Skip to main content

Abstract

The experimental fabrication of highly ordered perpendicular TiO2 and In2O3 nanowires (NW) on n-type silicon (Si) substrate has been reported in this paper. The glancing angle deposition technique (GLAD) has been employed to synthesis In2O3 NW-TiO2 NW heterostructure and ordinary TiO2 NW on n-Si substrate inside e-beam evaporation chamber. An average of ~1.4 fold enhancement in absorption at UV and visible spectra have been observed in case of hetero-structured In2O3 NW-TiO2 NW/TiO2 TF/n-Si compared to simple TiO2 NW/TiO2 TF/n-Si samples. The main band gap transition in case of hetero-structure In2O3 NW-TiO2 NW has been observed at ~3.3 eV and that in case of simple TiO2 NW has been observed at ~3.1 eV under open-air room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shougaijam B, Swain R, Ngangbam C, Lenka TR (2016) Enhanced photodetection by glancing angle deposited vertically aligned TiO2 nanowires. IEEE. https://doi.org/10.1109/tnano.2016.2536162

  2. Sarkar MB, Choudhuri B, Bhattacharya P, Barrman RN, Ghosh A, Diwedi SMMD, Chakrbartty S, Mondal A (2018) Improved UV photodetection by indium doped TiO2 thin film based photodetector. J Nanosci Nanotechnol 18:4898–4903

    Google Scholar 

  3. Choudhuri B, Mondal A, Dhar JC, Singh NK, Goswami T, Chattopadhyay KK (2013) Enhanced photocurrent from generated photothermal heat in indium nanoparticles embedded TiO2 film. Appl Phys Lett 102:233108

    Article  Google Scholar 

  4. Yi S, Tian S, Zeng D, Xu K, Zhang S, Xie C (2013) An In2O3 nanowire-like network fabricated on coplanar sensor surface by sacrificial CNTs for enhanced gas sensing performance. Sens Actuators B 185:345–353

    Article  Google Scholar 

  5. Shchukin DG, Caruso RA (2004) Template synthesis and photocatalytic properties of porous metal oxide spheres formed by nanoparticle infiltration. Chem Mater 16:2287–2292

    Article  Google Scholar 

  6. Reyes-Gil KR, Reyes-Garcia EA, Raftery D (2007) Nitrogen-doped In2O3 thin film electrodes for photocatalytic water splitting. J Phys Chem C 111:14579–14588

    Article  Google Scholar 

  7. Kityk IV, Liu Q, Sun Z, Fang J (2006) Low-temperature anomalies of two-photon absorption in In2O3 nano crystals incorporated into PMMA matrixes. J Phys Chem B 110:8219–8222

    Article  Google Scholar 

  8. Girtan M, Cachet H, Rusua I (2003) On the physical properties of indium oxide thin films deposited by pyrosol in comparsion with films deposited by pneumatic spray pyrolysis. Thin Solid Films 427:406–410

    Article  Google Scholar 

  9. Lee S-Y, Park S-J (2013) TiO2 photocatalyst for water treatment applications. J Ind Eng Chem 19:1761–1769

    Google Scholar 

  10. Jimenez C, Mendez A, Paez S, Ramierz E, Rodriquoz H (2006) Production and characterization of indium oxide and indium nitride. Braz J Phys 36(3b):1017–1020

    Google Scholar 

  11. Ellmer K (2012) Past achievements and future challenges in the development of optically transparent electrodes. Nat Photonics 6:808–816. http://dx.doi.org/10.1038/nphoton.2012.282

  12. Gan J, Lu X, Zhai T, Zhao Y, Xie S, Mao Y, Zhang Y, Yanga Y, Tonga Y (2011) Vertically aligned In2O3 nanorods on FTO substrates for photo electrochemical applications. J Mater Chem 21:14685

    Google Scholar 

  13. Tang H, Levy F, Berger H, Schmid PE (1995) Urbach tail of anatase TiO2. Phys Rev B 52:7771

    Google Scholar 

  14. Song X, Qu P, Yang H, He X, Qiu G (2005) Synthesis of γ-Al2O3 nanoparticles by chemical precipitation method. J Central South Univ Technol 12(5):536–541

    Article  Google Scholar 

  15. Konstantatos G, Sargent EH (2010) Nat Nanotechnol 5:391

    Article  Google Scholar 

  16. Sarkar MB, Mondal A, Choudhuri B (2016) Presence of capacitive memory in indium doped TiO2 alloy thin film. J Alloys Compd 654:529

    Article  Google Scholar 

  17. Sarkar MB, Mondal A, Choudhuri B, Mahajan B, Chakrabartty S, Ngangbam C (2014) Enlarged broad band photodetection using indium doped TiO2 alloy thin film. J Alloys Compd 615:440

    Google Scholar 

  18. Ju S, Ishikawa F, Chen P, Chang HK, Zhou C, Ha Y, Liu J, Facchetti A, Marks TJ, Janes DB (2008) High performance In2O3 nanowire transistors using organic gate nanodielectrics. Appl Phys Lett 92:222105

    Google Scholar 

  19. Sabino FP, Oliveira LN, Wei S-H, Da Silva JLF (2017) Optical and fundamental band gaps disparity in transparent conducting oxides: new findings for the In2O3 and SnO systems. J Phys Condens Matt 29:085501 (7)

    Google Scholar 

  20. Sekiya T, Kurita S (2008) Defects in anatase titanium dioxide. Adv Mater Res 121–141

    Google Scholar 

  21. Chinnamuthu P, Mondal A, Singh NK, Dhar JC, Chattopadhyay KK et al (2012) Band gap enhancement of glancing angle deposited TiO2 nanowire array. J Appl Phys 112:054315

    Article  Google Scholar 

  22. Deb P, Dhar JC (2018) Enhanced absorption and photoemission from TiO2 nanowire/graphene oxide thin-film hetero-structure. J Electron Mater 47(10)

    Google Scholar 

  23. Mondal A, Shougaijam B, Ngangbam C (2014) Dispersed Ag nanoparticles on TiO2 nanowire clusters for photodetection. In: TENCON 2014—2014 IEEE region 10 conference

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank ECE department and Dr. Biswajit Saha, NIT Agartala (Department of Physics) for providing the facility to sample testing for the absorption measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Kumar Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yadav, V.K., Yadav, V.K., Nath, A., Raman, R., Choudhury, P., Sarkar, M.B. (2021). GLAD Assisted In2O3 NW-TiO2 NW Heterostructure for Enhanced UV-Vis Absorption. In: Nath, V., Mandal, J.K. (eds) Proceedings of the Fourth International Conference on Microelectronics, Computing and Communication Systems. Lecture Notes in Electrical Engineering, vol 673. Springer, Singapore. https://doi.org/10.1007/978-981-15-5546-6_65

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5546-6_65

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5545-9

  • Online ISBN: 978-981-15-5546-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics