Skip to main content

Advanced Technologies for Ecological Reconstruction and Bioremediation of Degraded Land

  • Chapter
  • First Online:
Environmental Pollution and Remediation

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

Abstract

The need of knowledge on bioremediation and ecological reconstruction technologies and their application in environmental degradation consists in achieving of the objectives regarding the remediation of soils and waters contaminated by anthropogenic activities, especially industrial ones. The general goal is sustainable use and development of natural resources and of the patrimony, represented by the soil quality, in the evolution of global environmental conditions. Heavy metals (HMs) contamination from mining activities is considered to be a serious environmental problem for many regions around the world. The property of HMs to accumulate in the vegetal and animal organisms, including the human, as well as the pathology they determine, justifies the interest that these pollutants arise. Considering the acute toxicity of these contaminants, there is an urgent need to develop sustainable and cost-effective methods for the accumulation, dissipation, immobilization, and degradation of plant pollutants. The efficiency of biological depollution activity and the success of bioremediation technologies result from the conservation of microbiota and phytocoenosis biodiversity, from the ecological reconstruction of anthropically degraded/polluted areas and from the bioremediation of the soil as an integrated ecologic biotechnology system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asgari Lajayer B, Khadem Moghadam N, Maghsoodi MR, Ghorbanpour M, Kariman K (2019) Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies. Environ Sci Pollut Res Int 26(9):8468–8484

    Article  CAS  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2018) Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):180

    Article  CAS  Google Scholar 

  • Behera BK, Prasad R (2020a) Environmental technology and sustainability. Elsevier. ISBN 9780128191033. https://www.elsevier.com/books/environmental-technology-and-sustainability/behera/978-0-12-819103-3

  • Behera BK, Prasad R (2020b) Strategies for soil management. In: Behera BK, Prasad R (eds) Environmental technology and sustainability. Elsevier, Amsterdam, pp 143–167

    Chapter  Google Scholar 

  • Boim AG, Melo LC, Moreno FN, Alleoni LR (2016) Bioconcentration factors and the risk concentrations of potentially toxic elements in garden soils. J Environ Manag 170:21–27

    Article  CAS  Google Scholar 

  • Bourret MM, Brummer JE, Leininger WC (2009) Establishment and growth of two willow species in a riparian zone impacted by mine tailings. J Environ Qual 38(2):693–701

    Article  CAS  Google Scholar 

  • Cai X, Zhang Z, Yin N, Du H, Li Z, Cui Y (2016) Comparison of arsenate reduction and release by three As(V)-reducing bacteria isolated from arsenic-contaminated soil of Inner Mongolia, China. Chemosphere 161:200–207

    Article  CAS  Google Scholar 

  • Carrasco L, Azcón R, Kohler J, Roldán A, Caravaca F (2018) Comparative effects of native filamentous and arbuscular mycorrhizal fungi in the establishment of an autochthonous, leguminous shrub growing in a metal-contaminated soil. Sci Total Environ 409(6):1205–1209

    Article  CAS  Google Scholar 

  • Cetinkaya G, Sozen N (2011) Plant species potentially useful in the phytostabilization process for the abandoned CMC mining site in northern Cyprus. Int J Phytoremediation 13(7):681–691

    Article  Google Scholar 

  • Colin Y, Goberna M, Verdú M, Navarro-Cano JA (2019) Successional trajectories of soil bacterial communities in mine tailings: the role of plant functional traits. J Environ Manag 241:284–292

    Article  CAS  Google Scholar 

  • Collado S, Oulego P, Suárez-Iglesias O, Díaz M (2018) Biodegradation of dissolved humic substances by fungi. Appl Microbiol Biotechnol:3497–3511

    Google Scholar 

  • de Varennes A, Abreu MM, Qu G, Cunha-Queda C (2010) Enzymatic activity of a mine soil varies according to vegetation cover and level of compost applied. Int J Phytoremediation 12(4):371–383

    Article  CAS  Google Scholar 

  • Das A, Prasad R, Srivastava A, Giang PH, Bhatnagar K, Varma A (2007) Fungal siderophores: structure, functions and regulations. In: Varma A, Chincholkar SB (eds) Microbial siderophores, vol 12. Springer-Verlag, Berlin, pp 1–42

    Chapter  Google Scholar 

  • Dold B, Diaby N, Spangenberg JE (2011) Remediation of a marine shore tailings deposit and the importance of water-rock interaction on element cycling in the coastal aquifer. Environ Sci Technol 45(11):4876–4883

