Skip to main content

Changing Trends in Immunosensing Technologies and Their Commercial Aspects in Animal Health and Welfare

  • Chapter
  • First Online:
Immunodiagnostic Technologies from Laboratory to Point-Of-Care Testing

Abstract

Immunosensing has played a pivotal role in health management of humans and animals. In recent year, we have been witnessing a significant change in advancements made in the field of immunosensing in terms of enhanced sensitivity, ease of performing the assays, field applicability, and commercialization potential. Immunosensing technology or immunosensors (also called biosensors) are affinity-based devices capable of direct or indirect detection of an analyte of interest. This field of biotechnology possesses the capacity for invention of analytical tools and devices capable of powerful and precise detection of specific biotargets by the use of enzymes, aptamers, nanomaterials, antibodies, peptides, with a wide range of electrochemical, fluorescent-tagged, specific bioreceptor molecules. Animal production, perpetuation of selected traits, and maintenance of livestock health have long been a subject of extensive research. The biggest limitations of the diagnostic platforms developed are inability of its translation for real-time, on-site application owing to multiple factors. The most plausible solution proposed is the development of minimalistic device(s) capable of a rapid detection reaction with negligible sample processing, thus leading to surfacing of immunosensor devices. This review is aimed at emphasizing on the expansion of these devices which led to the advent of a concept popularized as “lab-on-a-chip” enabling the monitoring of physiological and reproductive health. The products’ mass-commercialization and applicability are the major challenges encountered in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Åkerstedt M, Björck L, Persson Waller K, Sternesjö Å (2006). Biosensor assay for determination of haptoglobin in bovine milk. J Dairy Res. https://doi.org/10.1017/S0022029906001774

  • Al-Khaldi SF, Villanueva D, Chizhikov V (2004). Identification and characterization of Clostridium perfringens using single target DNA microarray chip. Int J Food Microbiol. https://doi.org/10.1016/j.ijfoodmicro.2003.07.009

  • Andersson LM, Okada H, Zhang Y, Itoh T, Miura R, Yoshioka K (2015). Wearable wireless sensor for estrus detection in cows by conductivity and temperature measurements. IEEE Sens Proc. https://doi.org/10.1109/ICSENS.2015.7370219

  • Andersson LM, Okada H, Miura R, Zhang Y, Yoshioka K, Aso H, Itoh T (2016). Wearable wireless estrus detection sensor for cows. Comput Electron Agric. https://doi.org/10.1016/j.compag.2016.06.007

  • Banerjee P, Bhunia AK (2010). Cell-based biosensor for rapid screening of pathogens and toxins. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2010.05.020

  • Banhazi TM, Babinszky L, Halas V, Tscharke M (2012). Precision livestock farming: Precision feeding technologies and sustainable livestock production. Int J Agric Biol Eng. https://doi.org/10.3965/j.ijabe.20120504.006

  • Barletta F, Mercado EH, Lluque A, Ruiz J, Cleary TG, Ochoa TJ (2013). Multiplex real-time PCR for detection of Campylobacter, Salmonella, and Shigella. J Clin Microbiol. https://doi.org/10.1128/JCM.01397-13

  • Cai Z, Song Y, Wu Y, Zhu Z, James Yang C, Chen X (2013). An electrochemical sensor based on label-free functional allosteric molecular beacons for detection target DNA/miRNA. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2012.10.002

  • Cecchini F, Manzano M, Mandabi Y, Perelman E, Marks RS (2012). Chemiluminescent DNA optical fibre sensor for Brettanomyces bruxellensis detection. J Biotechnol. https://doi.org/10.1016/j.jbiotec.2011.10.004

  • Chang CM, Lebarbenchon C, Gauthier-Clerc M, Le Bohec C, Beaune D, Le Maho Y, Van Der Werf S (2009). Molecular surveillance for avian influenza a virus in king penguins (Aptenodytes patagonicus). Polar Biol. https://doi.org/10.1007/s00300-009-0587-4

  • Chiou CC, Chen TL, Tsao KC, Shih SR, Huang CG, Huang YL, Chang CM (2010). Detection of pandemic (H1N1) 2009 influenza virus by allele discrimination. Clin Chim Acta. https://doi.org/10.1016/j.cca.2010.04.002

  • Corkery G, Ward S, Kenny C, Hemmingway P (2013) Incorporating smart sensing technologies into the poultry industry. J World’s Poultry Res 3(4):106–128

    Google Scholar 

  • Dinh H, Zhang X, Sweeney J, Yang Y, He Y, Dhawane A, Iyer SS (2014). Glycan based detection and drug susceptibility of influenza virus. Anal Chem. https://doi.org/10.1021/ac501624v

  • Durkin J, DeLaval BW (2010) Heat detection: trends and opportunities. In: Proceedings of the Second North American Conference Precision Dairy Management. Toronto, Canada, pp 1–10

    Google Scholar 

  • Eastwood CR, Jago JG, Edwards JP, Burke JK (2016). Getting the most out of advanced farm management technologies: Roles of technology suppliers and dairy industry organisations in supporting precision dairy farmers. Anim Prod Sci. https://doi.org/10.1071/AN141015

  • El Ichi S, Leon F, Vossier L, Marchandin H, Errachid A, Coste J, Fournier-Wirth C (2014). Microconductometric immunosensor for label-free and sensitive detection of Gram-negative bacteria. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2013.11.016

  • Fournier-Wirth C, Deschaseaux M, Defer C, Godreuil S, Carrière C, Bertrand X, Morel P (2006). Evaluation of the enhanced bacterial detection system for screening of contaminated platelets. Transfusion. https://doi.org/10.1111/j.1537-2995.2006.00704.x

  • Fowler V, Bashiruddin JB, Belsham GJ, Stenfeldt C, Bøtner A, Knowles NJ, Barnett P (2014). Characteristics of a foot-and-mouth disease virus with a partial VP1 G-H loop deletion in experimentally infected cattle. Vet Microbiol. https://doi.org/10.1016/j.vetmic.2013.12.008

  • Fu Y, Callaway Z, Lum J, Wang R, Lin J, Li Y (2014a). Exploiting enzyme catalysis in ultra-low ion strength media for impedance biosensing of avian influenza virus using a bare interdigitated electrode. Anal Chem. https://doi.org/10.1021/ac402550f

  • Fu P, Sun Z, Yu Z, Zhang Y, Shen J, Zhang H, Wu W (2014b). Enzyme linked aptamer assay: based on a competition format for sensitive detection of antibodies to Mycoplasma bovis in serum. Anal Chem. https://doi.org/10.1021/ac4042203

  • Fukatsu T, Nanseki T (2009). Monitoring system for farming operations with wearable devices utilized sensor networks. Sensors. https://doi.org/10.3390/s90806171

  • Garcia SO, Ulyanova YV, Figueroa-Teran R, Bhatt KH, Singhal S, Atanassov P (2016). Wearable sensor system powered by a biofuel cell for detection of lactate levels in sweat. ECS J Solid State Sci Technol. https://doi.org/10.1149/2.0131608jss

  • Gibert M, Jolivet-Renaud C, Popoff MR (1997). Beta2 toxin, a novel toxin produced by Clostridium perfringens. Gene. https://doi.org/10.1016/S0378-1119(97)00493-9

  • Glennon T, O’Quigley C, McCaul M, Matzeu G, Beirne S, Wallace GG, Diamond D (2016). ‘SWEATCH’: a wearable platform for harvesting and analysing sweat sodium content. Electroanalysis. https://doi.org/10.1002/elan.201600106

  • Gorna K, Relmy A, Romey A, Zientara S, Blaise-Boisseau S, Bakkali-Kassimi L (2016) Establishment and validation of two duplex one-step real-time RT-PCR assays for diagnosis of foot-and-mouth disease. J Virol Methods. https://doi.org/10.1016/j.jviromet.2016.03.020

  • Hanon JB, Vandenberge V, Deruelle M, De Leeuw I, De Clercq K, Van Borm S, Van der Stede Y (2016). Inter-laboratory evaluation of the performance parameters of a lateral flow test device for the detection of bluetongue virus-specific antibodies. J Virol Methods. https://doi.org/10.1016/j.jviromet.2015.12.001

  • Hertem T, Van Bahr C, Viazzi S, Steensels M Romanini EC, Lokhorst K, Berckmans D (2014) On farm implementation of a fully automatic computer vision system for monitoring gait related measures in dairy cows. https://doi.org/10.13031/aim.20141899255

  • Hideshima S, Hinou H, Ebihara D, Sato R, Kuroiwa S, Nakanishi T, Osaka T (2013). Attomolar detection of influenza A virus hemagglutinin human H1 and avian H5 using glycan-blotted field effect transistor biosensor. Anal Chem. https://doi.org/10.1021/ac401085c

  • Hobson NS, Tothill I, Turner APF (1996) Microbial detection. Biosens Bioelectron. https://doi.org/10.1016/0956-5663(96)86783-2

  • Jamal SM, Belsham GJ (2013) Foot-and-mouth disease: past, present and future. Vet Res. https://doi.org/10.1186/1297-9716-44-116

  • Jia K, Toury T, Ionescu RE (2012). Fabrication of an atrazine acoustic immunosensor based on a drop-deposition procedure. IEEE Trans Ultrason Ferroelectr Freq Control. https://doi.org/10.1109/TUFFC.2012.2421

  • Jónsson R, Blanke M, Poulsen NK, Caponetti F, Højsgaard S (2011) Oestrus detection in dairy cows from activity and lying data using on-line individual models. Comput Electron Agric. https://doi.org/10.1016/j.compag.2010.12.014

  • Keyburn AL, Boyce JD, Vaz P, Bannam TL, Ford ME, Parker D, Moore RJ (2008) NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. PLoS Pathog. https://doi.org/10.1371/journal.ppat.0040026

  • Knight-Jones TJD, Rushton J (2013) The economic impacts of foot and mouth disease - what are they, how big are they and where do they occur? Prev Vet Med. https://doi.org/10.1016/j.prevetmed.2013.07.013

  • Kubiǎárová T, Fojta M, Vidic J, Tomschik M, Suznjevic D, Paleček E (2000) Voltammetric and chronopotentiometric measurements with nucleic acid-modified mercury film on a glassy carbon electrode. Electroanalysis. https://doi.org/10.1002/1521-4109(200011)12:17<1390::AID-ELAN1390>3.0.CO;2-G

  • La Belle JT, Engelschall E, Lan K, Shah P, Saez N, Maxwell S, Cook CB (2014) A disposable tear glucose biosensor--part 4: preliminary animal model study assessing efficacy, safety, and feasibility. J Diabetes Sci Technol. https://doi.org/10.1177/1932296813511741

  • Lee C, Gaston MA, Weiss AA, Zhang P (2013). Colorimetric viral detection based on sialic acid stabilized gold nanoparticles. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2012.10.067

  • Lee J, Noh B, Jang S, Park D, Chung Y, Chang HH (2015). Stress detection and classification of laying hens by sound analysis. Asian Australas J Anim Sci. https://doi.org/10.5713/ajas.14.0654

  • Loy A, Bodrossy L (2006) Highly parallel microbial diagnostics using oligonucleotide microarrays. Clin Chim Acta. https://doi.org/10.1016/j.cccn.2005.05.041

  • Lu L, Jun S (2012). Evaluation of a microwire sensor functionalized to detect Escherichia coli bacterial cells. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2012.04.033

  • Manzano M, Vizzini P, Jia K, Adam PM, Ionescu RE (2016). Development of localized surface plasmon resonance biosensors for the detection of Brettanomyces bruxellensis in wine. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2015.09.099

  • Miodek A, Sauriat-Dorizon H, Chevalier C, Delmas B, Vidic J, Korri-Youssoufi H (2014a) Direct electrochemical detection of PB1-F2 protein of influenza A virus in infected cells. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2014.02.037

  • Miodek A, Vidic J, Sauriat-Dorizon H, Richard CA, Le Goffic R, Korri-Youssoufi H, Chevalier C (2014b). Electrochemical detection of the oligomerization of PB1-F2 influenza a virus protein in infected cells. Anal Chem. https://doi.org/10.1021/ac5018056

  • Moon JS, Lee AR, Kang HM, Lee ES, Joo YS, Park YH, Koo HC (2007). Antibiogram and coagulase diversity in staphylococcal enterotoxin-producing Staphylococcus aureus from bovine mastitis. J Dairy Sci. https://doi.org/10.3168/jds.2006-512

  • Morse SS, Mazet JAK, Woolhouse M, Parrish CR, Carroll D, Karesh WB, Daszak P (2012). Prediction and prevention of the next pandemic zoonosis. Lancet. https://doi.org/10.1016/S0140-6736(12)61684-5

  • Mudziwepasi SK, Scott MS (2015). Assessment of a Wireless Sensor Network based monitoring tool for zero effort technologies: a Cattle-health and movement monitoring test case. In: IEEE international conference on adaptive science and technology, ICAST https://doi.org/10.1109/ICASTECH.2014.7068068

  • Mujawar LH, Moers A, Norde W, Van Amerongen A (2013). Rapid mastitis detection assay on porous nitrocellulose membrane slides. Anal Bioanal Chem. https://doi.org/10.1007/s00216-013-7192-7

  • Neethirajan S (2017). Recent advances in wearable sensors for animal health management. Sens Bio-Sens Res. https://doi.org/10.1016/j.sbsr.2016.11.004

  • Olsen B, Munster VJ, Wallensten A, Waldenström J, Osterhaus ADME, Fouchier RAM (2006) Global patterns of influenza A virus in wild birds. Science. https://doi.org/10.1126/science.1122438

  • Ospina PA, Nydam DV, Stokol T, Overton TR (2010). Associations of elevated nonesterified fatty acids and β-hydroxybutyrate concentrations with early lactation reproductive performance and milk production in transition dairy cattle in the northeastern United States. J Dairy Sci. https://doi.org/10.3168/jds.2009-2852

  • Pemberton RM, Hart JP, Mottram TT (2001). An assay for the enzyme N-acetyl-β-D-glucosaminidase (NAGase) based on electrochemical detection using screen-printed carbon electrodes (SPCEs). Analyst. https://doi.org/10.1039/b104874k

  • Perez JW, Vargis EA, Russ PK, Haselton FR, Wright DW (2011). Detection of respiratory syncytial virus using nanoparticle amplified immuno-polymerase chain reaction. Anal Biochem. https://doi.org/10.1016/j.ab.2010.11.033

  • Petit L, Gilbert M, Popoff MR (1999) Clostridium perfringens: toxinotype and genotype. Trends Microbiol 7:104–110

    Article  CAS  Google Scholar 

  • Pisoni G, Moroni P, Genini S, Stella A, Boettcher PJ, Cremonesi P, Castiglioni B (2010). Differentially expressed genes associated with Staphylococcus aureus mastitis in dairy goats. Vet Immunol Immunopathol. https://doi.org/10.1016/j.vetimm.2009.11.016

  • Reid SM, Ferris NP, Brüning A, Hutchings GH, Kowalska Z, Åkerblom L (2001). Development of a rapid chromatographic strip test for the pen-side detection of foot-and-mouth disease virus antigen. J Virol Methods. https://doi.org/10.1016/S0166-0934(01)00334-2

  • Rochelet M, Solanas S, Grossiord C, Maréchal P, Résa C, Vienney F, Joannes M (2012). A thin layer-based amperometric enzyme immunoassay for the rapid and sensitive diagnosis of respiratory syncytial virus infections. Talanta. https://doi.org/10.1016/j.talanta.2012.07.088

  • Rose DP, Ratterman ME, Griffin DK, Hou L, Kelley-Loughnane N, Naik RR, Heikenfeld JC (2015). Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Trans Biomed Eng. https://doi.org/10.1109/TBME.2014.2369991

  • Sajid M, Kawde AN, Daud M (2015). Designs, formats and applications of lateral flow assay: A literature review. J Saudi Chem Soc. https://doi.org/10.1016/j.jscs.2014.09.001

  • Sargeant JM, Leslie KE, Shirley JE, Pulkrabek BJ, Lim GH (2010). Sensitivity and specificity of somatic cell count and California mastitis test for identifying intramammary infection in early lactation. J Dairy Sci. https://doi.org/10.3168/jds.s0022-0302(01)74645-0

  • Sergeev N, Distler M, Courtney S, Al-Khaldi SF, Volokhov D, Chizhikov V, Rasooly A (2004). Multipathogen oligonucleotide microarray for environmental and biodefense applications. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2004.04.030

  • Sin ML, Mach KE, Wong PK, Liao JC (2014). Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev Mol Diagn. https://doi.org/10.1586/14737159.2014.888313

  • Sperlova A, Zendulkova D (2011) Bluetongue: a review. Vet Med Czech 56:430–452

    Article  Google Scholar 

  • Spink A, Cresswell B, Kölzsch A, van Langevelde F, Neefjes M (2013). Animal behaviour analysis with GPS and 3D accelerometers. In: 6th European conference on precision livestock farming

    Google Scholar 

  • Tabachnick WJ (2002). Culicoides variipennis and bluetongue virus epidemiology in the united states. Annu Rev Entomol https://doi.org/10.1146/annurev.ento.41.1.23

  • Timbermont L, Haesebrouck F, Ducatelle R, Van Immerseel F (2011). Necrotic enteritis in broilers: an updated review on the pathogenesis. Avian Pathol. https://doi.org/10.1080/03079457.2011.590967

