Skip to main content

Nanomedicine: Implications of Nanotoxicology

  • Chapter
  • First Online:
Drug Discovery and Development

Abstract

The expanding horizon of nanotechnology has covered most of the parts of our life including general household items to drug delivery and therapeutics. The progresses made in the nanotechnology field provided us some of the clinically useful nano-based products apart from the more than 50 products in pipeline. However, as these products are intended for human use, they also raise some critical safety concerns primarily due to their altered physicochemical properties different from the bulk. Further, the use of nanocarriers has also been found to be associated with different unwanted toxicological observations which depends on different factors. Hence, the safe and efficacious use of these nanocarriers strictly entails the comprehensive and thorough knowledge of the toxicological potential of nanocarriers. Further, the harmonious integration of academia, researcher, industries and regulatory bodies is warranted to ensure the proper regulation of their use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chatterjee K, Zhang J, Honbo N, Karliner JS. Doxorubicin cardiomyopathy. Cardiology. 2010;115:155–62.

    Article  CAS  PubMed  Google Scholar 

  2. Saifi MA, Khan W, Godugu C. Cytotoxicity of nanomaterials: using nanotoxicology to address the safety concerns of nanoparticles. Pharm Nanotechnol. 2018;6:3–16.

    Article  CAS  PubMed  Google Scholar 

  3. Saifi MA, Khurana A, Godugu C. Nanotoxicology: toxicity and risk assessment of nanomaterials. In: Nanomaterials in chromatography: Elsevier; 2018. p. 437–65.

    Google Scholar 

  4. Buchman JT, Hudson-Smith NV, Landy KM, Haynes CL. Understanding nanoparticle toxicity mechanisms to inform redesign strategies to reduce environmental impact. Acc Chem Res. 2019;52:1632.

    Article  CAS  PubMed  Google Scholar 

  5. Asare N, et al. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology. 2012;291:65–72.

    Article  CAS  PubMed  Google Scholar 

  6. Eom H-J, Choi J. p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol. 2010;44:8337–42.

    Article  CAS  PubMed  Google Scholar 

  7. Chueh PJ, Liang R-Y, Lee Y-H, Zeng Z-M, Chuang S-M. Differential cytotoxic effects of gold nanoparticles in different mammalian cell lines. J Hazard Mater. 2014;264:303–12.

    Article  CAS  PubMed  Google Scholar 

  8. Cui W, et al. Effects of aggregation and the surface properties of gold nanoparticles on cytotoxicity and cell growth. Nanomedicine. 2012;8:46–53.

    Article  CAS  PubMed  Google Scholar 

  9. Coradeghini R, et al. Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett. 2013;217:205–16.

    Article  CAS  PubMed  Google Scholar 

  10. Jia G, et al. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol. 2005;39:1378–83.

    Article  CAS  PubMed  Google Scholar 

  11. Lin J, Zhang H, Chen Z, Zheng Y. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano. 2010;4:5421–9.

    Article  CAS  PubMed  Google Scholar 

  12. Voinov MA, Pagán JOS, Morrison E, Smirnova TI, Smirnov AI. Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J Am Chem Soc. 2010;133:35–41.

    Article  PubMed  CAS  Google Scholar 

  13. Sun L, et al. Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicol In Vitro. 2011;25:1619–29.

    Article  CAS  PubMed  Google Scholar 

  14. Athinarayanan J, Periasamy VS, Alsaif MA, Al-Warthan AA, Alshatwi AA. Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells. Cell Biol Toxicol. 2014;30:89–100.

    Article  CAS  PubMed  Google Scholar 

  15. Shi J, et al. Microsomal glutathione transferase 1 protects against toxicity induced by silica nanoparticles but not by zinc oxide nanoparticles. ACS Nano. 2012;6:1925–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vandebriel RJ, De Jong WH. A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl. 2012;5:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li JJ, et al. Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv Mater. 2008;20:138–42.

    Article  CAS  Google Scholar 

  18. Ahamed M, et al. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol. 2008;233:404–10.

    Article  CAS  PubMed  Google Scholar 

  19. Dufour EK, Kumaravel T, Nohynek GJ, Kirkland D, Toutain H. Clastogenicity, photo-clastogenicity or pseudo-photo-clastogenicity: genotoxic effects of zinc oxide in the dark, in pre-irradiated or simultaneously irradiated Chinese hamster ovary cells. Mutat Res Toxicol Environ Mutagen. 2006;607:215–24.

    Article  CAS  Google Scholar 

  20. Sadeghiani N, et al. Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surface coated with polyaspartic acid. J Magn Magn Mater. 2005;289:466–8.

    Article  CAS  Google Scholar 

  21. Zhu S, Oberdörster E, Haasch ML. Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species Daphnia and fathead minnow. Mar Environ Res. 2006;62:S5–9.

    Article  CAS  PubMed  Google Scholar 

  22. Lovern SB, Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem. 2006;25:1132–7.

    Article  CAS  PubMed  Google Scholar 

  23. Mohammed Sadiq I, Chandrasekaran N, Mukherjee A. Studies on effect of TiO2 nanoparticles on growth and membrane permeability of Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis. Curr Nanosci. 2010;6:381–7.

    Article  Google Scholar 

  24. Xiu Z, Zhang Q, Puppala HL, Colvin VL, Alvarez PJJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012;12:4271–5.

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Zhang W, Niu J, Chen Y. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano. 2012;6:5164–73.

    Article  CAS  PubMed  Google Scholar 

  26. Hund-Rinke K, Simon M. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids (8 pp). Environ Sci Pollut Res. 2006;13:225–32.

    Article  CAS  Google Scholar 

  27. Navarro E, et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 2008;17:372–86.

    Article  CAS  PubMed  Google Scholar 

  28. Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL. Toxicity of engineered nanoparticles in the environment. Anal Chem. 2013;85:3036–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Singh RP, Ramarao P. Accumulated polymer degradation products as effector molecules in cytotoxicity of polymeric nanoparticles. Toxicol Sci. 2013;136:131–43.

    Article  CAS  PubMed  Google Scholar 

  30. Pan Y, et al. Size-dependent cytotoxicity of gold nanoparticles. Small. 2007;3:1941–9.

    Article  CAS  PubMed  Google Scholar 

  31. Adams CP, Walker KA, Obare SO, Docherty KM. Size-dependent antimicrobial effects of novel palladium nanoparticles. PLoS One. 2014;9:e85981.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ivask A, et al. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One. 2014;9:e102108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kang S, Herzberg M, Rodrigues DF, Elimelech M. Antibacterial effects of carbon nanotubes: size does matter! Langmuir. 2008;24:6409–13.

    Article  CAS  PubMed  Google Scholar 

  34. Kim I-Y, Joachim E, Choi H, Kim K. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine. 2015;11:1407–16.

    Article  CAS  PubMed  Google Scholar 

  35. Park KH, Chhowalla M, Iqbal Z, Sesti F. Single-walled carbon nanotubes are a new class of ion channel blockers. J Biol Chem. 2003;278:50212–6.

    Article  CAS  PubMed  Google Scholar 

  36. Lee JH, et al. Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environ Toxicol Chem. 2014;33:2759–66.

    Article  CAS  PubMed  Google Scholar 

  37. Stoehr LC, et al. Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Part Fibre Toxicol. 2011;8:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Heng BC, et al. Evaluation of the cytotoxic and inflammatory potential of differentially shaped zinc oxide nanoparticles. Arch Toxicol. 2011;85:1517–28.

    Article  CAS  PubMed  Google Scholar 

  39. Takahashi H, et al. Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity. Langmuir. 2006;22:2–5.

    Article  CAS  PubMed  Google Scholar 

  40. Yang H, Liu C, Yang D, Zhang H, Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol. 2009;29:69–78.

    Article  PubMed  CAS  Google Scholar 

  41. Firme CP III, Bandaru PR. Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine. 2010;6:245–56.

    Article  CAS  PubMed  Google Scholar 

  42. Ruge CA, et al. Uptake of nanoparticles by alveolar macrophages is triggered by surfactant protein A. Nanomedicine. 2011;7:690–3.

    Article  CAS  PubMed  Google Scholar 

  43. Ge C, et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci. 2011;108:16968–73.

    Article  CAS  PubMed  Google Scholar 

  44. Hu W, et al. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano. 2011;5:3693–700.

    Article  CAS  PubMed  Google Scholar 

  45. Panas A, et al. Screening of different metal oxide nanoparticles reveals selective toxicity and inflammatory potential of silica nanoparticles in lung epithelial cells and macrophages. Nanotoxicology. 2012;7:259–73.

    Article  PubMed  CAS  Google Scholar 

  46. Sayes CM, et al. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett. 2006;161:135–42.

    Article  CAS  PubMed  Google Scholar 

  47. Moghimi SM, et al. A two-stage poly (ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther. 2005;11:990–5.

    Article  CAS  PubMed  Google Scholar 

  48. Lim D, et al. Oxidative stress-related PMK-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environ Toxicol Chem. 2012;31:585–92.

    Article  CAS  PubMed  Google Scholar 

  49. Liu X, Sun J. Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-κB pathways. Biomaterials. 2010;31:8198–209.

    Article  CAS  PubMed  Google Scholar 

  50. Ryman-Rasmussen JP, et al. Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in murine allergic asthma. Am J Respir Cell Mol Biol. 2009;40:349–58.

    Article  CAS  PubMed  Google Scholar 

  51. Porter DW, et al. Mouse pulmonary dose-and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology. 2010;269:136–47.

    Article  CAS  PubMed  Google Scholar 

  52. Shvedova AA, et al. Vitamin E deficiency enhances pulmonary inflammatory response and oxidative stress induced by single-walled carbon nanotubes in C57BL/6 mice. Toxicol Appl Pharmacol. 2007;221:339–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wilhelmi V, et al. Evaluation of apoptosis induced by nanoparticles and fine particles in RAW 264.7 macrophages: facts and artefacts. Toxicol In Vitro. 2012;26:323–34.

    Article  CAS  PubMed  Google Scholar 

  54. Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 2011;40:1647–71.

    Article  CAS  PubMed  Google Scholar 

  55. Elsaesser A, Howard CV. Toxicology of nanoparticles. Adv Drug Deliv Rev. 2012;64:129–37.

    Article  CAS  PubMed  Google Scholar 

  56. Sharma HS, Sharma A. Nanoparticles aggravate heat stress induced cognitive deficits, blood–brain barrier disruption, edema formation and brain pathology. Prog Brain Res. 2007;162:245–73.

    Article  CAS  PubMed  Google Scholar 

  57. Ma L, et al. Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity. Biomaterials. 2010;31:99–105.

    Article  CAS  PubMed  Google Scholar 

  58. Buerki-Thurnherr T, von Mandach U, Wick P. Knocking at the door of the unborn child: engineered nanoparticles at the human placental barrier. Swiss Med Wkly. 2012;142:w13559.

    PubMed  Google Scholar 

  59. Hougaard KS, et al. A perspective on the developmental toxicity of inhaled nanoparticles. Reprod Toxicol. 2015;56:118–40.

    Article  CAS  PubMed  Google Scholar 

  60. Hougaard KS, et al. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-titan). A study in mice. Part Fibre Toxicol. 2010;7:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Shimizu M, et al. Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Part Fibre Toxicol. 2009;6:20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Yamashita K, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol. 2011;6:321.

    Article  CAS  PubMed  Google Scholar 

  63. Campagnolo L, et al. Biodistribution and toxicity of pegylated single wall carbon nanotubes in pregnant mice. Part Fibre Toxicol. 2013;10:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rattanapinyopituk K, et al. Demonstration of the clathrin-and caveolin-mediated endocytosis at the maternal–fetal barrier in mouse placenta after intravenous administration of gold nanoparticles. J Vet Med Sci. 2013:13–512.

    Google Scholar 

  65. Park E-J, et al. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol. 2010;30:162–8.

    Article  CAS  PubMed  Google Scholar 

  66. Bai Y, et al. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat Nanotechnol. 2010;5:683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lan Z, Yang W-X. Nanoparticles and spermatogenesis: how do nanoparticles affect spermatogenesis and penetrate the blood–testis barrier. Nanomedicine. 2012;7:579–96.

    Article  CAS  PubMed  Google Scholar 

  68. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56:1649–59.

    Article  CAS  PubMed  Google Scholar 

  69. Xu Y-Y, et al. Intravenous administration of multiwalled carbon nanotubes aggravates high-fat diet-induced nonalcoholic steatohepatitis in Sprague Dawley rats. Int J Toxicol. 2016;35:634–43.

    Article  CAS  PubMed  Google Scholar 

  70. Senior JH. Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst. 1987;3:123–93.

    CAS  PubMed  Google Scholar 

  71. Jain S, et al. Toxicity of multiwalled carbon nanotubes with end defects critically depends on their functionalization density. Chem Res Toxicol. 2011;24:2028–39.

    Article  CAS  PubMed  Google Scholar 

  72. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51.

    Article  CAS  PubMed  Google Scholar 

  73. Eliyahu H, Servel N, Domb AJ, Barenholz Y. Lipoplex-induced hemagglutination: potential involvement in intravenous gene delivery. Gene Ther. 2002;9:850.

    Article  CAS  PubMed  Google Scholar 

  74. Qi R, et al. PEG-conjugated PAMAM dendrimers mediate efficient intramuscular gene expression. AAPS J. 2009;11:395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gabizon AA, et al. Reduced toxicity and superior therapeutic activity of a mitomycin C lipid-based prodrug incorporated in pegylated liposomes. Clin Cancer Res. 2006;12:1913–20.

    Article  CAS  PubMed  Google Scholar 

  76. Luo M, et al. Reducing ZnO nanoparticle cytotoxicity by surface modification. Nanoscale. 2014;6:5791–8.

    Article  CAS  PubMed  Google Scholar 

  77. Lankoff A, et al. Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes in vitro. Nanotoxicology. 2012;7:235–50.

    Article  PubMed  CAS  Google Scholar 

  78. Yung MMN, et al. Physicochemical characteristics and toxicity of surface-modified zinc oxide nanoparticles to freshwater and marine microalgae. Sci Rep. 2017;7:15909.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Xia T, et al. Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano. 2011;5:1223–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nie Z, et al. Enhanced radical scavenging activity by antioxidant-functionalized gold nanoparticles: a novel inspiration for development of new artificial antioxidants. Free Radic Biol Med. 2007;43:1243–54.

    Article  CAS  PubMed  Google Scholar 

  81. Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic applications of selenium nanoparticles. Biomed Pharmacother. 2019;111:802–12.

    Article  CAS  PubMed  Google Scholar 

  82. Sangomla S, Saifi MA, Khurana A, Godugu C. Nanoceria ameliorates doxorubicin induced cardiotoxicity: possible mitigation via reduction of oxidative stress and inflammation. J Trace Elem Med Biol. 2018;47:53–62.

    Article  CAS  PubMed  Google Scholar 

  83. Khurana A, et al. Yttrium oxide nanoparticles reduce the severity of acute pancreatitis caused by cerulein hyperstimulation. Nanomedicine. 2019;18:54–65.

    Article  CAS  PubMed  Google Scholar 

  84. Singh RP, Ramarao P. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett. 2012;213:249–59.

    Article  CAS  PubMed  Google Scholar 

  85. Wang H, Wu L, Reinhard BM. Scavenger receptor mediated endocytosis of silver nanoparticles into J774A. 1 macrophages is heterogeneous. ACS Nano. 2012;6:7122–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang X, et al. Multi-walled carbon nanotubes induce apoptosis via mitochondrial pathway and scavenger receptor. Toxicol In Vitro. 2012;26:799–806.

    Article  CAS  PubMed  Google Scholar 

  87. Shannahan JH, et al. Formation of a protein corona on silver nanoparticles mediates cellular toxicity via scavenger receptors. Toxicol Sci. 2014;143:136–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Shannahan JH, Bai W, Brown JM. Implications of scavenger receptors in the safe development of nanotherapeutics. Receptors Clin Investig. 2015;2:e811.

    PubMed  PubMed Central  Google Scholar 

  89. Orr GA, et al. Cellular recognition and trafficking of amorphous silica nanoparticles by macrophage scavenger receptor a. Nanotoxicology. 2011;5:296–311.

    Article  CAS  PubMed  Google Scholar 

  90. Wörle-Knirsch JM, Pulskamp K, Krug HF. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett. 2006;6:1261–8.

    Article  PubMed  CAS  Google Scholar 

  91. Angius F, Floris A. Liposomes and MTT cell viability assay: an incompatible affair. Toxicol In Vitro. 2015;29:314–9.

    Article  CAS  PubMed  Google Scholar 

  92. Guo L, et al. Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing. Small. 2008;4:721–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Adams LK, Lyon DY, Alvarez PJJ. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 2006;40:3527–32.

    Article  CAS  PubMed  Google Scholar 

  94. Fröhlich E. Role of omics techniques in the toxicity testing of nanoparticles. J Nanobiotechnol. 2017;15:84.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandraiah Godugu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saifi, M.A., Poduri, R., Godugu, C. (2021). Nanomedicine: Implications of Nanotoxicology. In: Poduri, R. (eds) Drug Discovery and Development. Springer, Singapore. https://doi.org/10.1007/978-981-15-5534-3_13

Download citation

Publish with us

Policies and ethics