Skip to main content

Migration from Silicon to Gallium Nitride Devices—A Review

  • Conference paper
  • First Online:
Advances in Electrical and Computer Technologies

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 672))

  • 1333 Accesses

Abstract

With the advancement in technology, the need for high efficient, switching speed and compact size of converters are gaining popularity. These converters require power devices having high breakdown voltage, thermal conductivity, switching frequency and operating temperature. Silicon devices exhibit limitations in switching frequency and operation at high temperature. The limitations of Si devices lead to advancements of wide band gap devices. The superior electrical properties of WBG devices make them potential candidates for use in high temperature, voltage and switching speed converter applications. Among the many WBG devices, silicon carbide, diamond and gallium nitride are a promising candidates. This paper deals with comparisons between conventional Si and GaN devices and highlights overall state of the art and future trends of GaN devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Millan J, Godignon P, Perpina X, Perez-Tomas A, Rebollo J (2014) A survey of wide bandgap power semiconductor devices. IEEE Trans Power Electron 29:2155–2163. https://doi.org/10.1109/TALE.2012.6360407

    Article  Google Scholar 

  2. Bouketir O (2016) Advances and challenges in WBG devices and their applications in power conversion and conditioning. In: Proceedings of the international conference on recent advances in electrical systems, pp 34–40. 978-9938-14-953-1

    Google Scholar 

  3. Millan J (2007) Wide band-gap power semiconductor devices. IET Circ Devices Syst 1(5):372–379. https://doi.org/10.1049/iet-cds:20070005

    Article  Google Scholar 

  4. Lutz J, Schlangenotto H, Scheuermann U, De Doncker R (2011) Semiconductor power devices–Physics, characteristics, reliability. Springer, Heidelberg, Dordrecht, London, New York

    Book  Google Scholar 

  5. Neamen DA (2012) Semiconductor physics and devices: basic principles. McGraw-Hill

    Google Scholar 

  6. Mishra Umesh K, Blakemore JS (2008) Semiconductor device physics and design. Springer

    Google Scholar 

  7. Zhang B, Wang S (2018) An overview of wide bandgap power semiconductor device packaging techniques for emi reduction. In: 2018 IEEE symposium on electromagnetic compatibility. Signal integrity and power integrity (EMC, SI PI), pp 297–301. https://doi.org/10.1109/EMCSI.2018.8495171

  8. Garrido-Diez D, Baraia I (2017) Review of wide bandgap materials and their impact in new power devices. In: 2017 IEEE International workshop of electronics, control, measurement, signals and their Application to mechatronics (ECMSM), pp 1–6. https://doi.org/10.1109/ECMSM.2017.7945876

  9. Jain H, Rajawat S, Agrawal P (2008) Comparison of wide band gap semiconductors for power electronics applications. In: 2008 International conference on recent advances in microwave theory and applications, pp 878–881. https://doi.org/10.1109/AMTA.2008.4763184

  10. Vasconcelos Arajo S (2013) On the perspectives of wide-band gap power devices in electronic-based power conversion for renewable systems. Kassel University Press (2013)

    Google Scholar 

  11. Jones EA, Wang FF, Costinett D (2016) Review of commercial GaN power devices and GaN-based converter design challenges. IEEE J Emerging Sel Top Power Electron 4:707–719. https://doi.org/10.1109/KICSS.2016.7951427

    Article  Google Scholar 

  12. Sugimoto M, Motor Corp T, Ueda H, Uesugi T (2007) Wide-bandgap semiconductor devices for automobile applications. Int J High Speed Electron Syst 17. https://doi.org/10.1142/S012915640700414X

  13. Shenai K (2014) Basic research needs in wide bandgap (WBG) power semiconductors. In: Proceedings of 2014 workshop on defects in wide band gap semiconductors. pp 53–56. https://doi.org/10.1109/EMCSI.2018.8495171

  14. Sangwal K (2013) Czochralski method of crystal growth in the scientific literature: an informetric study. Acta Physica Polonica A 124:173–180 https://doi.org/10.12693/APhysPolA.124.173

  15. Jang S, Shenai K, Hunter GW, Ren F, O’Dwyer C, Mishra K (2015) Wide bandgap semiconductor materials and devices 16. vol. 66. ECS Transactions

    Google Scholar 

  16. https://gansystems.com/gan-transistors/

  17. Ambacher O, Smart J, Shealy J, Weimann N, Chu K, Murphy M, Schaff W, Eastman LF, Dimitrov R, Wittmer L, Stutzmann M (1999) Rieger W (1999) Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AIGaN/GaN heterostructures. J Appl Phys 85:3222–3233. https://doi.org/10.1063/1.369664

    Article  Google Scholar 

  18. Khan A, Van Hove JM, Kuznia JN, Olson DT (1991) High electron mobility GaN/AlxGa1-xN heterostructures grown by lowpressure metalorganic chemical vapor deposition. Appl Phys Lett 58:2408–2410. https://doi.org/10.1063/1.104886

    Article  Google Scholar 

  19. https://www.transphormusa.com/en/products/

  20. https://www.infineon.com/cms/en/product/power/wide-band-gap-semiconductors-sic-gan/gallium-nitride-gan/#!products

  21. http://epc-co.com/epc/Products/eGaNFETsandICs.aspx

  22. Boutros KS, Chu R, Hughes B (2012) GaN power electronics for automotive application. In: 2012 IEEE Energytech, pp 1–4. https://doi.org/10.1109/EnergyTech.2012.6304646

  23. Boutros K, Chu R, Hughes B (2013) Recent advances in GaN power electronics. In: Proceedings of the IEEE 2013 custom integrated circuits conference, pp 1–4. https://doi.org/10.1109/CICC.2013.6658400

  24. Reusch D, Strydom J, Lidow A (2015) Monolithic integration of GaN transistors for higher efficiency and power density in DC-DC converters. In: Proceedings of PCIM Europe 2015; international exhibition and conference for power electronics, intelligent motion, renewable energy and energy management, pp 1–8

    Google Scholar 

  25. Chen KJ, Hberlen O, Lidow A, Tsai LC, Ueda T, Uemoto Y, Wu Y (2017) GaN-on-Si power technology: devices and applications. IEEE Trans Electron Devices 64(3):779–795. https://doi.org/10.1109/TED.2017.2657579

    Article  Google Scholar 

  26. Texas Instruments (2018) Datasheet: LMG5200 80-V, 10-A GaN half-bridge power stage. Technical report, Texas Instruments

    Google Scholar 

  27. Miftakhutdinov R, Rice (2016) Applying SiC and GaN to high-frequency power. Technical report, Texas Instruments (power supply design seminar 2016/17)

    Google Scholar 

  28. Kim D, Joo D, Lee B, Kim J (2015) Design and analysis of GaN FET-based resonant DC-DC converter. In: 2015 9th international conference on power electronics and ECCE Asia (ICPE-ECCE Asia), pp 2650–2655. https://doi.org/10.1109/ICPE.2015.7168196

  29. Lidow A, Strydom J (2016) White paper: eGaN FET drivers and layout considerations. Technical report

    Google Scholar 

  30. International Rectifier (2004) Datasheet: insulated gate bipolar transistor. Technical report, International Rectifier

    Google Scholar 

  31. CREE (2012) Datasheet: silicon carbide power MOSFET. Technical report, CREE

    Google Scholar 

  32. VisIC Technologies (2016) Datasheet: 1200 V GaN half bridge, GaN power integrated. Technical report, VisIC Technologies

    Google Scholar 

  33. GaN Systems (2016) Datasheet: bottom-side cooled 650 V E-mode GaN transistor preliminary datasheet. Technical report, GaN Systems

    Google Scholar 

  34. Infineon (2017) Datasheet: MOSFET 600 V CoolMOS C7 power transistor. Technical report, Infineon

    Google Scholar 

  35. ROHM semiconductor (2018) Datasheet: n-channel SiC power MOSFET. Technical report, ROHM semiconductor

    Google Scholar 

  36. Al-bayati AMS, Alharbi SS, Alharbi SS, Matin M (2017) A comparative design and performance study of a non-isolated DC-DC buck converter based on Si-MOSFET/Si-diode, SiC-JFET/SiC-schottky diode, and GaN-transistor/SiC-schottky diode power devices. In: 2017 North American power symposium (NAPS), pp 1–6. https://doi.org/10.1109/NAPS.2017.8107192

  37. Lenzhofer M, Frank A (2018) Efficiency and near-field emission comparisons of a Si- and GaN based buck converter topology. In: 2018 IEEE 18th international power electronics and motion control conference (PEMC), pp 818–823. https://doi.org/10.1109/EPEPEMC.2018.8521839

  38. Zapart M, Macheta J, Kubaszek M, Worek C (2018) A high power led supply based on GaN synchronous boost converter. In: 2018 International conference on signals and electronic systems (ICSES), pp 263–266. https://doi.org/10.1109/ICSES.2018.8507303

  39. Gamand F, Li MD, Gaquiere C (2012) A 10-MHz GaN HEMT DC/DC boost converter for power amplifier applications. IEEE Trans Circ Syst II: Exp Briefs 59(11):776–779. https://doi.org/10.1109/TCSII.2012.2228397

    Article  Google Scholar 

  40. Nune R, Anurag A, Anand S, Chauhan YS (2016) Comparative analysis of power density in Si MOSFET and GaN HEMT based flyback converters. In: 2016 10th International conference on compatibility, power electronics and power engineering (CPE-POWERENG), pp 347–352. https://doi.org/10.1109/CPE.2016.7544212

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Swathi Hatwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Swathi Hatwar, H., Suryanarayana, K., Ravikiran Rao, M., Adappa, R. (2020). Migration from Silicon to Gallium Nitride Devices—A Review. In: Sengodan, T., Murugappan, M., Misra, S. (eds) Advances in Electrical and Computer Technologies. Lecture Notes in Electrical Engineering, vol 672. Springer, Singapore. https://doi.org/10.1007/978-981-15-5558-9_88

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5558-9_88

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5557-2

  • Online ISBN: 978-981-15-5558-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics