Skip to main content

Hot Carrier Transfer and Carrier Manipulation of Semiconductor Nanocrystals

  • Chapter
  • First Online:
Photosynergetic Responses in Molecules and Molecular Aggregates
  • 499 Accesses

Abstract

Hot carrier transfer of semiconductor nanocrystals (NCs) plays an important role for solar energy conversion. In this chapter, effects of quantum confinement of colloidally synthesized semiconductor NCs on hot carrier transfer and the carrier transfer mechanism are discussed on the basis of state-selective excitation of femtosecond transient absorption spectroscopy and initial bleach yield of band-edge state. The role of phonon emission from higher excited states on hot carrier transfer in quantum-confined NCs is revealed. In addition, carrier manipulation of a single semiconductor NC by plasmonic nanostructures is demonstrated with single particle spectroscopy. The distance dependence between a single semiconductor quantum dot (QD) and a plasmonic nanostructure on luminescence intensity and lifetime of a single semiconductor QD is discussed in terms of the electromagnetic enhancement of absorption and luminescence and energy transfer quenching by the plasmonic nanostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klimov VI (2000) Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J Phys Chem B 104:6112–6123

    CAS  Google Scholar 

  2. Schaller RD, Klimov VI (2004) High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys Rev Lett 92:186601

    CAS  PubMed  Google Scholar 

  3. Kobayashi Y, Udagawa T, Tamai N (2009) Carrier multiplication in CdTe quantum dots by single—photon timing spectroscopy. Chem Lett 38:830–831

    CAS  Google Scholar 

  4. McGuire JA, Joo J, Pietryga JM, Schaller RD, Klimov VI (2008) New aspects of carrier multiplication in semiconductor nanocrystals. Acc Chem Res 41:1810–1819

    CAS  PubMed  Google Scholar 

  5. Klimov VI (2007) Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Ann Rev Phys Chem 58:635–673

    CAS  Google Scholar 

  6. Kambhampati P (2011) Hot exciton relaxation dynamics in semiconductor quantum dots: radiationless transitions on the nanoscale. J Phys Chem C 115:22089–22109

    CAS  Google Scholar 

  7. Kambhampati P (2011) Unraveling the structure and dynamics of excitons in semiconductor quantum dots. Acc Chem Res 44:1–13

    CAS  PubMed  Google Scholar 

  8. Cooney RR, Sewall SL, Dias EA, Sagar DM, Anderson KEH, Kambhampati P (2007) Unified picture of electron and hole relaxation pathways in semiconductor quantum dots. Phys Rev B 75:245311

    Google Scholar 

  9. Guyot − Sionnest P, Wehrenberg B, Yu D (2005) Intraband relaxation in CdSe nanocrystals and the strong influence of the surface ligands. J Chem Phys 123:074709

    PubMed  Google Scholar 

  10. Okuhata T, Tamai N (2016) Face-dependent electron transfer in CdSe nanoplatelet-methyl viologen complexes. J Phys Chem C 120:17052–17059

    CAS  Google Scholar 

  11. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys 32:510–519

    CAS  Google Scholar 

  12. Ross RT, Nozik AJ (1982) Efficiency of hot–carrier solar energy converters. J Appl Phys 53:3813–3818

    CAS  Google Scholar 

  13. Kobayashi Y, Pan L, Tamai N (2009) Effects of size and capping reagents on biexciton auger recombination dynamics of CdTe quantum dots. J Phys Chem C 113:11783–11789

    CAS  Google Scholar 

  14. Kobayashi Y, Tamai N (2010) Size-dependent multiexciton spectroscopy and moderate temperature dependence of biexciton auger recombination in colloidal CdTe quantum dots. J Phys Chem C 114:17550–17556

    CAS  Google Scholar 

  15. Sagarzazu G, Kobayashi Y, Murase N, Ping Y, Tamai N (2011) Auger recombination dynamics in hybrid silica-coated CdTe nanocrystals. Phys Chem Chem Phys 13:3227–3230

    CAS  PubMed  Google Scholar 

  16. Kobayashi Y, Nishimura T, Yamaguchi H, Tamai N (2011) Effect of surface defects on auger recombination in colloidal CdS quantum dots. J Phys Chem Lett 2:1051–1055

    CAS  Google Scholar 

  17. Hyeon-Deuk K, Kobayashi Y, Tamai N (2014) Evidence of phonon-assisted auger recombination and multiple exciton generation in semiconductor quantum dots revealed by temperature-dependent phonon dynamics. J Phys Chem Lett 5:99–105

    CAS  PubMed  Google Scholar 

  18. Wang L, Tian Y, Okuhata T, Tamai N (2015) Charge transfer dynamics and auger recombination of CdTe/CdS core/shell quantum dots. J Phys Chem C 119:17971–17978

    CAS  Google Scholar 

  19. Klimov VI, McBranch DW, Leatherdale CA, Bawendi MG (1999) Electron and hole relaxation pathways in semiconductor quantum dots. Phys Rev B 60:13740