  • Tseng C-H, Tsai H-J, Chang C-M (2014). A complete molecular diagnostic procedure for applications in surveillance and subtyping of avian influenza virus. Biomed Res Int. https://doi.org/10.1155/2014/653056

  • Vasin AV, Temkina OA, Egorov VV, Klotchenko SA, Plotnikova MA, Kiselev OI (2014). Molecular mechanisms enhancing the proteome of influenza A viruses: an overview of recently discovered proteins. Virus Res. https://doi.org/10.1016/j.virusres.2014.03.015

  • Veerapandian M, Hunter R, Neethirajan S (2016). Lipoxygenase-modified Ru-bpy/graphene oxide: Electrochemical biosensor for on-farm monitoring of non-esterified fatty acid. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2015.11.058

  • Vidic J, Manzano M, Chang CM, Jaffrezic-Renault N (2017). Advanced biosensors for detection of pathogens related to livestock and poultry. Vet Res. https://doi.org/10.1186/s13567-017-0418-5

  • Viguier C, Arora S, Gilmartin N, Welbeck K, O’Kennedy R (2009). Mastitis detection: current trends and future perspectives. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2009.05.004

  • Wadl M, Pölzler T, Flekna G, Thompson L, Slaghuis J, Köfer J, Wagner M (2016). Easy-to-use rapid test for direct detection of Campylobacter spp. in chicken feces. J Food Protect. https://doi.org/10.4315/0362-028x-72.12.2483

  • Wangroongsarb P, Jittaprasatsin C, Suwannasing S, Suthivarakom K, Khamthalang T (2011) Identification of genus Campylobacter and four enteropathogenic Campylobacter species by PCR. J Trop Med Parasitol 34:17–29

    Google Scholar 

  • Waters RA, Fowler VL, Armson B, Nelson N, Gloster J, Paton DJ, King DP (2014). Preliminary validation of direct detection of foot-and-mouth disease virus within clinical samples using reverse transcription Loop-mediated isothermal amplification coupled with a simple lateral flow device for detection. PLoS ONE. https://doi.org/10.1371/journal.pone.0105630

  • Wathes CM, Kristensen HH, Aerts JM, Berckmans D (2008). Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? Comput Electron Agric. https://doi.org/10.1016/j.compag.2008.05.005

  • Wei D, Oyarzabal OA, Huang TS, Balasubramanian S, Sista S, Simonian AL (2007). Development of a surface plasmon resonance biosensor for the identification of Campylobacter jejuni. J Microbiol Methods. https://doi.org/10.1016/j.mimet.2006.12.002

  • Weis A, Liang F, Gao J, Barnard RT, Corrie S (2015) RNA and DNA diagnostics on microspheres: current and emerging methods. In: RNA DNA diagnostics. Springer, Heidelberg, pp 205–224

    Chapter  Google Scholar 

  • Weng X, Chen L, Neethirajan S, Duffield T (2015a). Development of quantum dots-based biosensor towards on-farm detection of subclinical ketosis. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2015.05.008

  • Weng X, Zhao W, Neethirajan S, Duffield T (2015b). Microfluidic biosensor for β-Hydroxybutyrate (βHBA) determination of subclinical ketosis diagnosis. J Nanobiotechnol. https://doi.org/10.1186/s12951-015-0076-6

  • Yoo SM, Lee SY (2016). Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2015.09.012

  • Zeidan E, Shivaji R, Henrich VC, Sandros MG (2016). Nano-SPRi aptasensor for the detection of progesterone in buffer. Sci Rep. https://doi.org/10.1038/srep26714

Download references

Acknowledgement

The authors would earnestly like to thank the National Institute of Animal Biotechnology Hyderabad, Department of Biotechnology, Ministry of Science and Technology and Biotechnology Industry Research Assistance Council (BIRAC) for funding and supporting this study.

Conflict of interest statement

The authors declare absence of any competing interest with any commercial or financial collaborator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Suman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaul, S., Singh, R., Kamaraju, S., Suman, P. (2021). Changing Trends in Immunosensing Technologies and Their Commercial Aspects in Animal Health and Welfare. In: Suman, P., Chandra, P. (eds) Immunodiagnostic Technologies from Laboratory to Point-Of-Care Testing. Springer, Singapore. https://doi.org/10.1007/978-981-15-5823-8_8

Download citation

Publish with us

Policies and ethics