Skip to main content

PLA-HAp-CS-Based Biocompatible Scaffolds Prepared Through Micro-Additive Manufacturing: A Review and Future Applications

  • Chapter
  • First Online:
3D Printing in Biomedical Engineering

Abstract

In this work, micro-additive manufacturing (MAM) as processing technique along with mechanical and thermal properties of hydroxyapatite (H) and chitosan (C) reinforcement (micro-sized)in polylactic acid (P) matrix has been reviewed. The biocompatible composite comprising of P–H–C has numerous applications as bone repair materials, which have been processed in two stages in the reported study. The first stage reports use of double-screw extrusion (DSE) process to prepare feedstock filament ready to use on commercial open-source fused filament fabrication (FFF) printer for final processing (second stage). The surface morphology through scanning electron microscope (SEM) reveals the uniform distribution of P–H–C matrix. Further, differential scanning calorimeter (DSC) analysis was performed on P–H–C composite for thermal stability, and it has been established from the case study that the addition of H and C leads to better thermal stability of scaffolds prepared through MAM for possible future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PCL:

Polycaprolactone

H:

Hydroxyapatite

P:

Polylactic acid

PEG:

Poly (ethylene glycol)

PHMGCL:

Phenylmagnesium chloride

TCP:

Tricalcium phosphate

PP:

Polypropylene

Al2O3:

Alumina

CaP:

Calcium phosphate

PLLA:

Poly(L-lactic acid)

DEF:

Diethyl fumarate

PU:

Polyurethane

PS:

Polysulfone

PET:

Polyethylene terephthalate

PA:

Polyacetal

PMMA:

Polymethylmethacrylate

PTFE:

Polytetrafluoroethylene

PEEK:

Polyetheretherketone

SR:

Silicone rubber

PE:

Polyethylene

3DP:

3D printing

FSF:

Feedstock filament

MFI:

Melt flow index

Tg:

Glass transition temperature

MT:

Melting temperature

FFF:

Fused filament fabrication

References

  1. Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):496–504

    Google Scholar 

  2. Mouriño V, Boccaccini AR (2009) Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J Roy Soc Interface https://doi.org/10.1098/rsif.2009.0379

  3. Seitz H, Rieder W, Irsen S, Leukers B, Tille C (2005) Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 74(2):782–788

    Google Scholar 

  4. Jones AC, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt MA (2007) Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials 28(15):2491–2504

    Google Scholar 

  5. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431

    Google Scholar 

  6. Müller B, Deyhle H, Fierz FC, Irsen SH, Yoon JY, Mushkolaj S, Boss O, Vorndran E, Gburek U, Degistirici Ö, Thie M. (2009) Bio-mimetic hollow scaffolds for long bone replacement. In: Biomimetics and bioinspiration, vol 7401, p 74010D. International Society for Optics and Photonics

    Google Scholar 

  7. Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4(8):743–765

    Google Scholar 

  8. Habibovic P, Gbureck U, Doillon CJ, Bassett DC, van Blitterswijk CA, Barralet JE (2008) Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials 29(7):944–953

    Google Scholar 

  9. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

    Google Scholar 

  10. Xue W, Krishna BV, Bandyopadhyay A, Bose S (2007) Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomat 3(6):1007–1018

    Google Scholar 

  11. Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T (2006) Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 27(35):5892–5900

    Google Scholar 

  12. Stoppato M, Carletti E, Sidarovich V, Quattrone A, Unger RE, Kirkpatrick CJ, Migliaresi C, Motta A (2013) Influence of scaffold pore size on collagen I development: a new in vitro evaluation perspective. J Bioact Compat Polym 28(1):16–32

    Google Scholar 

  13. Mitsak AG, Kemppainen JM, Harris MT, Hollister SJ (2011) Effect of polycaprolactone scaffold permeability on bone regeneration in vivo. Tissue Eng Part A 17(13–14):1831–1839

    Google Scholar 

  14. Bandyopadhyay A, Bernard S, Xue W, Bose S (2006) Calcium phosphate-based resorbable ceramics: influence of MgO, ZnO, and SiO2 dopants. J Am Ceram Soc 89(9):2675–2688

    Google Scholar 

  15. Banerjee SS, Tarafder S, Davies NM, Bandyopadhyay A, Bose S (2010) Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of β-TCP ceramics. Acta Biomat 6(10):4167–4174

    Google Scholar 

  16. Bose S, Tarafder S, Banerjee SS, Davies NM, Bandyopadhyay A (2011) Understanding in vivo response and mechanical property variation in MgO, SrO and SiO2 doped β-TCP. Bone 48(6):1282–1290

    Google Scholar 

  17. Das K, Bose S, Bandyopadhyay A (2007) Surface modifications and cell–materials interactions with anodized Ti. Acta biomat 3(4):573–585

    Google Scholar 

  18. Bodhak S, Bose S, Bandyopadhyay A (2009) Role of surface charge and wettability on early stage mineralization and bone cell–materials interactions of polarized hydroxyapatite. Acta Biomat 5(6):2178–2188

    Google Scholar 

  19. Tarafder S, Banerjee S, Bandyopadhyay A, Bose S (2010) Electrically polarized biphasic calcium phosphates: adsorption and release of bovine serum albumin. Langmuir 26(22):16625–16629

