article  Google Scholar 

  75. Banares R, Catalina MV, Vaquero J. Molecular adsorbent recirculating system and bioartificial devices for liver failure. Clin Liver Dis. 2014;18:12–8.

    Article  Google Scholar 

  76. Nyberg SL. Bridging the gap: advances in artificial liver support. Liver Transpl. 2012;18:5–11.

    Article  Google Scholar 

  77. Larsen FS, Bernsmeier C, Rasmussen A. High-volume plasma exchange in patients with acute liver failure: an open randomised controlled trial. J Hepatol. 2016;64:10–9.

    Article  Google Scholar 

  78. Iwai NM, Naito T, Ishiki Y. Removal of endotoxin and cytokines by plasma exchange in patients with acute hepatic failure. Crit Care Med. 1998;26:4–11.

    Article  Google Scholar 

  79. He J, Xu TM, Zhou GP. Changes of serum cytokines in patients with plasma and its clinical significance. Dial Artif Organs. 2004;15:4–11.

    Google Scholar 

  80. Huo YM, Lu TF, Hua R. Influence of plasma exchange on transplantation related immune function in patients with liver failure. Genet Mol Res. 2015;14:11–4.

    Article  Google Scholar 

  81. Yao SZ, Su TT, Zhou HY. Effects of plasma replacement on multiple cytokines and T lymphocyte subsets in patients with severe hepatitis. J Liver Dis. 2010;13:3–9.

    Google Scholar 

  82. Hajime C, Hiroshi W, Yoshihiro A. Effectiveness of combining plasma exchange and continuous hemodiafiltration (combined modality therapy in a parallel circuit) in the treatment of patients with acute hepatic failure. Ther Apher. 2001;5:6–9.

    Google Scholar 

  83. Matsubara S. Combination of plasma exchange and continuous hemofiltration as temporary metabolic support for patients with acute liver failure. Artif Organs. 1994;18:4–9.

    Article  Google Scholar 

  84. Nakae H, Yonekawa T, Narita K, Endo S. Are proinflammatory cytokine concentrations reduced by plasma exchange in patients with severe acute hepatic failure? Res Commun Mol Pathol Pharmacol. 2001;109:8–16.

    Google Scholar 

  85. Li LJ, Huang JR, Chen JH. Study on treatment of severe viral hepatitis by artificial liver support system. Chin J Hepatol. 1997;5:2–7.

    Google Scholar 

  86. Yonekawa C, Nakae H, Tajimi K, Asanuma Y. Effectiveness of combining plasma exchange and continuous hemodiafiltration in patients with postoperative liver failure. Artif Organs. 2005;29:5–11.

    Article  Google Scholar 

  87. Saibara T, Maeda T, Onishi S, Yamamoto Y. Plasma exchange and the arterial blood ketone body ration in patients with acute hepatic failure. J Hepatol. 1994;20:6–11.

    Article  Google Scholar 

  88. Ho DW, Fan ST, To J, Woo YH, et al. Selective plasma filtration for treatment of fulminant hepatic failure induced by D-galactosamine in a pig model. Gut. 2002;50:8–11.

    Article  Google Scholar 

  89. Maggi U, Gatti S, Antonelli B. Hyperbilirubinemia after liver transplantation: the role of coupled plasma filtration adsorption. Transplant Proc. 2013;45:3–11.

    Article  Google Scholar 

  90. He CS, Ye ZM, Liang XL. Efficacy and safety of coupled plasma filtration adsorption combined with continuous veno-venous hemofiltration for multiple organ dysfunction syndrome patients with acute liver failure. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2007;19:3–8.

    Google Scholar 

  91. Nagaki M, Keane HM, Lau JY. In vitro plasma perfusion through adsorbents and plasma ultrafiltration to remove endotoxin and cytokines. Circ Shock. 1992;38:7–11.

    Google Scholar 

  92. Nagaki M, Lau JY, Williams R. Removal of endotoxin and cytokines by adsorbents and the effect of plasma protein binding. Int J Artif Organs. 1991;14:8–11.

    Article  Google Scholar 

  93. Shinohara H, Ikemoto T, Morine Y. New type of artificial liver support system (ALSS) using the photocatalytic effect of titanium oxide. Dig Dis Sci. 2007;52:5–11.

    Article  Google Scholar 

  94. Chen Z, Wang YJ, Zhang SC. Effect of polysulfone membrane bioreactor on the plasma of patients with severe liver. Laser. 2007;27:1–11.

    Google Scholar 

  95. Gerlach JA, Trost O, Hole O. Side effects of hybrid liver support therapy: TNF-alpha liberation in pigs, associated with extracorporeal bioreactors. Int J Artif Organs. 1993;16:5–9.

    Article  Google Scholar 

  96. Hughes NN, Langley PG, Ellis AJ. Plasma cytokine levels and coagulation and complement activation during use of the extracorporeal liver assist device in acute liver failure. Artif Organs. 1998;22:5–10.

    Article  Google Scholar 

  97. Shinoda TA, Kobayashi N, Wakabayashi G. A bioartificial liver device secreting interleukin-1 receptor antagonist for the treatment of hepatic failure in rats. J Surg Res. 2007;137:11–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanjuan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd. and Zhejiang University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bao, Q., Guo, J., Chen, Y., Yang, F., Li, L. (2021). Mechanism for the Functioning of the Artificial Liver. In: Li, L. (eds) Artificial Liver. Springer, Singapore. https://doi.org/10.1007/978-981-15-5984-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5984-6_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5983-9

  • Online ISBN: 978-981-15-5984-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics