Skip to main content

Management of Insulin Through Co-Solute Engineering: A Therapeutic Approach

  • Chapter
  • First Online:
Frontiers in Protein Structure, Function, and Dynamics

Abstract

Fibrillation and aggregation of protein are some of the most exciting frontiers in protein chemistry and molecular medicine. It is also expected to shed light on the molecular and biochemical basis of various pathological conditions having a dramatic social impact such as Alzheimer’s, Parkinson’s diseases, and type II diabetes. The role of insulin in different physiological processes, effect on its synthesis and secretion, along with its actions on the molecular level to the whole-body level, has important implications in chronic diseases prevailing in westernized populations today. Rapid globalization, urbanization, and industrialization have spawned epidemics of obesity, diabetes, and their attendant comorbidities, like physical inactivity and dietary imbalance, unmask latent predisposing genetic traits. The present review discusses insulin, its structure, and its etiology in diabetes. The aggregation mechanism begins with the diffusion of insulin and then its adsorption at the hydrophobic interface that leads to conformational changes of oligomers to expose the hydrophobic residues. Factors influencing its aggregation, such as temperature, light exposure, pH, salt, protein concentration, drying, and agitation, have also been discussed. At last, the therapeutic approaches with recent drug interventions have also been mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarkhed M, O’Dell C, Hsieh MC, Zhang J, Goldstein J, Srivastava A (2013) Effect of polysorbate 80 concentration on thermal and photostability of a monoclonal antibody. AAPS PharmSciTech 14(1):1–9

    CAS  PubMed  Google Scholar 

  • Ahmad A, Millett IS, Doniach S, Uversky VN, Fink AL (2004) Stimulation of insulin fibrillation by urea-induced intermediates. J Biol Chem 279(15):14999–15013

    CAS  PubMed  Google Scholar 

  • Ahmad A, Uversky VN, Hong D, Fink AL (2005) Early events in the fibrillation of monomeric insulin. J Biol Chem 280:42669–42675

    CAS  PubMed  Google Scholar 

  • Alam P, Siddiqi K, Chturvedi SK, Khan RH (2017) Protein aggregation: from background to inhibition strategies. Int J Biol Macromol 103:208–219

    CAS  PubMed  Google Scholar 

  • Alford JR, Kendrick BS, Carpenter JF, Randolph TW (2008) High concentration formulations of recombinant human interleukin-1 receptor antagonist: II. Aggregation kinetics. J Pharm Sci 97:3005–3021

    CAS  PubMed  Google Scholar 

  • Arora A, Ha C, Park CB (2004) Inhibition of insulin amyloid formation by small stress molecules. FEBS Lett 564(1–2):121–125

    CAS  PubMed  Google Scholar 

  • Arzensek D, Kuzman D, Podgornik R (2015) Hofmeister effects in monoclonal antibody solution interactions. J Phys Chem B 119(33):10375–10389

    CAS  PubMed  Google Scholar 

  • Bai G, Bee JS, Biddlecombe JG, Chen Q, Leach WT (2012) Computational fluid dynamics (CFD) insights into agitation stress methods in biopharmaceutical development. Int J Pharm 423:264–280

    CAS  PubMed  Google Scholar 

  • Bajorunaite E, Sereikaite J, Bumelis VA (2007) L-arginine suppresses aggregation of recombinant growth hormones in refolding process from E. coli inclusion bodies. Proteins 26:547–555

    CAS  Google Scholar 

  • Baker EN, Blundell TL, Cutfield JF, Dodson EJ, Dodson GG, Hodgkin DMC, Hubbard RE, Isaacs NW, Reynolds CD, Sakabe K (1988) The structure of 2Zn pig insulin crystals at 1.5 Å resolution. Philos Trans R Soc Lond B Biol Sci 319:369–456

    CAS  PubMed  Google Scholar 

  • Beg I, Minton AP, Hassan MI, Islam A, Ahmad F (2015) Thermal stabilization of proteins by mono-and oligosaccharides: measurement and analysis in the context of an excluded volume model. Biochemistry 54:3594–3603

