Skip to main content

Stabilizing and Trajectory Tracking of Inverted Pendulum Based on Fuzzy Logic Control

  • Conference paper
  • First Online:
Intelligent and Cloud Computing

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 194))

Abstract

This manuscript presents a SIMULINK model of Inverted Pendulum (IP) and design of a Fuzzy Logic Controller (FLC) to control of Cart Position (CP), and Angular Position (AP) of the pendulum under uncertainties and disturbances. The FLC is a novel approach whose gains dynamically vary with respect to the error and change in the error signal. The validation of the improved control performance of FLC is established by comparative result investigation with other published control algorithms. The comparative results clearly reveal the better response of the proposed approach to control the system dynamics within the stable range with respect to accuracy, robustness, and ability to handle uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iqbal, J., Islam R, U., Syed, Z.A., Abdul, A.K., Ajwad, S.A.: Automating industrial tasks through mechatronic systems—a review of robotics in industrial perspective. Tehnic ki vjesnik—Tech. Gaz. 23, 917–924 (2016)

    Google Scholar 

  2. Ajwad, S.A., Asim, N., Islam, R.U., Iqbal, J.: Role and review of educational robotic platforms in preparing engineers for industry. Maejo Int. J. Sci. Technol. 11, 17–34 (2017)

    Google Scholar 

  3. Bettayeb, M., Boussalem, C., Mansouri, R., Al-Saggaf, U.: Stabilization of an inverted pendulum-cart system by fractional PI-state feedback. ISA Trans. 53, 508–516 (2014)

    Article  Google Scholar 

  4. Iqbal, J., Ullah, M., Khan, S.G., Khelifa, B., Ukovic, S.C.: Nonlinear control systems -a brief overview of historical and recent advances. Nonlinear Eng. 6, 301–312 (2017)

    Article  Google Scholar 

  5. Ghosh, A., Krishnan, T., Subudhi, B.: Brief paper—robust proportional-integral-derivative compensation of an inverted cart-pendulum system: an experimental study. IET Control Theor. Appl. 6(8), 1145–1152 (2012)

    Article  Google Scholar 

  6. Wang, C., Yin, G., Liu, C., Fu, W.: Design and simulation of inverted pendulum system based on the fractional PID controller. In: IEEE 11th Conference on Industrial Electronics and Applications (ICIEA). pp. 1760–1764 (2016)

    Google Scholar 

  7. Magana, M.E., Holzapfel, F.: Fuzzy-logic control of an inverted pendulum with vision feedback. IEEE Trans. Educ. 41(2), 165–170 (1998)

    Article  Google Scholar 

  8. Ozana, S., Pies, M., Slanina, Z., Hajovsky, R.: Design and implementation of LQR controller for inverted pendulum by use of REX control system. IEEE Int. Conf. Circ. Syst. 1, 343–347 (2012)

    Google Scholar 

  9. Kumar, E.V., Jerome, J.: Robust LQR controller design for stabilizing and trajectory tracking of inverted pendulum. Proc. Eng. 64, 169–178 (2013)

    Article  Google Scholar 

  10. Prasad, L.B., Tyagi, B., Gupta, H.O.: Modelling and simulation for optimal control of nonlinear inverted pendulum dynamical system using PID controller and LQR. In: 6th Asia, Modelling Symposium (Ams), pp. 138–143 (2012)

    Google Scholar 

  11. Pasemann, F.: Evolving neurocontrollers for balancing an inverted pendulum. Netw. Comput. Neural Syst. 9, 1–4 (1998)

    Article  Google Scholar 

  12. Deng, L., Gao, S.: The design for the controller of the linear inverted pendulum based on backstepping. Int. Conf. Electron. Mech. Eng. Inf. Technol. (EMEIT). 6, 2892–2895 (2011)

    Article  Google Scholar 

  13. Jörgl, M., Schlacher, K., Gattringer, H.: Passivity based control of a cart with inverted pendulum. Appl. Mech. Mater. 332, 339–344 (2013)

    Article  Google Scholar 

  14. Žilić, T., Pavković, D.: Modeling and control of a pneumatically actuated inverted pendulum. ISA Trans. 48, 327–335 (2009)

    Article  Google Scholar 

  15. Lambrecht, P., Vander, G.: H-infinity control of an experimental inverted pendulum with dry friction. IEEE Contr. Syst. Mag. 13(4), 44–50 (1988)

    Google Scholar 

  16. Wai, R.J., Chang, L.J.: Adaptive stabilizing and tracking control for a nonlinear inverted-pendulum system via sliding-mode technique. IEEE Trans. Ind. Electron. 53, 674–692 (2006)

    Article  Google Scholar 

  17. Tao, C.W., Taur, J., Chang, J.: Adaptive fuzzy switched swing-up and sliding control for the double-pendulum-and-cart system. IEEE Trans. Syst. Man Cybern. B Cybern. 40(1), 241–252 (2010)

    Article  Google Scholar 

  18. Chen, C.S., Chen, W.L.: Robust adaptive sliding-mode control using fuzzy modelling for an inverted-pendulum system. IEEE Trans. Ind. Electron. 45(2), 297–306 (1998)

    Article  Google Scholar 

  19. Patra, A.K., Rout, P.K.: Backstepping linear quadratic gaussian controller design for balancing an inverted pendulum. IETE J. Res. 1, 1–15 (2019)

    Article  Google Scholar 

  20. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River, New Jersey (2002)

    MATH  Google Scholar 

  21. Patra, A.K., Rout, P.K.: Adaptive sliding mode Gaussian controller for artificial pancreas in TIDM patient. J. Process Control 58, 23–27 (2017)

    Article  Google Scholar 

  22. Patra, A.K., Rout, P.K.: Backstepping sliding mode Gaussian insulin injection control for blood glucose regulation in TIDM patient. J. Dyn. Sys. Meas. Control. 140(9): 091006-091006-15 (2018)

    Google Scholar 

  23. Irfan, S., Mehmood, A., Razzaq, M.T., Iqbal, J.: Advanced sliding mode control techniques for inverted pendulum: modelling and simulation. Eng. Sci. Tech., Int. J. https://doi.org/10.1016/j.jestch.2018.06.010 (2018)

  24. Ronquillo-Lomeli, G., Ríos-Moreno, G.J.: Nonnlinear identification of inverted pendulum system using Volterra polynomials. Mech. Based Des. Struct. Mach. 44(1), 5–15 (2016)

    Article  Google Scholar 

  25. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K.: Biped walking pattern generation by a simple three-dimensional inverted pendulum model. Adv. Robot. 17(2), 131–147 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshaya Kumar Patra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patra, A.K., Mishra, A.K., Agrawal, R., Nahak, N. (2021). Stabilizing and Trajectory Tracking of Inverted Pendulum Based on Fuzzy Logic Control. In: Mishra, D., Buyya, R., Mohapatra, P., Patnaik, S. (eds) Intelligent and Cloud Computing. Smart Innovation, Systems and Technologies, vol 194. Springer, Singapore. https://doi.org/10.1007/978-981-15-5971-6_59

Download citation

Publish with us

Policies and ethics