    CAS  Google Scholar 

  20. Ithurria S, Dubertret B (2008) Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. J Am Chem Soc 130:16504–16505

    CAS  PubMed  Google Scholar 

  21. Ithurria S, Tessier MD, Mahler B, Lobo RPSM, Dubertret B, AlL Efros (2011) Colloidal nanoplatelets with two–dimensional electronic structure. Nature 10:936–941

    CAS  Google Scholar 

  22. Vuckovic M, Mentus SV, Janata E, Milosavljevic BH (2001) Fast dimerisation of the triparaquat radical dication. Phys Chem Chem Phys 3:4310–4315

    CAS  Google Scholar 

  23. Lhuillier E, Pedetti S, Ithurria S, Nadal B, Heuclin H, Dubertret B (2015) Two-dimensional colloidal metal chalcogenides semiconductors: synthesis, spectroscopy, and applications. Acc Chem Res 48:22–30

    CAS  PubMed  Google Scholar 

  24. Matylitsky VV, Dworak L, Breus VV, Basché T, Wachtveitl J (2009) Ultrafast charge separation in multiexcited CdSe quantum dots mediated by adsorbed electron acceptors. J Am Chem Soc 131:2424–2425

    CAS  PubMed  Google Scholar 

  25. Sagarzazu G, Inoue K, Saruyama M, Sakamoto M, Teranishi T, Masuo S, Tamai N (2013) Ultrafast dynamics and single particle spectroscopy of Au–CdSe nanorods. Phys Chem Chem Phys 15:2141–2152

    CAS  PubMed  Google Scholar 

  26. Okuhata T, Kobayashi Y, Nonoguchi Y, Kawai T, Tamai N (2015) Ultrafast Carrier transfer and hot carrier dynamics in PbS–Au hybrid nanostructures. J Phys Chem C 119:2113–2120

    CAS  Google Scholar 

  27. Dana J, Partha M, Ghosh HN (2017) Hot-electron transfer from semiconductor domain to metal domain in CdSe@CdS{Au} nano-heterostructure. Nanoscale 9:9723–9731

    CAS  PubMed  Google Scholar 

  28. Okuhata T, Katayama T, Tamai N (2020) Ultrafast and hot electron transfer in CdSe QD–Au hybrid nanostructures. J Phys Chem C 124:1099–1107

    CAS  Google Scholar 

  29. Masuo S, Naiki H, Machida S, Itaya A (2009) Photon statistics in enhanced fluorescence from a single CdSe/ZnS quantum dot in the vicinity of silver nanoparticles. Appl Phys Lett 95:193106

    Google Scholar 

  30. Naiki H, Masuo S, Machida S, Itaya A (2011) Single-photon emission behavior of isolated CdSe/ZnS quantum dots interacting with the localized surface plasmon resonance of silver nanoparticles. J Phys Chem C 115:23299–23304

    CAS  Google Scholar 

  31. Masuo S, Tanaka T, Machida S, Itaya A (2012) Photon antibunching in enhanced photoluminescence of a single CdSe/ZnS nanocrystal by silver nanostructures. J Photochem Photobio A 237:24–30

    CAS  Google Scholar 

  32. Naiki H, Masuhara A, Masuo S, Onodera T, Kasai H, Oikawa H (2013) Highly controlled plasmonic emission enhancement from metal-semiconductor quantum dot complex nanostructures. J Phys Chem C 117:2455–2459

    CAS  Google Scholar 

  33. Masuo S, Kanetaka K, Sato R, Teranishi T (2016) Direct observation of multiphoton emission enhancement from a single quantum dot using AFM manipulation of a cubic gold nanoparticle. ACS Photonics 3:109–116

    CAS  Google Scholar 

  34. Takata H, Naiki H, Wang L, Fujiwara H, Sasaki K, Tamai N, Masuo S (2016) Detailed observation of multiphoton emission enhancement from a single colloidal quantum dot using a silver-coated AFM tip. Nano Lett 16:5770–5778

    CAS  PubMed  Google Scholar 

  35. Naiki H, Oikawa H, Masuo S (2017) Modification of emission photon statistics from single quantum dots using Metal/SiO2 core/shell nanostructures. Photochem Photobio Sci 16:489–498

    CAS  Google Scholar 

  36. Naiki H, Uedao T, Wang L, Tamai N, Masuo S (2017) Multiphoton emission enhancement from a single colloidal quantum dot using SiO2-coated silver nanoparticles. ACS Omega 2:728–737

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yuan CT, Yu P, Ko HC, Huang J, Tang J (2009) Antibunching single-photon emission and blinking suppression of CdSe/ZnS quantum dots. ACS Nano 3:3051–3056

    CAS  PubMed  Google Scholar 

  38. Mallek-Zouari I, Buil S, Quelin X, Mahler B, Dubertret B, Hermier JP (2010) Plasmon assisted single photon emission of CdSe/CdS nanocrystals deposited on random gold film. Appl Phys Lett 97:053109

    Google Scholar 

  39. Vion C, Spinicelli P, Coolen L, Schwob C, Frigerio JM, Hermier JP (2010) Maitre A E (2010) Controlled modification of single colloidal CdSe/ZnS nanocrystal fluorescence through interactions with a gold surface. Opt Express 18:7440–7455

    CAS  PubMed  Google Scholar 

  40. Canneson D, Mallek-Zouari I, Buil S, Quelin X, Javaux C, Mahler B, Dubertret B, Hermier JP (2011) Strong Purcell effect observed in single thick-shell CdSe/CdS nanocrystals coupled to localized surface plasmons. Phys Rev B 84:245423

    Google Scholar 

  41. Leblanc SJ, McClanahan MR, Jones M, Moyer PJ (2013) Enhancement of multiphoton emission from single CdSe quantum dots coupled to gold films. Nano Lett 13:1662–1669

    CAS  PubMed  Google Scholar 

  42. Park YS, Ghosh Y, Chen Y, Piryatinski A, Xu P, Mack NH, Wang HL, Klimov VI, Hollingsworth JA, Htoon H (2013) Super-poissonian statistics of photon emission from single CdSe-CdS core-shell nanocrystals coupled to metal nanostructures. Phys Rev Lett 110:117401

    PubMed  Google Scholar 

  43. Park YS, Ghosh Y, Xu P, Mack NH, Wang HL, Hollingsworth JA, Htoon H (2013) Single-nanocrystal photoluminescence spectroscopy studies of plasmon–multiexciton interactions at low temperature. J Phys Chem Lett 4:1465–1470

    CAS  PubMed  Google Scholar 

  44. Yuan CT, Wang YC, Cheng HW, Wang HS, Kuo MY, Shih MH, Tang J (2013) Modification of fluorescence properties in single colloidal quantum dots by coupling to plasmonic gap modes. J Phys Chem C 117:12762–12768

    CAS  Google Scholar 

  45. Dey S, Zhou YD, Tian XD, Jenkins JA, Chen O, Zou SL, Zhao J (2015) An Experimental andTheoretical Mechanistic study of biexciton quantum yield enhancement in single quantum dots near gold nanoparticles. Nanoscale 7:6851–6858

    CAS  PubMed  Google Scholar 

  46. Wang F, Karan NS, Nguyen HM, Ghosh Y, Hollingsworth JA, Htoon H (2015) Coupling single giant nanocrystal quantum dots to the fundamental mode of patch nanoantennas tthrough fringe field. Sci Rep 5:14313

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang F, Karan NS, Nguyen HM, Ghosh Y, Sheehan CJ, Hollingsworth JA, Htoon H (2015) Correlated structural-optical study of single nanocrystals in a gap-bar antenna: effects of plasmonics on excitonic recombination pathways. Nanoscale 7:9387–9393

    CAS  PubMed  Google Scholar 

  48. Wang F, Karan NS, Nguyen HM, Mangum BD, Ghosh Y, Sheehan CJ, Hollingsworth JA, Htoon H (2015) Quantum optical signature of plasmonically coupled nanocrystal quantum dots. Small 11:5028–5034

    CAS  PubMed  Google Scholar 

  49. Dey S, Zhao J (2016) Plasmonic effect on exciton and multiexciton emission of single quantum dots. J Phys Chem Lett 7:2921–2929

    CAS  PubMed  Google Scholar 

  50. Hoang TB, Akselrod GM, Mikkelsen MH (2016) Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett 16:270–275

    CAS  PubMed  Google Scholar 

  51. Dey S, Zhou Y, Sun Y, Jenkins JA, Kriz D, Suib SL, Chen O, Zou S, Zhao J (2018) Excitation wavelength dependent photon anti-bunching/bunching from s single quantum dots near gold nanostructures. Nanoscale 10:1038–1046

    CAS  PubMed  Google Scholar 

  52. Mundoor H, Sheetah GH, Park S, Ackerman PJ, Smalyukh II, van de Lagemaat J (2018) Tuning and switching a plasmonic quantum dot “sandwich” in a nematic line defect. ACS Nano 12:2580–2590

    CAS  PubMed  Google Scholar 

  53. Krivenkov V, Goncharov S, Samokhvalov P, Sanchez-Iglesias A, Grzelczak M, Nabiev I, Rakovich YP (2019) Enhancement of biexciton emission due to long- range interaction of single quantum dots and gold nanorods in a thin-film hybrid nanostructure. J Phys Chem Lett 10:481–486

    CAS  PubMed  Google Scholar 

  54. Bharadwaj P, Novotny L (2007) Spectral dependence of single molecule fluorescence enhancement. Opt Express 15:14266–14274

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

we deeply appreciate Professors K. Sasaki, T. Teranishi, H. Fujiwara, R. Sato, Drs T. Okuhata, T. Katayama, and L. Wang for their collaboration. The present work was supported by JSPS KAKENHI Grant numbers JP17H05254, 26390023 and 26107005 in grant-in-aid for Scientific Research on Innovative Areas “Photosynergetics.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Tamai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tamai, N., Masuo, S. (2020). Hot Carrier Transfer and Carrier Manipulation of Semiconductor Nanocrystals. In: Miyasaka, H., Matsuda, K., Abe, J., Kawai, T. (eds) Photosynergetic Responses in Molecules and Molecular Aggregates. Springer, Singapore. https://doi.org/10.1007/978-981-15-5451-3_10

Download citation

Publish with us

Policies and ethics