    CAS  PubMed  Google Scholar 

  • Bickel F, Herold EM, Signes A, Romeijn S, Jiskoot W, Kiefer H (2016) Reversible NaCl-induced aggregation of a monoclonal antibody at low pH: characterization of aggregates and factors affecting aggregation. Eur J Pharm Biopharm 107:310–320

    CAS  PubMed  Google Scholar 

  • Blundell T, Cutfield J, Cutfield S, Dodson E, Dodson G, Hodgkin D, Mercola D (1972) Three-dimensional atomic structure of insulin and its relationship to activity. J Diabetes 21:492–505

    CAS  Google Scholar 

  • Bouchard M, Zurdo J, Nettleton EJ, Dobson CM, Robinson CV (2000) Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy. Protein Sci 9(10):1960–1967

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brange J, Dodson G, Edwards D, Holden P, Whittingham J (1997) A model of insulin fibrils derived from the X-ray crystal structure of a monomeric insulin (despentapeptide insulin). Proteins 27:507–516

    CAS  PubMed  Google Scholar 

  • Brummitt RK, Nesta DP, Chang L, Chase SF, Laue TM, Roberts CJ (2011) Nonnative aggregation of an IgG1 antibody in acidic conditions: part unfolding, colloidal interactions, and formation of high-molecular-weight aggregates. J Pharm Sci 100:2087–2103

    CAS  PubMed  Google Scholar 

  • Brych SR, Gokarn YR, Hultgen H, Stevenson RJ, Rajan R, Matsumura M (2010) Characterization of antibody aggregation: role of buried, unpaired cysteines in particle formation. J Pharm Sci 99:764–781

    CAS  PubMed  Google Scholar 

  • Calero-Rubio C, Ghosh R, Saluja A, Roberts CJ (2018) Predicting protein-protein interactions of concentrated antibody solutions using dilute solution data and coarse-grained molecular models. J Pharm Sci 107:1269–1281

    CAS  PubMed  Google Scholar 

  • Chandel TI, Khan MV, Khan RH (2017) Impact of osmolytes in conformational modulation of protein and its applications in biotechnology. In: Singh LR, Dar TA (eds) Cellular osmolytes: from chaperoning protein folding to clinical perspectives. Springer, Singapore, pp 143–160

    Google Scholar 

  • Chang X, Jørgensen AMM, Bardrum P, Led JJ (1997) Solution structures of the R6 human insulin hexamer. Biochemistry 36:9409–9422

    CAS  PubMed  Google Scholar 

  • Chantrapornchai W, Clydesdale F, McClements D (2001) Influence of flocculation on optical properties of emulsions. J Food Sci 66:464–469

    CAS  Google Scholar 

  • Chaturvedi SK, Khan JM, Siddiqi MK, Alam P, Khan RH (2016) Comparative insight into surfactants mediated amyloidogenesis of lysozyme. Int J Biol Macromol 83:315–325

    CAS  PubMed  Google Scholar 

  • Chaudhuri R, Cheng Y, Middaugh CR, Volkin DB (2014) High-throughput biophysical analysis of protein therapeutics to examine interrelationships between aggregate formation and conformational stability. AAPS J 16:48–64

    CAS  PubMed  Google Scholar 

  • Chi EY, Krishnan S, Randolph TW, Carpenter JF (2003) Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res 20:1325–1336

    CAS  PubMed  Google Scholar 

  • Cho YM, Kieffer TJ (2010) K-cells and glucose-dependent insulinotropic polypeptide in health and disease. Vitam Horm 84:111–150

    CAS  PubMed  Google Scholar 

  • Choudhary S, Kishore N (2014) Addressing mechanism of fibrillization/ aggregation and its prevention in presence of osmolytes: spectroscopic and calorimetric approach. PLoS One 9(8):e104600

    PubMed  PubMed Central  Google Scholar 

  • Choudhary S, Kishore N, Hosur RV (2015) Inhibition of insulin fibrillation by osmolytes: mechanistic insights. Sci Rep 5:17599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collaboration ERF (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375:2215–2222

    Google Scholar 

  • Das U, Hariprasad G, Ethayathulla AS, Manral P, Das TK, Pasha S, Mann A, Ganguli M, Verma AK, Bhat R (2007) Inhibition of protein aggregation: supramolecular assemblies of arginine hold the key. PLoS One 2(11):e1176

    PubMed  PubMed Central  Google Scholar 

  • DeFronzo RA (2010) Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia 53:1270–1287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dekel Y, Machluf Y, Gefen T, Eidelshtein G, Kotlyar A, Bram Y, Shahar E, Reslane F, Aizenshtein E, Pitcovski J (2017) Formation of multimeric antibodies for self-delivery of active monomers. Drug Deliv 24:199–208

    CAS  PubMed  Google Scholar 

  • Dengl S, Wehmer M, Hesse F, Lipsmeier F, Popp O, Lang K (2013) Aggregation and chemical modification of monoclonal antibodies under upstream processing conditions. Pharm Res 30:1380–1399

    CAS  PubMed  Google Scholar 

  • Desai KG, Pruett WA, Martin PJ, Colandene JD, Nesta DP (2017) Impact of manufacturing-scale freeze-thaw conditions on a mAb solution. Bio Pharm Int 30:30–36

    Google Scholar 

  • Dzwolak W, Ravindra R, Lendermann J, Winter R (2003) Aggregation of bovine insulin probed by DSC/PPC calorimetry and FTIR spectroscopy. Biochemistry 42(38):11347–11355

    CAS  PubMed  Google Scholar 

  • Eleutherio EC, Silva JT, Panek AD (1998) Identification of an integral membrane 80 kDa protein of Saccharomyces cerevisiae induced in response to dehydration. Cell Stress Chaperones 3:37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esfandiary R, Parupudi A, CasasFinet J, Gadre D, Sathish H (2015) Mechanism of reversible self-association of a monoclonal antibody: role of electrostatic and hydrophobic interactions. J Pharm Sci 104:577–586

    CAS  PubMed  Google Scholar 

  • Faghihi H, Vatanara A, Najafabadi AR, Ramezani V, Gilani K (2014) The use of amino acids to prepare physically and conformationally stable spray-dried IgG with enhanced aerosol performance. Int J Pharm 466:163–171

    CAS  PubMed  Google Scholar 

  • Fields GB, Alonso DO, Stigter D, Dill KA (1992) Theory for the aggregation of proteins and copolymers. J Phys Chem A 96:3974–3981

    CAS  Google Scholar 

  • Fukuda M, Watanabe A, Hayasaka A, Muraoka M, Hori Y, Yamazaki T, Imaeda Y, Koga A (2017) Small-scale screening method for low-viscosity antibody solutions using small-angle X-ray scattering. Eur J Pharm Biopharm 112:132–137

    CAS  PubMed  Google Scholar 

  • Galm L, Amrhein S, Hubbuch J (2017) Predictive approach for protein aggregation: correlation of protein surface characteristics and conformational flexibility to protein aggregation propensity. Biotechnol Bioeng 114:1170–1183

    CAS  PubMed  Google Scholar 

  • Gandhi AV, Pothecary MR, Bain DL, Carpenter JF (2017) Some lessons learned from a comparison between sedimentation velocity analytical ultracentrifugation and size exclusion chromatography to characterize and quantify protein aggregates. J Pharm Sci 106:2178–2186

    CAS  PubMed  Google Scholar 

  • Gazit E (2002) The “correctly folded” state of proteins: is it a metastable state? Angew Chem Int Ed Engl 41:257–259

    CAS  PubMed  Google Scholar 

  • Godfrin PD, CastañedaPriego R, Liu Y, Wagner NJ (2013) Intermediate range order and structure in colloidal dispersions with competing interactions. J Chem Phys 139:154904

    PubMed  Google Scholar 

  • Gong H, He Z, Peng A, Zhang X, Cheng B, Sun Y, Zheng L, Huang K (2015) Effects of several quinones on insulin aggregation. Sci Rep 4(1):5648

    Google Scholar 

  • Hauptmann A, Podgoršek K, Kuzman D, Srčič S, Hoelzl G, Loerting T (2018) Impact of buffer, protein concentration and sucrose addition on the aggregation and particle formation during freezing and thawing. Pharm Res 35(5):101

    PubMed  PubMed Central  Google Scholar 

  • Hu YT, Ting Y, Hu JY, Hsieh SC (2017) Techniques and methods to study functional characteristics of emulsion systems. J Food Drug Anal 25:16–26

    CAS  PubMed  Google Scholar 

  • Hua Q, Weiss MA (2004) Mechanism of insulin fibrillation the structure of insulin under amyloidogenic conditions resembles a protein-folding intermediate. J Biol Chem 279:21449–21460

    CAS  PubMed  Google Scholar 

  • Huus K, Havelund S, Olsen HB, van de Weert M, Frokjaer S (2005) Thermal dissociation and unfolding of insulin. Biochemistry 44(33):11171–11177

    CAS  PubMed  Google Scholar 

  • Ignatova Z, Gierasch LM (2006) Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. PNAS 103:13357–13361

    CAS  PubMed  Google Scholar 

  • Inayathullah M, Rajadas J (2016) Effect of osmolytes on the conformation and aggregation of some amyloid peptides: CD spectroscopic data. Data Brief 7:1643–1651

    PubMed  PubMed Central  Google Scholar 

  • Jansen R, Dzwolak W, Winter R (2005) Amyloidogenic self-assembly of insulin aggregates probed by high resolution atomic force microscopy. Biophys J 88:1344–1353

    CAS  PubMed  Google Scholar 

  • Jimenez JL, Nettleton EJ, Bouchard M, Robinson CV, Dobson CM, Saibil HR (2002) The protofilament structure of insulin amyloid fibrils. PNAS 99:9196–9201

    CAS  PubMed  Google Scholar 

  • Kameoka D, Masuzaki E, Ueda T, Imoto T (2007) Effect of buffer species on the unfolding and the aggregation of humanized IgG. J Biochem 142:383–391

    CAS  PubMed  Google Scholar 

  • Katayama DS, Nayar R, Chou DK, Valente JJ, Cooper J, Henry CS, VanderVelde DG, Villarete L, Liu C, Manning MC (2006) Effect of buffer species on the thermally induced aggregation of interferon-tau. J Pharm Sci 95:1212–1226

    CAS  PubMed  Google Scholar 

  • Khan SH, Ahmad N, Ahmad F, Kumar R (2010) Naturally occurring organic osmolytes: from cell physiology to disease prevention. IUBMB Life 62:891–895

    CAS  PubMed  Google Scholar 

  • Khan JM, Qadeer A, Chaturvedi SK, Ahmad E, Rehman SAA, Gourinath S, Khan RH (2012) SDS can be utilized as an amyloid inducer: a case study on diverse proteins. PLoS One 7(1):e29694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan S, Mueed Z, Deval R, Rai PK, Prajapati DK, Poddar NK (2019) Role of osmolytes in amyloidosis. In: Surguchov A (ed) Synucleins-biochemistry and role in diseases. IntechOpen, London

    Google Scholar 

  • Khurana R, Uversky VN, Nielsen L, Fink AL (2001) Is Congo red an amyloid-specific dye? J Biol Chem 276:22715–22721

    CAS  PubMed  Google Scholar 

  • Kiese S, Pappenberger A, Friess W, Mahler HC (2010) Equilibrium studies of protein aggregates and homogeneous nucleation in protein formulation. J Pharm Sci 99:632–644

    CAS  PubMed  Google Scholar 

  • Kumar V, Sharma VK, Kalonia DS (2009) In situ precipitation and vacuum drying of interferon alpha-2a: development of a single-step process for obtaining dry, stable protein formulation. Int J Pharm 366:88–98

    CAS  PubMed  Google Scholar 

  • Kumar A, Venkatesu P (2013) Prevention of insulin self-aggregation by a protic ionic liquid. RSC Adv 3(2):362–367

    CAS  Google Scholar 

  • Lewis LM, Pizzo ME, Sinha S, Ahmed SS, Joseph L (2017) Visible and sub-visible particle formation for a model bioconjugate. AAPS PharmSciTech 18:926–931

    CAS  PubMed  Google Scholar 

  • Lin GL, Pathak JA, Kim DH, Carlson M, Riguero V, Kim YJ, Buff JS, Fuller GG (2016) Interfacial dilatational deformation accelerates particle formation in monoclonal antibody solutions. Soft Matter 12:3293–3302