    Article  CAS  Google Scholar 

  • Dutta S, Podile AR (2010) Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Crit Rev Microbiol 36(3):232–244

    Article  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1):1–1):9

    Google Scholar 

  • Garlapati D, Chandrasekaran M, Devanesan A, Mathimani T, Pugazhendhi A (2019) Role of cyanobacteria in agricultural and industrial sectors: an outlook on economically important byproducts. Appl Microbiol Biotechnol 103(12):4709–4721

    Article  CAS  Google Scholar 

  • Gay-des-Combes JM, Sanz Carrillo C, Robroek BJM, Jassey VEJ, Mills RTE, Arif MS, Falquet L, Frossard E, Buttler A (2017) Tropical soils degraded by slash-and-burn cultivation can be recultivated when amended with ashes and compost. Ecol Evol 7(14):5378–5388

    Article  Google Scholar 

  • Hesami R, Salimi A, Ghaderian SM (2018) Lead, zinc, and cadmium uptake, accumulation, and phytoremediation by plants growing around Tang-e Douzan lead-zinc mine, Iran. Environ Sci Pollut Res Int 25(9):8701–8714

    Article  CAS  Google Scholar 

  • Horemans B, Breugelmans P, Saeys W, Springael D (2018) Soil-bacterium compatibility model as a decision-making tool for soil bioremediation. Environ Sci Technol 51(3):1605–1615

    Article  CAS  Google Scholar 

  • Hu C, Yang X, Gao L, Zhang P, Li W, Dong J, Li C, Zhang X (2019) Comparative analysis of heavy metal accumulation and bioindication in three seagrasses: which species is more suitable as a bioindicator? Sci Total Environ 669:41–48

    Article  CAS  Google Scholar 

  • Ignatius A, Arunbabu V, Neethu J, Ramasamy EV (2014) Rhizofiltration of lead using an aromatic medicinal plant Plectranthus amboinicus cultured in a hydroponic nutrient film technique (NFT) system. Environ Sci Pollut Res Int 21(22):13007–13016

    Article  CAS  Google Scholar 

  • Jain S, Mishra D, Khare P, Yadav V, Deshmukh Y, Meena A (2016) Impact of biochar amendment on enzymatic resilience properties of mine spoils. Sci Total Environ 544:410–421

    Article  CAS  Google Scholar 

  • Ji Y, Wu P, Zhang J, Zhang J, Zhou Y, Peng Y, Zhang S, Cai G, Gao G (2018) Heavy metal accumulation, risk assessment and integrated biomarker responses of local vegetables: a case study along the Le’an river. Chemosphere 199:361–371

    Article  CAS  Google Scholar 

  • Jonasson ME, Afshari R (2018) Historical documentation of lead toxicity prior to the 20th century in English literature. Hum Exp Toxicol 37(8):775–788

    Article  CAS  Google Scholar 

  • Joniec J, Gąsior J, Voloshanska S, Nazarkiewicz M, Hoivanovych N (2019) Evaluation of the effectiveness of land reclamation based on microbiological and biochemical parameters assessed in an ozokerite mining and processing landfill sown with Trifolium hybridum and Dactylis glomerata. J Environ Manag 242:343–350

    Article  CAS  Google Scholar 

  • Juwarkar AA, Yadav SK, Thawale PR, Kumar P, Singh SK, Chakrabarti T (2009) Developmental strategies for sustainable ecosystem on mine spoil dumps: a case of study. Environ Monit Assess 157(1–4):471–481

    Article  CAS  Google Scholar 

  • Konstantinova E, Minkina T, Sushkova S, Konstantinov A, Rajput VD, Sherstnev A (2019) Urban soil geochemistry of an intensively developing Siberian city: a case study of Tyumen, Russia. J Environ Manag 239:366–375

    Article  CAS  Google Scholar 

  • Küpper H, Andresen E (2016) Mechanisms of metal toxicity in plants. Metallomics 8(3):269–285

    Article  Google Scholar 

  • Lax S, Cardona C, Zhao D, Winton VJ, Goodney G, Gao P, Gottel N, Hartmann EM, Henry C, Thomas PM, Kelley ST, Stephens B, Gilbert JA (2019) Microbial and metabolic succession on common building materials under high humidity conditions. Nat Commun 10(1):1767

    Article  CAS  Google Scholar 

  • Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153(3):497–522

    Article  CAS  Google Scholar 

  • Liu L, Li W, Song W, Guo M (2018a) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219

    Article  CAS  Google Scholar 

  • Liu C, Lin H, Dong Y, Li B, Liu Y (2018b) Investigation on microbial community in remediation of lead-contaminated soil by Trifolium repens L. Ecotoxicol Environ Saf 165:52–60

    Article  CAS  Google Scholar 

  • Maier S, Tamm A, Wu D, Caesar J, Grube M, Weber B (2018) Photoautotrophic organisms control microbial abundance, diversity, and physiology in different types of biological soil crusts. ISME J 12(4):1032–1046

    Article  CAS  Google Scholar 

  • Mishra T, Singh NB, Singh N (2017) Restoration of red mud deposits by naturally growing vegetation. Int J Phytoremediation 19(5):439–445

    Article  Google Scholar 

  • Nguyen-The C, Bardin M, Berard A, Berge O, Brillard J, Broussolle V, Carlin F, Renault P, Tchamitchian M, Morris CE (2016) Agrifood systems and the microbial safety of fresh produce: Trade-offs in the wake of increased sustainability. Sci Total Environ 562:751–759

    Article  CAS  Google Scholar 

  • Niklaus PA, Le Roux X, Poly F, Buchmann N, Scherer-Lorenzen M, Weigelt A, Barnard RL (2016) Plant species diversity affects soil-atmosphere fluxes of methane and nitrous oxide. Oecologia 181(3):919–930

    Article  Google Scholar 

  • Okie JG, Van Horn DJ, Storch D, Barrett JE, Gooseff MN, Kopsova L, Takacs-Vesbach CD (2015) Niche and metabolic principles explain patterns of diversity and distribution: theory and a case study with soil bacterial communities. Proc Biol Sci 282(1809):20142630

    Google Scholar 

  • Pan X, Chen Z, Li L, Rao W, Xu Z, Guan X (2017) Microbial strategy for potential lead remediation: a review study. World J Microbiol Biotechnol 33(2):35

    Article  CAS  Google Scholar 

  • Pelfrêne A, Kleckerová A, Pourrut B, Nsanganwimana F, Douay F, Waterlot C (2015) Effect of Miscanthus cultivation on metal fractionation and human bioaccessibility in metal-contaminated soils: comparison between greenhouse and field experiments. Environ Sci Pollut Res Int 22(4):3043–3054

    Article  CAS  Google Scholar 

  • Prasad R, Aranda E (2018) Approaches in bioremediation: the new era of environmental microbiology and nanobiotechnology. Springer International Publishing (978–3–030-02369-0). https://www.springer.com/gp/book/9783030023683

  • Pratush A, Kumar A, Hu Z (2018) Adverse effect of heavy metals (As, Pb, Hg, and Cr) on health and their bioremediation strategies: a review. Int Microbiol 21(3):97–106

    Article  CAS  Google Scholar 

  • Rana V, Maiti SK (2018) Differential distribution of metals in tree tissues growing on reclaimed coal mine overburden dumps, Jharia coal field (India). Environ Sci Pollut Res Int 25(10):9745–9758

    Article  CAS  Google Scholar 

  • Różyło K, Gawlik-Dziki U, Świeca M, Różyło R, Pałys E (2016) Winter wheat fertilized with biogas residue and mining waste: yielding and the quality of grain. J Sci Food Agric 96(10):3454–3461

    Article  CAS  Google Scholar 

  • Sage L, Périgon S, Faure M, Gaignaire C, Abdelghafour M, Mehu J, Geremia RA, Mouhamadou B (2014) Autochthonous ascomycetes in depollution of polychlorinated biphenyls contaminated soil and sediment. Chemosphere 110:62–69

    Article  CAS  Google Scholar 

  • Sarma H, Forid N, Prasad R, Prasad MNV, Ma LQ, Rinklebe J (2021) Enhancing phytoremediation of hazardous metal(loid)s using genome engineering CRISPR–Cas9 technology. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2021.125493

  • Sas-Nowosielska H, Pawlas N (2015) Heavy metals in the cell nucleus-role in pathogenesis. Acta Biochim Pol 62(1):7–13

    Article  CAS  Google Scholar 

  • Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK, Dumat C, Rashid MI (2017) Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere 178:513–533

    Article  CAS  Google Scholar 

  • Solis-Gabriel L, Mendoza-Arroyo W, Boege K, Del-Val E (2017) Restoring lepidopteran diversity in a tropical dry forest: relative importance of restoration treatment, tree identity and predator pressure. PeerJ 5:e3344

    Article  Google Scholar 

  • Somova LA, Pechurkin NS, Pisman TI (2005) Principles of biological adaptation of organisms in artificial ecosystems to changes of environmental factors. Adv Space Res 35(9):1512–1515

    Article  CAS  Google Scholar 

  • Sun W, Sierra-Alvarez R, Milner L, Oremland R, Field JA (2009) Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments. Environ Sci Technol 43(17):6585–6591

    Article  CAS  Google Scholar 

  • Sun W, Ji B, Khoso SA, Tang H, Liu R, Wang L, Hu Y (2018) An extensive review on restoration technologies for mining tailings. Environ Sci Pollut Res Int 25(34):33911–33925

    Article  CAS  Google Scholar 

  • Thakare M, Sarma H, Datar S, Roy A, Pawar P, Gupta K, Pandit S, Prasad R (2021) Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. Curr Res Biotechnol. https://doi.org/10.1016/j.crbiot.2021.02.004

  • Torsvik V, Øvreås L, Thingstad TF (2002) Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science 296(5570):1064–1066

    Article  CAS  Google Scholar 

  • Trivedi P, Delgado-Baquerizo M, Anderson IC, Singh BK (2016) Response of soil properties and microbial communities to agriculture: implications for primary productivity and soil health indicators. Front Plant Sci 7:990

    Google Scholar 

  • Turkyilmaz A, Sevik H, Isinkaralar K, Cetin M (2019) Use of tree rings as a bioindicator to observe atmospheric heavy metal deposition. Environ Sci Pollut Res Int 26(5):5122–5130

    Article  CAS  Google Scholar 

  • van Kuijk M, Anten NP, Oomen RJ, Schieving F (2014) Stimulating seedling growth in early stages of secondary forest succession: a modeling approach to guide tree liberation. Front Plant Sci 5:345

    Google Scholar 

  • Velasco Ayuso S, Giraldo Silva A, Nelson C, Barger NN, Garcia-Pichel F (2017) Microbial nursery production of high-quality biological soil crust biomass for restoration of degraded dryland soils. Appl Environ Microbiol 83(3): pii: e02179-16

    Google Scholar 

  • Wang G, Post WM, Mayes MA (2013) Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses. Ecol Appl 23(1):255–272

    Article  Google Scholar 

  • Wang F, Yao J, Chen H, Yi Z, Choi MM (2014) Influence of short-time imidacloprid and acetamiprid application on soil microbial metabolic activity and enzymatic activity. Environ Sci Pollut Res Int 21(17):10129–10138

    Article  CAS  Google Scholar 

  • Wang C, Li W, Yang Z, Chen Y, Shao W, Ji J (2015) An invisible soil acidification: critical role of soil carbonate and its impact on heavy metal bioavailability. Sci Rep 5:12735

    Article  CAS  Google Scholar 

  • Weissmannová HD, Pavlovský J (2017) Indices of soil contamination by heavy metals-methodology of calculation for pollution assessment (minireview). Environ Monit Assess 189(12):616

    Article  Google Scholar 

  • Wiatrowska K, Komisarek J (2019) Role of the light fraction of soil organic matter in trace elements binding. PLoS One 14(5):e0217077

    Article  CAS  Google Scholar 

  • Wu Y, Jing X, Gao C, Huang Q, Cai P (2018) Recent advances in microbial electrochemical system for soil bioremediation. Chemosphere 211:156–163

    Article  CAS  Google Scholar 

  • Zalewska T, Danowska B (2017) Marine environment status assessment based on macrophytobenthic plants as bio-indicators of heavy metals pollution. Mar Pollut Bull 118(1–2):281–288

    Article  CAS  Google Scholar 

  • Zeng Z, Guo X, Xu P, Xiao R, Huang D, Gong X, Cheng M, Yi H, Li T, Zeng G (2018) Responses of microbial carbon metabolism and function diversity induced by complex fungal enzymes in lignocellulosic waste composting. Sci Total Environ 643:539–547

    Article  CAS  Google Scholar 

  • Zogg GP, Travis SE, Brazeau DA (2018) Strong associations between plant genotypes and bacterial communities in a natural salt marsh. Ecol Evol 8(9):4721–4730

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Butu, M., Sarac, I., Corneanu, M., Butnariu, M. (2021). Advanced Technologies for Ecological Reconstruction and Bioremediation of Degraded Land. In: Prasad, R. (eds) Environmental Pollution and Remediation. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-5499-5_4

Download citation

Publish with us

Policies and ethics