Skip to main content

Stability of Parametrically Excited Active Magnetic Bearing Rotor System Due to Moving Base

  • Conference paper
  • First Online:
Proceedings of the 6th National Symposium on Rotor Dynamics

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 731 Accesses

Abstract

Active magnetic bearings (AMBs) offer contact-less functioning and active vibration control capability while supporting and levitating a rotor. This is the reason that the AMBs are being progressively researched for novel and challenging applications in the industry. In application areas, such as ships, airplanes and space crafts, the rotor is mounted on a moving base, which causes parametric excitation to the system. This, in turn, is generally known to cause stability issues in a rotor shaft system. The present work thus attempts to conduct stability analysis of a rotor shaft system supported by an AMB and is parametrically excited due to the presence of periodically varying base motion. The finite element model for a generic rotor shaft system mounted on a moving base is first presented, and the time-periodic state matrix for the system is found. The Floquet–Liapunov method of analyzing stability of a periodically varying system is used to find the stability boundaries for the system with two widely used control laws for the AMB. The analysis reveals that it is important to consider the parametric excitation caused to the system when the AMBs are being designed for applications involving large base motions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schweitzer G et al (2009) Magnetic bearings: theory, design and application to rotating machinery. Springer, Berlin

    Google Scholar 

  2. Siva Srinivas R, Tiwari R, Kannababu C (2018) Application of active magnetic bearings in flexible rotordynamic systems—a state-of-the-art review. Mechan Syst Signal Process 106:537–572

    Google Scholar 

  3. Duchemin M, Berlioz A, Ferraris G (2006) Dynamic behaviour and stability of a rotor under base excitation. ASME J Vibr Acoust 128(5):576–585

    Article  Google Scholar 

  4. Sinha SC, Marghitu DB, Boghiu D (1998) Stability and control of a parametrically excited rotating beam. J Dyn Sys Meas Control 120(4):462–470

    Google Scholar 

  5. Kirk RG, Gunter EJ (1974) Transient response of rotor-bearing systems. J Eng Ind 96(2):682–690

    Article  Google Scholar 

  6. Vance JM, Zeidan FY, Murphy B (2010) Machinery vibration and rotordynamics. Wiley, Hoboken

    Google Scholar 

  7. Genta G (2007) Dynamics of rotating systems. Springer Science and Business Media, Berlin

    Google Scholar 

  8. Lalanne M, Ferraris G (1998) Rotordynamics prediction in engineering. Wiley, Hoboken

    Google Scholar 

  9. Muszynska A (2005) Rotordynamics. CRC Press, Boca Raton

    Google Scholar 

  10. Rao JS (1996) Rotor dynamics. New Age International

    Google Scholar 

  11. Kamel M, Bauomy HS (2009) Nonlinear oscillation of a rotor-AMB system with time varying stiffness and multi-external excitations. J Vib Acoust 131(3):031009

    Article  Google Scholar 

  12. Bauomy HS (2012) Stability analysis of a rotor-AMB system with time varying stiffness. J Franklin Inst 349(5):1871–1890

    Article  MathSciNet  Google Scholar 

  13. Driot N, Lamarque CH, Berlioz A (2006) Theoretical and experimental analysis of a base excited rotor. ASME J Comput Nonlinear Dyn 1(3):257–263

    Article  Google Scholar 

  14. Han Q, Chu F (2015) Parametric instability of flexible rotor-bearing system under time-periodic base angular motions. Appl Math Model 39(15):4511–4522

    Article  MathSciNet  Google Scholar 

  15. Hou L, Chen Y, Fu Y, Li Z (2016) Nonlinear response and bifurcation analysis of a Duffing type rotor model under sine maneuver load. Int J Non-Linear Mech 78:133–141

    Article  Google Scholar 

  16. Soni T, Dutt JK, Das AS (2019) Parametric stability analysis of active magnetic bearing-supported rotor system with a novel control law subject to periodic base motion. IEEE Transactions on Industrial Electronics, p 1

    Google Scholar 

  17. Friedmann P, Hammond CE, Woo T-H, Efficient numerical treatment of periodic systems with application to stability problems. Int J Numer Method Eng 11:1117–1136

    Google Scholar 

  18. Das AS, Dutt JK, Ray K (2010) Active vibration control of flexible rotors on maneuvering vehicles. Am Insti Aeronaut Astronaut (AIAA) 48(2):340–353

    Article  Google Scholar 

  19. Friswell MI, Penny JET, Garvey SD, Lees AW (2010) Dynamics of rotating machines. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tukesh Soni .

Editor information

Editors and Affiliations

Appendix

Appendix

Details of the matrices used for finding the global matrices given in Eqs. (1)–(3).

Shaft Inertia matrix: \(\left[ M \right]_{S}^{e} = \mathop \smallint \limits_{0}^{l} m\left[ {\psi \left( x \right)} \right]^{T} \left[ {\psi \left( x \right)} \right] {\text{d}}x + \mathop \smallint \limits_{0}^{l} i_{d} \left[ {\psi^{\prime}\left( x \right)} \right]^{T} \left[ {\psi^{\prime}\left( x \right)} \right] {\text{d}}x\)where \(\left[ \psi \right]\) is the shape function matrix, gyroscopic matrix: \(\left[ G \right]_{S}^{e} = \mathop \smallint \limits_{0}^{l} i_{p} \left[ {\psi^{\prime}} \right]^{T} \left[ {\begin{array}{*{20}c} 0 & { - 1} \\ 1 & 0 \\ \end{array} } \right]\left[ {\psi^{\prime}} \right]{\text{d}}x\); \(\left[ H \right]_{S}^{e} = \mathop \smallint \limits_{0}^{l} i_{p} \left[ {\psi^{\prime}} \right]^{T} \left[ {\begin{array}{*{20}c} 0 & 0 \\ 1 & 0 \\ \end{array} } \right]\left[ {\psi^{\prime}} \right]{\text{d}}x\) bending stiffness matrix: \(\left[ {K_{B} } \right]_{S}^{e} = \mathop \smallint \limits_{0}^{l} EI\left[ {\psi^{\prime\prime}} \right]^{T} \left[ {\psi^{\prime\prime}} \right]{\text{d}}x\); \(\left[ {\psi^{\prime\prime}} \right] = \frac{{d^{2} \left[ {\psi \left( x \right)} \right]}}{{{\text{d}}x^{2} }}\).

Circulatory matrix: \(\left[ {K_{C} } \right]_{S}^{e} = \mathop \smallint \limits_{0}^{l} EI\left[ {\psi^{\prime\prime}} \right]^{T} \left[ {\begin{array}{*{20}c} 0 & { - 1} \\ 1 & 0 \\ \end{array} } \right]\left[ {\psi^{\prime\prime}} \right]{\text{d}}x\)

Coriolis matrix: \(\left[ C \right]_{S}^{e} = \mathop \smallint \limits_{0}^{l} m\left[ {\psi \left( x \right)} \right]^{T} \left[ {\begin{array}{*{20}c} 0 & { - 1} \\ 1 & 0 \\ \end{array} } \right]\left[ {\psi \left( x \right)} \right]{\text{d}}x + \mathop \smallint \limits_{0}^{l} i_{d} \left[ {\psi^{\prime}\left( x \right)} \right]^{T} \left[ {\begin{array}{*{20}c} 0 & { - 1} \\ 1 & 0 \\ \end{array} } \right]\left[ {\psi^{\prime}\left( x \right)} \right]{\text{d}}x\)

Parametric stiffness matrix due to base motion:

$$\left[ {K_{p11} } \right]_{S}^{e} = \mathop \smallint \limits_{0}^{l} m\left[ {\psi \left( x \right)} \right]^{T} \left[ {\begin{array}{*{20}c} 1 & 0 \\ 0 & 0 \\ \end{array} } \right]\left[ {\psi \left( x \right)} \right]{\text{d}}x + \mathop \smallint \limits_{0}^{l} i_{p} \left[ {\psi^{\prime}\left( x \right)} \right]^{T} \left[ {\begin{array}{*{20}c} 0 & 0 \\ 0 & 1 \\ \end{array} } \right]\left[ {\psi^{\prime}\left( x \right)} \right]{\text{d}}x$$
$$\left[ {K_{p22} } \right]_{S}^{e} = \mathop \smallint \limits_{0}^{l} m\left[ {\psi \left( x \right)} \right]^{T} \left[ {\begin{array}{*{20}c} 0 & 0 \\ 0 & 1 \\ \end{array} } \right]\left[ {\psi \left( x \right)} \right]{\text{d}}x + \mathop \smallint \limits_{0}^{l} i_{p} \left[ {\psi^{\prime}\left( x \right)} \right]^{T} \left[ {\begin{array}{*{20}c} 1 & 0 \\ 0 & 0 \\ \end{array} } \right]\left[ {\psi^{\prime}\left( x \right)} \right]{\text{d}}x$$
$$\left[ {K_{p12} } \right]_{S}^{e} = \mathop \smallint \limits_{0}^{l} m\left[ {\psi \left( x \right)} \right]^{T} \left[ {\begin{array}{*{20}c} 0 & 1 \\ 1 & 0 \\ \end{array} } \right]\left[ {\psi \left( x \right)} \right]{\text{d}}x + \mathop \smallint \limits_{0}^{l} \left( {i_{p} - i_{d} } \right)\left[ {\psi^{\prime}\left( x \right)} \right]^{T} \left[ {\begin{array}{*{20}c} 0 & 1 \\ 1 & 0 \\ \end{array} } \right]\left[ {\psi^{\prime}\left( x \right)} \right]{\text{d}}x$$

Rotor disk finite element matrices

Inertia matrix: \(\left[ M \right]_{D} = \left[ {\begin{array}{*{20}c} {m_{D} } & 0 & 0 & 0 \\ 0 & {m_{D} } & 0 & 0 \\ 0 & 0 & {I_{d} } & 0 \\ 0 & 0 & 0 & {I_{d} } \\ \end{array} } \right]\);

Gyroscopic matrix: \(\left[ G \right]_{D} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & { - I_{p} } \\ 0 & 0 & {I_{p} } & 0 \\ \end{array} } \right]\);

Coriolis effect matrix: \(\left[ C \right]_{D} = \left[ {\begin{array}{*{20}c} 0 & { - m_{D} } & 0 & 0 \\ {m_{D} } & 0 & 0 & 0 \\ 0 & 0 & 0 & { - I_{d} } \\ 0 & 0 & {I_{d} } & 0 \\ \end{array} } \right]\); Parametric stiffness matrix: \(\left[ {K_{p11} } \right]_{D} = \left[ {\begin{array}{*{20}c} {m_{D} } & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & {I_{p} } & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right];\left[ {K_{p22} } \right]_{D} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ 0 & {m_{D} } & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & {I_{p} } \\ \end{array} } \right]\); \(\left[ {K_{p12} } \right]_{D} = \left[ {\begin{array}{*{20}c} 0 & {m_{D} } & 0 & 0 \\ {m_{D} } & 0 & 0 & 0 \\ 0 & 0 & 0 & {I_{p} - I_{d} } \\ 0 & 0 & {I_{p} - I_{d} } & 0 \\ \end{array} } \right]\)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soni, T., Dutt, J.K., Das, A.S. (2021). Stability of Parametrically Excited Active Magnetic Bearing Rotor System Due to Moving Base. In: Rao, J.S., Arun Kumar, V., Jana, S. (eds) Proceedings of the 6th National Symposium on Rotor Dynamics. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-5701-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5701-9_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5700-2

  • Online ISBN: 978-981-15-5701-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics