Skip to main content

Spatial Prediction of Landslide Susceptibility Using Random Forest Algorithm

  • Chapter
  • First Online:
Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation

Abstract

Intelligent data analytics approaches are popular in landslide susceptibility mapping. This chapter develops a random forest (RF) approach for spatial modeling of landslide susceptibility. A total number of 78 landslide locations are identified using field survey, 55 of which are randomly selected to model landslide susceptibility and remaining 23 locations considered for model validation. Twelve predictor variables are selected: elevation, slope percentage, slope aspect, plan curvature, profile curvature, distance from roads, distance from streams, distance from faults, lithological formations, land use, soil type, and topographic wetness index (TWI) to create an RF model for landslide susceptibility mapping. The results of RF model are evaluated using efficiency (E), true positive rate (TPR), false positive rate (FPR), true skill statistic (TSS), and area under receiver operating characteristic curve (AUC) in training and validation steps. RF model registered excellent goodness-of-fit with AUC = 93.6%, E = 0.887, TSS = 0.776, TPR = 0.905, FPR = 0.129, and predictive performance with AUC = 90.7%, E = 0.777, TSS = 0.559, TPR = 0.809, FPR = 0.25. Intelligent data analytic method, therefore, has a significant promise in tackling challenges of landslide susceptibility mapping in large regions, which may not have sufficient geotechnical data to employ a physically based method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Forest, Range and Watershed Management Organization.

References

  • Bachmair S, Weiler M (2012) Hillslope characteristics as controls of subsurface flow variability. Hydrol Earth Syst Sci 16(10):3699–3715

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Calle ML, Urrea V (2010) Letter to the editor: stability of random forest importance measures. Briefings Bioinf 12(1):86–89

    Article  Google Scholar 

  • Catani F, Lagomarsino D, Segoni S, Tofani V (2013) Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Nat Hazards Earth Syst Sci 13(11):2815–2831

    Article  Google Scholar 

  • Frattini P, Crosta G, Carrara A (2010) Techniques for evaluating the performance of landslide susceptibility models. Eng Geol 111(1–4):62–72

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11(2):167–194

    Article  Google Scholar 

  • Pourghasemi HR, Kerle N (2016) Random forests and evidential belief function-based landslide susceptibility assessment in western Mazandaran Province. Iran Environ Earth Sci 75(3):185

    Article  Google Scholar 

  • Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9(2):181–199

    Article  Google Scholar 

  • Rahmati O, Kornejady A, Samadi M, Deo RC, Conoscenti C, Lombardo L, Bui DT (2019) PMT: New analytical framework for automated evaluation of geo-environmental modelling approaches. Sci Total Environ 664:296–311

    Article  Google Scholar 

  • Van Westen CJ, Van Asch TW, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65(2):167–184

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Rahmati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahmati, O., Kornejady, A., Deo, R.C. (2021). Spatial Prediction of Landslide Susceptibility Using Random Forest Algorithm. In: Deo, R., Samui, P., Kisi, O., Yaseen, Z. (eds) Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-5772-9_15

Download citation

Publish with us

Policies and ethics