Skip to main content

Suppression of Internal Conversions from Pseudo-Degenerate Excited Electronic States

  • Chapter
  • First Online:
Photosynergetic Responses in Molecules and Molecular Aggregates
  • 457 Accesses

Abstract

We describe the relationship between the rate constant of internal conversion and vibronic coupling constant (VCC) based on the crude-adiabatic approximation. Vibronic coupling density (VCD) is introduced to clarify the origin of vibronic couplings from the local picture. The control of vibronic couplings from pseudo-degenerate excited electronic states gives the suppression of internal conversions. We discuss the fluorescence via higher triplets (FvHT) mechanism observed in the organic light-emitting diodes (OLEDs) of 1,4-bis(10-phenylanthracene-9-yl)benzene (BD1) used as a fluorescent dopant and the aggregation-induced enhanced emission (AIEE) of 1,2-bis(pyridylphenyl)ethene (CNPPE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sato T, Tokunaga K, Tanaka K (2008) Vibronic coupling in naphthalene anion: vibronic coupling density analysis for totally symmetric vibrational modes. J Phys Chem A 112:758–767

    Article  CAS  Google Scholar 

  2. Sato T, Uejima M, Iwahara N, Haruta N, Shizu K, Tanaka K (2013) Vibronic coupling density and related concepts. J Phys Conf Ser 428:012010

    Google Scholar 

  3. Kasha M (1950) Characterization of electronic transitions in complex molecules. Disc Faraday Soc 9:14–19

    Article  Google Scholar 

  4. Sato T, Hayashi R, Haruta N, Pu YJ (2017) Fluorescence via reverse intersystem crossing from higher triplet states in a bisanthracene derivative. Sci Rep 7:4820

    Article  Google Scholar 

  5. Sato T (2015) Fluorescence via reverse intersystem crossing from higher triplet states. J Comput Chem Jpn 14:189–192

    Article  CAS  Google Scholar 

  6. Pu YJ, Satake R, Koyama Y, Otomo T, Hayashi R, Haruta N, Katagiri H, Otsuki D, Kim D, Sato T (2019) Absence of delayed fluorescence and triplet–triplet annihilation in organic light emitting diodes with spatially orthogonal bianthracenes. J Mater Chem C 7:2541–2547

    Article  CAS  Google Scholar 

  7. Lin SH (1966) Rate of interconversion of electronic and vibrational energy. J Chem Phys 44:3759–3767

    Article  Google Scholar 

  8. Azumi T, Matsuzaki K (1977) What does the term “vibronic coupling” mean? Photochem Photobiol 25:315–326

    Article  CAS  Google Scholar 

  9. Uejima M, Sato T, Yokoyama D, Tanaka K, Park JW (2014) Quantum yield in blue-emitting anthracene derivatives: vibronic coupling density and transition dipole moment density. Phys Chem Chem Phys 16:14244–14256

    Article  CAS  Google Scholar 

  10. Niu Y, Peng Q, Shuai Z (2008) Promoting-mode free formalism for excited state radiationless decay process with Duschinsky rotation effect. Sci China, Ser B: Chem 51:1153–1158

    Article  CAS  Google Scholar 

  11. Niu Y, Peng Q, Deng C, Gao X, Shuai Z (2010) Theory of excited state decays and optical spectra: application to polyatomic molecules. J Phys Chem A 114:7817–7831

    Article  CAS  Google Scholar 

  12. Hutchisson E (1930) Band Spectra intensities for symmetrical diatomic molecules. Phys Rev 36:410

    Article  CAS  Google Scholar 

  13. Uejima M, Sato T, Tanaka K, Kaji H (2014) Enhancement of fluorescence in anthracene by chlorination: vibronic coupling and transition dipole moment density analysis. Chem Phys 430:47–55

    Article  CAS  Google Scholar 

  14. Uejima M, Sato T, Detani M, Wakamiya A, Suzuki F, Suzuki H, Fukushima T, Tanaka K, Murata Y, Adachi C, Kaji H (2014) A designed fluorescent anthracene derivative: theory, calculation, synthesis, and characterization. Chem Phys Lett 602:80–83

    Article  CAS  Google Scholar 

  15. Kameoka Y, Uebe M, Ito A, Sato T, Tanaka K (2014) Fluorescent triphenylamine derivative: theoretical design based on reduced vibronic coupling. Chem Phys Lett 615:44–49

    Article  CAS  Google Scholar 

  16. Uebe M, Ito A, Kameoka Y, Sato T, Tanaka K (2015) Fluorescence enhancement of nonfluorescent triphenylamine: a recipe to utilize carborane cluster substituents. Chem Phys Lett 633:190–194

    Article  CAS  Google Scholar 

  17. Sato T, Shizu K, Kuga T, Tanaka K, Kaji H (2008) Electron–vibration interactions in carriertransport material: vibronic coupling density analysis in TPD. Chem Phys Lett 458:152–156

    Article  CAS  Google Scholar 

  18. Shizu K, Sato T, Tanaka K, Kaji H (2010) Electron–vibration interactions in triphenylamine cation: why are triphenylamine-based molecules good hole-transport materials? Chem Phys Lett 486:130–136

    Article  CAS  Google Scholar 

  19. Shizu K, Sato T, Tanaka K, Kaji H (2010) A boron-containing molecule as an efficient electrontransporting material with low-power consumption. Appl Phys Lett 97:142111

    Article  Google Scholar 

  20. Shizu K, Sato T, Ito A, Tanaka K, Kaji H (2011) Theoretical design of a hole-transporting molecule: hexaaza [1 6] parabiphenylophane. J Mater Chem 21:6375–6382

    Article  CAS  Google Scholar 

  21. Sato T, Iwahara N, Haruta N, Tanaka K (2012) C60 bearing ethylene moieties. Chem Phys Lett 531:257–260

    Article  CAS  Google Scholar 

  22. Haruta N, Sato T, Iwahara N, Tanaka K (2013) Vibronic couplings in cycloadditions to fullerenes. J Phys Conf Ser 428:012003

    Google Scholar 

  23. Haruta N, Sato T, Tanaka K (2014) Regioselectivity in multiple cycloadditions to fullerene c60: vibronic coupling density analysis. Tetrahedron 70:3510–3513

    Article  CAS  Google Scholar 

  24. Kojima Y, Ota W, Teramura K, Hosokawa S, Tanaka T, Sato T (2019) Model building of metal oxide surfaces and vibronic coupling density as a reactivity index: regioselectivity of CO2 adsorption on Ag-loaded Ga2O3. Chem Phys Lett 715:239–243

    Article  CAS  Google Scholar 

  25. Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y, Adachi C (2009) Thermally activated delayed fluorescence from Sn4+–porphyrin complexes and their application to organic light emitting diodes-a novel mechanism for electroluminescence. Adv Mater 21:4802–4806

    Article  CAS  Google Scholar 

  26. Adachi C (2014) Third-generation organic electroluminescence materials. Jpn J Appl Phys 53:060101

    Article  Google Scholar 

  27. Hu JY, Pu YJ, Satoh F, Kawata S, Katagiri H, Sasabe H, Kido J (2014) Bisanthracene-based donor–acceptor-type light-emitting dopants: Highly efficient deep-blue emission in organic light-emitting devices. Adv Funct Mater 24:2064–2071

    Article  CAS  Google Scholar 

  28. Hong Y, Lam JWY, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun 29:4332–4353

    Article  Google Scholar 

  29. Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361–5388

    Article  CAS  Google Scholar 

  30. Nishio S, Higashiguchi K, Matsuda K (2014) The effect of cyano substitution on the fluorescence behavior of 1,2-bis(pyridylphenyl)ethene. Asian J Org Chem 3:686–690

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision B. 01. Gaussian Inc., Wallingford, CT

    Google Scholar 

  32. Shizu K, Sato T, Tanaka K (2013) Inverse relationship of reorganization energy to the number of π electrons from perspective of vibronic coupling density. J Comput Chem Jpn 12:215–221

    Article  CAS  Google Scholar 

  33. Ota W, Takahashi K, Higashiguchi K, Matsuda K, Sato T (2020) Origin of aggregation-induced enhanced emission: role of pseudo-degenerate electronic states of excimers formed in aggregation phases. J Mater Chem C. https://doi.org/10.1039/C9TC07067B

Download references

Acknowledgements

This study was supported by JSPS KAKENHI Grant Number JP17H05259 in Scientific Research on Innovative Areas “Photosynergetics”, JSPS KAKENHI Grant Number JP18K05261 in Scientific Research (C), and Element Strategy Initiative of MEXT Grant Number JPMXP0112101003. The computations were partly performed at Supercomputer System, Institute for Chemical Research, Kyoto University, Academic Center for Computing and Media Studies (ACCMS), Kyoto University, and Research Center for Computational Science, Okazaki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ota, W., Sato, T. (2020). Suppression of Internal Conversions from Pseudo-Degenerate Excited Electronic States. In: Miyasaka, H., Matsuda, K., Abe, J., Kawai, T. (eds) Photosynergetic Responses in Molecules and Molecular Aggregates. Springer, Singapore. https://doi.org/10.1007/978-981-15-5451-3_5

Download citation

Publish with us

Policies and ethics