    CAS  PubMed  Google Scholar 

  • Macchi F, Eisenkolb M, Kiefer H, Otzen DE (2012) The effect of osmolytes on protein fibrillation. Int J Mol Sci 13:3801–3819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manno M, Craparo EF, Martorana V, Bulone D, San Biagio PL (2006) Kinetics of insulin aggregation: disentanglement of amyloid fibrillation from large-sizecluster formation. Biophys J 90:4585–4591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mason D, Schneich C, Kerwin A (2012) Effect of pH and light on aggregation and conformation of an IgG1 mAb. Mol Pharm 9:774–790

    CAS  PubMed  Google Scholar 

  • Matthew JB (1985) Electrostatic effects in proteins. Annu Rev Biophys 14:387–417

    CAS  Google Scholar 

  • McCall A, Farhy L (2013) Treating type 1 diabetes: from strategies for insulin delivery to dual hormonal control. Minerva Endocrinol 38(2):145

    CAS  PubMed  PubMed Central  Google Scholar 

  • McEvoy LK, Laughlin GA, BarrettConnor E, Bergstrom J, KritzSilverstein D, Der-Martirosian C, von Mühlen D (2012) Metabolic syndrome and 16-year cognitive decline in community-dwelling older adults. Ann Epidemiol 22:310–317

    PubMed  PubMed Central  Google Scholar 

  • Melander W, Horváth C (1977) Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Arch Biochem Biophys 183:200–215

    CAS  PubMed  Google Scholar 

  • Mezhebovsky T, Routhier E, Sass P, Shahrokh Z (2016) Enabling freeze-thaw stability of PBS-based formulations of a monoclonal antibody. BioPharm Int 29:33–39

    CAS  Google Scholar 

  • Minton AP (2005) Influence of macromolecular crowding upon the stability and state of association of proteins: predictions and observations. J Pharm Sci 94:1668–1675

    CAS  PubMed  Google Scholar 

  • Minton AP (2008) Effective hard particle model for the osmotic pressure of highly concentrated binary protein solutions. Biophys J 94:L57–L59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mittal S, Singh LR (2014) Macromolecular crowding decelerates aggregation of a β-rich protein, bovine carbonic anhydrase: a case study. J Biochem 156:273–282

    CAS  PubMed  Google Scholar 

  • Mollmann S, Bukrinsky J, Frokjaer S, Elofsson U (2005) Adsorption of human insulin and AspB28 insulin on a PTFE-like surface. J Colloid Interface Sci 286:28–35

    CAS  PubMed  Google Scholar 

  • Munishkina LA, Henriques J, Uversky VN, Fink AL (2004) Role of protein−water interactions and electrostatics in α-synuclein fibril formation. Biochemistry 43:3289–3300

    CAS  PubMed  Google Scholar 

  • Munishkina LA, Ahmad A, Fink AL, Uversky VN (2008) Guiding protein aggregation with macromolecular crowding. Biochemistry 47:8993–9006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naik V, Kardani J, Roy I (2006) Trehalose-induced structural transition accelerates aggregation of α-synuclein. Mol Biotechnol 58:251–255

    Google Scholar 

  • Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B (2009) Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: ADA. Diabetes Care 32:193–203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak A, Lee C-C, McRae GJ, Belfort G (2009) Osmolyte controlled fibrillation kinetics of insulin: new insight into fibrillation using the preferential exclusion principle. Biotechnol Prog 25(5):1508–1514

    CAS  PubMed  Google Scholar 

  • Nesta D, Nanda T, He J, Haas M, Shpungin S, Rusanov I, Sweder R, Brisbane C (2017) Aggregation from shear stress and surface interaction: molecule-specific or universal phenomenon? Bioprocess Int 15(4):30–39

    Google Scholar 

  • Nielsen L, Frokjaer S, Brange J, Uversky VN, Fink AL (2001a) Probing the mechanism of insulin fibril formation with insulin mutants. Biochemistry 40:8397–8409

    CAS  PubMed  Google Scholar 

  • Nielsen L, Frokjaer S, Carpenter JF, Brange J (2001b) Studies of the structure of insulin fibrils by Fourier transform infrared (FTIR) spectroscopy and electron microscopy. J Pharm Sci 90:29–37

    CAS  PubMed  Google Scholar 

  • Nielsen L, Khurana R, Coats A, Frokjaer S, Brange J, Vyas S, Uversky VN, Fink AL (2001c) Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry 40:6036–6046

    CAS  PubMed  Google Scholar 

  • Paul AJ, Bickel F, Röhm M, Hospach L, Halder B, Rettich N, Handrick R, Herold EM, Kiefer H, Hesse F (2017) High-throughput analysis of sub-visible mAb aggregate particles using automated fluorescence microscopy imaging. Anal Bioanal Chem 409:4149–4156

    CAS  PubMed  Google Scholar 

  • Raut AS, Kalonia DS (2015) Opalescence in monoclonal antibody solutions and its correlation with intermolecular interactions in dilute and concentrated solutions. J Pharm Sci 104:1263–1274

    CAS  PubMed  Google Scholar 

  • Roefs SP, De Kruif KG (1994) A model for the denaturation and aggregation of β-lactoglobulin. Eur J Biochem 226:883–889

    CAS  PubMed  Google Scholar 

  • Russo AT, Rösgen J, Bolen D (2003) Osmolyte effects on kinetics of FKBP12 C22A folding coupled with prolyl isomerization. J Mol Biol 330:851–866

    CAS  PubMed  Google Scholar 

  • Saha S, Deep S (2016) Glycerol inhibits the primary pathways and transforms the secondary pathway of insulin aggregation. Phys Chem Chem Phys 18(28):18934–18948

    CAS  PubMed  Google Scholar 

  • Sahin E, Weiss WF IV, Kroetsch AM, King KR, Kessler RK, Das TK, Roberts CJ (2012) Aggregation and pH–temperature phase behavior for aggregates of an IgG2 antibody. J Pharm Sci 101:1678–1687

    CAS  PubMed  Google Scholar 

  • Salinas BA, Sathish HA, Bishop SM, Harn N, Carpenter JF, Randolph TW (2010) Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation. J Pharm Sci 99:82–93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sediq AS, van Duijvenvoorde RB, Jiskoot W, Nejadnik MR (2016) No touching! Abrasion of adsorbed protein is the root cause of subvisible particle formation during stirring. J Pharm Sci 105:519–529

    CAS  PubMed  Google Scholar 

  • Shah M, Rattray Z, Day K, Uddin S, Curtis R, van der Walle CF (2017) Pluen evaluation of aggregate and silicone-oil counts in pre-filled siliconized syringes: an orthogonal study characterising the entire subvisible size range. Int J Pharm 519:58–66

    CAS  PubMed  Google Scholar 

  • Shahid S, Hassan MI, Islam A, Ahmad F (2017) Size-dependent studies of macromolecular crowding on the thermodynamic stability, structure and functional activity of proteins: in vitro and in silico approaches. Biochim Biophys Acta 1861:178–197

    CAS  Google Scholar 

  • Shaw KL, Grimsley GR, Yakovlev GI, Makarov AA, Pace CN (2001) The effect of net charge on the solubility, activity, and stability of ribonuclease Sa. Protein Sci 10:1206–1215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla H, Kumar R, Sonkar A, Mitra K, Akhtar MS, Tripathi T (2017) Salt-regulated reversible fibrillation of Mycobacterium tuberculosis isocitrate lyase: concurrent restoration of structure and activity. Int J Biol Macromol 104:89–96

    CAS  PubMed  Google Scholar 

  • Siddiqi MK, Shahein YE, Hussein N, Khan RH (2016) Effect of surfactants on Ra-sHSPI–A small heat shock protein from the cattle tick Rhipicephalus annulatus. J Mol Struct 1119:12–17

    CAS  Google Scholar 

  • Singh LR, Chen X, Kožich V, Kruger WD (2007) Chemical chaperone rescue of mutant human cystathionine β-synthase. Mol Genet Metab 91:335–342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh LR, Poddar NK, Dar TA, Kumar R, Ahmad F (2011) Protein and DNA destabilization by osmolytes: the other side of the coin. Life Sci 88:117–125

    CAS  PubMed  Google Scholar 

  • Singh SR, Zhang J, O’Dell C, Hsieh MC, Goldstein J, Liu J, Srivastava (2012) Effect of polysorbate 80 quality on photostability of a monoclonal antibody. AAPS PharmSciTech 13:422–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sluzky V, Klibanov AM, Langer R (1992) Mechanism of insulin aggregation and stabilization in agitated aqueous solutions. Biotechnol Bioeng 40:895–903

    CAS  PubMed  Google Scholar 

  • Smith GD, Pangborn WA, Blessing RH (2003) The structure of T6 human insulin at 1.0 Å resolution. Acta Crystallogr D Biol Crystallogr 59:474–482

    PubMed  Google Scholar 

  • Smith M, Sharp J, Roberts C (2007) Nucleation and growth of insulin fibrils in bulk solution and at hydrophobic polystyrene surfaces. Biophys J 93:2143–2151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sorenson C, Drummond M (2014) Improving medical device regulation: the United States and Europe in perspective. Milbank Q 92:114–150

    PubMed  PubMed Central  Google Scholar 

  • Sowdhamini R, Srinivasan N, Shoichet B, Santi DV, Ramakrishnan C, Balaram P (1989) Stereochemical modeling of disulfide bridges. Criteria for introduction into proteins by site-directed mutagenesis. Protein Eng 3:95–103

    CAS  PubMed  Google Scholar 

  • Sreedhara A, Yin J, Joyce M, Lau K, Wecksler AT, Deperalta G, Yi L, Wang YJ, Kabakoff B, Kishore RS (2016) Effect of ambient light on IgG1 monoclonal antibodies during drug product processing and development. Eur J Pharm Biopharm 100:38–46

    CAS  PubMed  Google Scholar 

  • Stefani M (2004) Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. BBA Mol Basis Dis 1739:5–25

    CAS  Google Scholar 

  • Stone D (2010) Novel viral vector systems for gene therapy (molecular diversity preservation international). Viruses 2(4):1002–1007

    PubMed  PubMed Central  Google Scholar 

  • Tamarappoo B, Yang, Verkman A (1999) Misfolding of mutant aquaporin-2 water channels in nephrogenic diabetes insipidus. J Biol Chem 274:34825–34831

    CAS  PubMed  Google Scholar 

  • Tandon R, Luxami V, Dosanjh HS, Tandon N, Paul K (2018) Insulin therapy for diabetes epidemic: a patent review. Curr Drug Deliv 15:777–794

    CAS  PubMed  Google Scholar 

  • Tatzelt J, Prusiner SB, Welch WJ (1996) Chemical chaperones interfere with the formation of scrapie prion protein. EMBO J 15:6363–6373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Telikepalli SN, Kumru OS, Kalonia C, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB (2014) Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions. J Pharm Sci 103:796–809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tokhadze N, Chennell P, Le Basle Y, Sautou V (2018) Stability of infliximab solutions in different temperature and dilution conditions. J Pharm Biomed Anal 150:386–395

    CAS  PubMed  Google Scholar 

  • Twomey A, Less R, Kurata K, Takamatsu H, Aksan A (2013) In situ spectroscopic quantification of protein–ice interactions. J Phys Chem B 117:7889–7897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vestergaard B, Groenning M, Roessle M, Kastrup JS, Van De Weert M, Flink JM, Frokjaer S, Gajhede M, Svergun DI (2007) A helical structural nucleus is the primary elongating unit of insulin amyloid fibrils. PLoS Biol 5(5):e134

    PubMed  PubMed Central  Google Scholar 

  • Vlieland ND, Nejadnik MR, Gardarsdottir H, Romeijn S, Sediq AS, Bouvy M, Egberts A, van den Bemt B, Jiskoot W (2018) The impact of inadequate temperature storage conditions on aggregate and particle formation in drugs containing tumor necrosis factor-alpha inhibitors. Pharm Res 35(2):42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W (1999) Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm 185:129–188

    CAS  PubMed  Google Scholar 

  • Wang AY, Peng PD, Ehrhardt A, Storm TA, Kay MA (2004) Comparison of adenoviral and adeno-associated viral vectors for pancreatic gene delivery. Human Gene Therapy 15(4):405–413

    CAS  PubMed  Google Scholar 

  • Wang Z, Kuhr CS, Allen JM, Blankinship M, Gregorevic P, Chamberlain JS, Tapscott SJ, Storb R (2007) Sustained AAV-mediated dystrophin expression in a canine model of duchenne muscular dystrophy with a brief course of immunosuppression. Mol Ther 15(6):1160–1166

    CAS  PubMed  Google Scholar 

  • Wang W, Nema S, Teagarden D (2010) Protein aggregation—pathways and influencing factors. Int J Pharm 390:89–99

    CAS  PubMed  Google Scholar 

  • Wang S, Wu G, Zhang X, Tian Z, Zhang N, Hu T, Dai W, Qian F (2017a) Stabilizing two IgG1 monoclonal antibodies by surfactants: balance between aggregation prevention and structure perturbation. Eur J Pharm Biopharm 114:263–277

    CAS  PubMed  Google Scholar 

  • Wang S, Zhang X, Wu G, Tian Z, Qian F (2017b) Optimization of high-concentration endostatin formulation: harmonization of excipients’ contributions on colloidal and conformational stabilities. Int J Pharm 530:173–186

    CAS  PubMed  Google Scholar 

  • Weiss M, Steiner DF, Philipson LH (2014) Insulin biosynthesis, secretion, structure, and structure-activity relationships. In: Feingold KR, Anawalt B, Boyce A et al (eds) Endotext [internet]. MDText.com, Inc., South Dartmouth

    Google Scholar 

  • Welch WJ, Brown CR (1996) Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones 1:109

    CAS  PubMed  PubMed Central  Google Scholar 

  • White JR (2014) A brief history of the development of diabetes medications. Diabetes Spectr 27:82–86

    PubMed  PubMed Central  Google Scholar 

  • Wilcox G (2005) Insulin and insulin resistance. Clin Biochem Rev 26:19–39

    PubMed  PubMed Central  Google Scholar 

  • Wlodarczyk SR, Custódio D, Pessoa A Jr, Monteiro G (2018) Influence and effect of osmolytes in biopharmaceutical formulations. Eur J Pharm Biopharm 131:92–98

    CAS  PubMed  Google Scholar 

  • Yaffe K, Blackwell T, Whitmer R, Krueger K, BarrettConnor E (2006) Glycosylated hemoglobin level and development of mild cognitive impairment or dementia in older women. J Nutr Health Aging 10:293

    CAS  PubMed  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    CAS  PubMed  Google Scholar 

  • Yancey PH, Siebenaller JF (2015) Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. J Exp Biol 218:1880–1896

    PubMed  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    CAS  PubMed  Google Scholar 

  • Yao ZP, Zeng ZH, Li HM, Zhang Y, Feng YM, Wang DC (1999) Structure of an insulin dimer in an orthorhombic crystal: the structure analysis of a human insulin mutant (9 Ser→ Glu). Acta Crystallogr D Biol Crystallogr 55:1524–1532

    CAS  PubMed  Google Scholar 

  • Zhai J, Lee TH, Small DH, Aguilar MI (2012) Characterization of early stage intermediates in the nucleation phase of Aβ aggregation. Biochemistry 51:1070–1078

    CAS  PubMed  Google Scholar 

  • Zhang L, Graziano K, Pham T, Logsdon CD, Simeone DM (2001) Adenovirus-mediated gene transfer of dominant-negative Smad4 blocks TGF-β signaling in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 280(6):G1247–G1253

    CAS  PubMed  Google Scholar 

  • Zhang L, Yu L, ZhangVanEnk J, Huang G, Zhang J (2017) Phase behavior of an Fc-fusion protein reveals generic patterns of ion-specific perturbation on protein-protein interactions. J Pharm Sci 106:3287–3292

    CAS  PubMed  Google Scholar 

  • Zhou C, Qi W, Lewis EN, Randolph TW, Carpenter JF (2016) Reduced subvisible particle formation in lyophilized intravenous immunoglobulin formulations containing polysorbate 20. J Pharm Sci 105:2302–2309

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asimul Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bashir, S., Sami, N., Bashir, S., Ahmad, F., Hassan, M.I., Islam, A. (2020). Management of Insulin Through Co-Solute Engineering: A Therapeutic Approach. In: Singh, D., Tripathi, T. (eds) Frontiers in Protein Structure, Function, and Dynamics. Springer, Singapore. https://doi.org/10.1007/978-981-15-5530-5_12

Download citation

Publish with us

Policies and ethics