Skip to main content

The Role of Microorganisms in Remediation of Environmental Contaminants

  • Chapter
  • First Online:
Environmental Pollution and Remediation

Abstract

Environmental pollution by heavy metals, hydrocarbons, pesticides, dyes and other xenobiotic compounds is increasing day by day. Reclamation of these contaminants is of utmost importance for sustainable development. Various anthropogenic activities like industrial waste, mining, use of pesticides, deforestation and automobile emissions added a significant amount of these contaminants into the environment. Conventional remediation techniques such as physicochemical methods, electrochemical treatments and cationic and anionic exchange are relatively expensive and quite unsuccessful with minute concentration of pollutants. Besides these limitations, conventional methods also lead to the production of secondary pollutants. However, bioremediation employs the use of microbes as well as plants for the restoration of the environmental sites and water bodies. Exploitation of microbes such as bacteria, fungi and algae as remediation tools is emerging as an eco-friendly approach for the treatment of different pollutants and contaminants from air, soil and water. Comparing to conventional technologies, the microbe-based bioremediation is more economical and efficient in protecting the environment and minimizing the health hazards caused by pollutants. Nowadays, microbes have been also targeted using gene-editing tools such as genetic engineering, microarray technology and various omics approaches such as genomics, transcriptomics, metabolomics and proteomics for the regulation and optimization of the remediation process. Development in technology provides a new era of an integrated approach exploring the plant–microbe interaction and genetically engineered microbes for the restoration of polluted sites. This book chapter aims to summarize the different physiological, biochemical and molecular basis of remediation along with various advancements in remedial approaches for conserving an ecological balance by the use of microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abatenh E, Gizaw B, Tsegaye Z et al (2017) Application of microorganisms in bioremediation-review. J Environ Microbiol 1(1):2–9

    Google Scholar 

  • Adenipekun CO, Lawal R (2012) Uses of mushrooms in bioremediation: a review. Biotechnol Mol Biol Rev 7(3):62–68

    CAS  Google Scholar 

  • Agwu A, Kalu AU (2012) Bioremediation and environmental sustainability in Nigeria. Int J Acad Res Prog Educ Dev 1(3):26–31

    Google Scholar 

  • Ahuja SK, Ferreira GM, Moreira AR (2004) Utilization of enzymes for environmental applications. Crit Rev Biotechnol 24(2–3):125–154

    Article  CAS  Google Scholar 

  • Ali H (2010) Biodegradation of synthetic dyes – a review. Water Air Soil Pollut 213(1–4):251–273

    Article  CAS  Google Scholar 

  • Alkorta I, Epelde L, Garbisu C (2017) Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation. FEMS Microbiol Lett 364(19)

    Google Scholar 

  • Ateia M, Yoshimura C, Nasr M (2016) In-situ biological water treatment technologies for environmental remediation: a review. J Bioremed Biodegr 7(3):1–5

    Article  CAS  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations, and prospects. World J Microbiol Biotechnol 32(180):1–18

    CAS  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53(5):495–508

    Article  CAS  Google Scholar 

  • Banik S, Das K, Islam M, Salimullah M (2014) Recent advancements and challenges in microbial bioremediation of heavy metals contamination. JSM Biotechnol Biomed Eng 2(1):1035

    Google Scholar 

  • Behera BK, Prasad R (2020) Environmental technology and sustainability. Elsevier. ISBN 9780128191033. https://www.elsevier.com/books/environmental-technology-and-sustainability/behera/978-0-12-819103-3

  • Bonugli-Santos RC, Durrant LR, Da Silva M et al (2010) Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzyme Microb Technol 46(1):32–37

    Article  CAS  Google Scholar 

  • Chandra R, Chowdhary P (2015) Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci Process Impacts 17(2):326–342

    Article  CAS  Google Scholar 

  • Chowdhary P, Hare V, Raj A (2018) Book review: environmental pollutants and their bioremediation approaches. Front Bioeng Biotechnol 6(193):1–2

    Google Scholar 

  • Coelho LM, Rezende HC, Coelho LM et al (2015) Bioremediation of polluted waters using microorganisms. Adv Bioremed Wastewater Pollut Soil:1–22

    Google Scholar 

  • Das M, Adholeya A (2012) Role of microorganisms in the remediation of contaminated soil. In: Microorganisms in environmental management. Springer, pp 81–111

    Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int:1–13

    Google Scholar 

  • de Mora AP, Ortega-Calvo JJ, Cabrera F, Madejón E (2005) Changes in enzyme activities and microbial biomass after “in situ” remediation of heavy metal-contaminated soil. Appl Soil Ecol 28(2):125–137

    Article  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh U et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212

    Article  Google Scholar 

  • Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B 28(2):83–99

    Article  CAS  Google Scholar 

  • Ebbs S (2004) Biological degradation of cyanide compounds. Curr Opin Biotechnol 15(3):231–236

    Article  CAS  Google Scholar 

  • Fan CY, Krishnamurthy S (1995) Enzymes for enhancing bioremediation of petroleum-contaminated soils: a brief review. J Air Waste Manage Assoc 45(6):453–460

    Article  CAS  Google Scholar 

  • Fernando EY, Keshavarz T, Kyazze G (2018) The use of bioelectrochemical systems in environmental remediation of xenobiotics: a review. J Chem Technol Biotechnol

    Google Scholar 

  • Gianfreda L, Bollag JM (2002) Isolated enzymes for the transformation and detoxification of organic pollutants, pp 495–538

    Google Scholar 

  • Gianfreda L, Rao MA (2004) Potential of extracellular enzymes in the remediation of polluted soils: a review. Enzyme Microb Technol 35(4):339–354

    Article  CAS  Google Scholar 

  • Gillespie IM, Philp JC (2013) Bioremediation, an environmental remediation technology for the bioeconomy. Trends Biotechnol 31(6):329–332

    Article  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9(3):177

    Article  CAS  Google Scholar 

  • Jing R, Fusi S, Kjellerup BV (2018) Remediation of polychlorinated biphenyls in contaminated soils and sediments: state of knowledge and perspectives. Front Environ Sci 6(79):1–17

    Google Scholar 

  • Jonsson A, Haller H (2014) Sustainability aspects of in-situ bioremediation of polluted soil in developing countries and remote regions 57–86

    Google Scholar 

  • Joshi SM, Inamdar SA, Telke AA et al (2010) Exploring the potential of natural bacterial consortium to degrade mixture of dyes and textile effluent. Int Biodeterior Biodegrad 64(7):622–628

    Article  CAS  Google Scholar 

  • Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. In: Biodegradation-life of science, pp 289–320

    Google Scholar 

  • Kandelbauer A, Guebitz GM (2005) Bioremediation for the decolorization of textile dyes—a review. In: Environmental chemistry, pp 269–288

    Chapter  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 2011:1–13

    Article  CAS  Google Scholar 

  • Kulkarni M, Chaudhari A (2007) Microbial remediation of nitro-aromatic compounds: an overview. J Environ Econ Manag 85(2):496–512

    CAS  Google Scholar 

  • Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1(6):1079

    Google Scholar 

  • Kumavath RN, Deverapalli P (2013) Scientific swift in bioremediation: an overview. Appl Bioremed Active Passive Approach:375–388

    Google Scholar 

  • Lalwani G, Xing W, Sitharaman B (2014) Enzymatic degradation of oxidized and reduced graphene nanoribbons by lignin peroxidase. J Mater Chem B 2(37):6354–6362

    Article  CAS  Google Scholar 

  • Leitão AL (2009) Potential of Penicillium species in the bioremediation field. Int J Environ Res Public Health 6(4):1393–1417

    Article  CAS  Google Scholar 

  • Löffler FE, Edwards EA (2006) Harnessing microbial activities for environmental cleanup. Curr Opin Biotechnol 17(3):274–284

    Article  CAS  Google Scholar 

  • Lynch JM, Moffat AJ (2005) Bioremediation—prospects for the future application of innovative applied biological research. Ann Appl Biol 146:217–221

    Google Scholar 

  • Magan N, Fragoeiro S, Bastos C (2010) Environmental factors and bioremediation of xenobiotics using white-rot fungi. Mycobiology 38(4):238–248

    Article  Google Scholar 

  • Malla MA, Dubey A, Yadav S et al (2018) Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Front Microbiol 9:1132):1–1132)18

    Article  Google Scholar 

  • Mateos LM, Ordóñez E, Letek M, Gil JA (2006) Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic. Int Microbiol 9(3):207–215

    CAS  Google Scholar 

  • Mehndiratta P, Jain A, Srivastava S, Gupta N (2013) Environmental pollution and nanotechnology. Environ Pollut 2(2):49

    CAS  Google Scholar 

  • Mugdha A, Usha M (2012) Enzymatic treatment of wastewater containing dyestuffs using different delivery systems. Sci Rev Chem Commun 2(1):31–40

    Google Scholar 

  • Nandal M, Solanki P, Rastogi M, Hooda R (2015) Bioremediation: a sustainable tool for environmental management of oily sludge. Nat Environ Pollut Technol 14(1):181–190

    CAS  Google Scholar 

  • Nawaz K, Hussain K, Choudary N et al (2011) Eco-friendly role of biodegradation against agricultural pesticide hazards. Afr J Microbiol Res 5(3):177–183

    Google Scholar 

  • Niti C, Sunita S, Kamlesh K, Rakesh K (2013) Bioremediation: an emerging technology for remediation of pesticides. Res J Chem Environ 17(4):88–105

    CAS  Google Scholar 

  • Pandey J, Chauhan A, Jain RK (2009) Integrative approaches for assessing the ecological sustainability of in situ bioremediation. FEMS Microbiol Rev 33(2):324–375

    Article  CAS  Google Scholar 

  • Panigrahi A, Mohapatra A, Panigrahi A (2005) Bioremediation an environmental friendly approach for sustainable aquaculture

    Google Scholar 

  • Peixoto RS, Vermelho AB, Rosado AS (2011) Petroleum-degrading enzymes: bioremediation and new prospects. Enzyme Res 2011:1–7

    Article  CAS  Google Scholar 

  • Pletsch M, de Araujo BS, Charlwood BV (1999) Novel biotechnological approaches in environmental remediation research. Biotechnol Adv 17(8):679–687

    Article  CAS  Google Scholar 

  • Prakash D, Gabani P, Chandel AK et al (2013) Bioremediation: a genuine technology to remediate radionuclides from the environment. Microb Biotechnol 6(4):349–360

    Article  CAS  Google Scholar 

  • Prasad R (2017) Mycoremediation and environmental sustainability, vol 1. Springer International Publishing. ISBN 978-3-319-68957-9. https://link.springer.com/book/10.1007/978-3-319-68957-9

  • Prasad R (2018) Mycoremediation and environmental sustainability, vol 2. Springer International Publishing. ISBN 978-3-319-77386-5. https://www.springer.com/us/book/9783319773858

  • Prasad R, Aranda E (2018) Approaches in bioremediation: the new era of environmental microbiology and nanobiotechnology. Springer International Publishing (978-3-030-02369-0). https://www.springer.com/gp/book/9783030023683

  • Prasad R, Nayak SC, Kharwar RN, Dubey NK (2021) Mycoremediation and environmental sustainability, vol 3. Springer International Publishing. ISBN 978-3-030-54421-8. https://www.springer.com/gp/book/9783030544218

  • Rao MA, Scelza R, Scotti R, Gianfreda L (2010) Role of enzymes in the remediation of polluted environments. J Soil Sci Plant Nutr 10(3):333–353

    Article  Google Scholar 

  • Rao MA, Scelza R, Acevedo F et al (2014) Enzymes as useful tools for environmental purposes. Chemosphere 107:145–162

    Article  CAS  Google Scholar 

  • Rieger PG, Meier HM, Gerle M et al (2002) Xenobiotics in the environment: present and future strategies to obviate the problem of biological persistence. J Biotechnol 94(1):101–123

    Article  CAS  Google Scholar 

  • Ryan DR, Leukes WD, Burton SG (2005) Fungal bioremediation of phenolic wastewaters in an airlift reactor. Biotechnol Prog 21(4):1068–1074

    Article  CAS  Google Scholar 

  • Salam JA, Das N (2012) Remediation of lindane from the environment – an overview. Int J Adv Biol Res 2:9–15

    Google Scholar 

  • Sasikumar CS, Papinazath T (2003) Environmental management: bioremediation of polluted environment. In: Proceedings of the third international conference on environment and health, pp 465–469

    Google Scholar 

  • Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11(3):286–289

    Article  CAS  Google Scholar 

  • Sen R, Chakrabarti S (2009) Biotechnology–applications to environmental remediation in resource exploitation. Curr Sci:768–775

    Google Scholar 

  • Shah MP (2014) Environmental bioremediation: a low-cost nature’s natural biotechnology for environmental clean-up. J Pet Environ Biotechnol 5(4):1

    Article  Google Scholar 

  • Shah MP (2017) Prokaryotes: a promising agent in environmental bioremediation. Adv Recycl Waste Manag 2:e103

    Article  Google Scholar 

  • Shukla KP, Singh NK, Sharma S (2010) Bioremediation: developments, current practices, and perspectives. Genet Eng Biotechnol J 3:1–20

    CAS  Google Scholar 

  • Singh JS, Abhilash PC, Singh HB et al (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480(1–2):1–9

    Article  CAS  Google Scholar 

  • Sutherland TD, Horne I, Weir KM et al (2004) Enzymatic bioremediation: from enzyme discovery to applications. Clin Exp Pharmacol Physiol 31(11):817–821

    Article  CAS  Google Scholar 

  • Tanaka T, Yamada K, Tonosaki T et al (2000) Enzymatic degradation of alkylphenols, bisphenol A, synthetic estrogen and phthalic ester. Water Sci Tech 42(7–8):89–95

    Article  CAS  Google Scholar 

  • Thakare M, Sarma H, Datar S, Roy A, Pawar P, Gupta K, Pandit S, Prasad R (2021) Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. Curr Res Biotechnol. https://doi.org/10.1016/j.crbiot.2021.02.004

  • Upadhyay P, Shrivastava R, Agrawal PK (2016) Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech 6(1):15

    Article  Google Scholar 

  • Vidali JM, Moffat AJ (2005) Bioremediation–prospects for the future application of innovative applied biological research. Ann Appl Biol 146(2):217–221

    Article  Google Scholar 

  • Wasi S, Tabrez S, Ahmad M (2013) Use of Pseudomonas spp. for the bioremediation of environmental pollutants: a review. Environ Monit Assess 185(10):8147–8155

    Article  Google Scholar 

  • Whiteley CG, Lee DJ (2006) Enzyme technology and biological remediation. Enzyme Microb Technol 38(3–4):291–316

    Article  CAS  Google Scholar 

  • Wu CH, Mulchandani A, Chen W (2008) Versatile microbial surface-display for environmental remediation and biofuels production. Trends Microbiol 16(4):181–188

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, G., Kaur, D., Gupta, S. (2021). The Role of Microorganisms in Remediation of Environmental Contaminants. In: Prasad, R. (eds) Environmental Pollution and Remediation. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-5499-5_15

Download citation

Publish with us

Policies and ethics