    Google Scholar 

  20. Kucharska M, Butruk B, Walenko K, Brynk T, Ciach T (2012) Fabrication of in-situ foamed chitosan/β-TCP scaffolds for bone tissue engineering application. Mater Lett 15(85):124–127

    Google Scholar 

  21. Cao H, Kuboyama N (2010) A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone 46(2):386–395

    Google Scholar 

  22. Sultana N, Wang M (2008) Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterization of the scaffolds. J Mater Sci Mater Med 19(7):2555

    Google Scholar 

  23. Hutmacher DW (2006) Scaffolds in tissue engineering bone and cartilage. In: The Biomaterials: Silver Jubilee Compendium, pp 175–189

    Google Scholar 

  24. Yoshikawa H, Tamai N, Murase T, Myoui A (2009) Interconnected porous hydroxyapatite ceramics for bone tissue engineering. J Roy Soc Interface https://doi.org/10.1098/rsif.2008.0425

  25. Bose S, Suguira S, Bandyopadhyay A (1999) Processing of controlled porosity ceramic structures via fused deposition. Scr Mater 41(9):1009–1014

    Google Scholar 

  26. Bose S, Darsell J, Kintner M, Hosick H, Bandyopadhyay A (2003) Pore size and pore volume effects on alumina and TCP ceramic scaffolds. Mater Sci Eng C 23(4):479–486

    Google Scholar 

  27. Mueller B (2012) Additive manufacturing technologies—rapid prototyping to direct digital manufacturing. Assem Autom 32(2)

    Google Scholar 

  28. Hull CW (1986) inventor; UVP Inc, assignee. Apparatus for production of three-dimensional objects by stereolithography. United States patent US 4, 575, 330

    Google Scholar 

  29. Bose S, Darsell J, Hosick HL, Yang L, Sarkar DK, Bandyopadhyay A (2002) Processing and characterization of porous alumina scaffolds. J Mater Sci Mater Med 13(1):23–28

    Google Scholar 

  30. Pighinelli L, Kucharska M (2013) Chitosan–hydroxyapatite composites. Carbohyd Polym 93(1):256–262

    Google Scholar 

  31. Xianmiao C, Yubao L, Yi Z, Li Z, Jidong L, Huanan W (2009) Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Mater Sci Eng C 29(1):29–35

    Google Scholar 

  32. Luo Y, Wu C, Lode A, Gelinsky M (2012) Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering. Biofabrication 5(1):015005

    Google Scholar 

  33. Sobral JM, Caridade SG, Sousa RA, Mano JF, Reis RL (2011) Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomat 7(3):1009–1018

    Google Scholar 

  34. Detsch R, Uhl F, Deisinger U, Ziegler G (2008) 3D-Cultivation of bone marrow stromal cells on hydroxyapatite scaffolds fabricated by dispense-plotting and negative mould technique. J Mater Sci Mater Med 19(4):1491–1496

    Google Scholar 

  35. Wu C, Luo Y, Cuniberti G, Xiao Y, Gelinsky M (2011) Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomat 7(6):2644–2650

    Google Scholar 

  36. Serra T, Planell JA, Navarro M (2013) High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomat 9(3):5521–5530

    Google Scholar 

  37. Seyednejad H, Gawlitta D, Kuiper RV, de Bruin A, van Nostrum CF, Vermonden T, Dhert WJ, Hennink WE (2012) In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly (ε-caprolactone). Biomaterials 33(17):4309–4318

    Google Scholar 

  38. Fu Q, Saiz E, Tomsia AP (2011) Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomat 7(10):3547–3554

    Google Scholar 

  39. Darsell J, Bose S, Hosick HL, Bandyopadhyay A (2003) From CT scan to ceramic bone graft. J Am Ceram Soc 86(7):1076–1080

    Google Scholar 

  40. Kalita SJ, Bose S, Hosick HL, Bandyopadhyay A (2003) Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Mater Sci Eng C 23(5):611–620

    Google Scholar 

  41. Tsang VL, Bhatia SN (2004) Three-dimensional tissue fabrication. Adv Drug Deliv Rev 56(11):1635–1647

    Google Scholar 

  42. Lam CX, Savalani MM, Teoh SH, Hutmacher DW (2008) Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomed Mater 3(3):034108

    Google Scholar 

  43. Lam CX, Teoh SH, Hutmacher DW (2007) Comparison of the degradation of polycaprolactone and polycaprolactone–(β-tricalcium phosphate) scaffolds in alkaline medium. Polym Int 56(6):718–728

    Google Scholar 

  44. Schantz JT, Hutmacher DW, Lam CX, Brinkmann M, Wong KM, Lim TC, Chou N, Guldberg RE, Teoh SH (2003) Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo. Tissue Eng 9(4, Supplement 1):127–39

    Google Scholar 

  45. Lam CX, Hutmacher DW, Schantz JT, Woodruff MA, Teoh SH (2009) Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J Biomed Mater Res Part A 90(3):906–919

    Google Scholar 

  46. Russias J, Saiz E, Deville S, Gryn K, Liu G, Nalla RK, Tomsia AP (2007) Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting. J Biomed Mater Res Part A 83(2):434–445

    Google Scholar 

  47. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827

    Google Scholar 

  48. Shuai C, Gao C, Nie Y, Hu H, Zhou Y, Peng S (2011) Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system. Nanotechnology 22(28):285703

    Google Scholar 

  49. Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW (2010) Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomat 6(12):4495–4505

    Google Scholar 

  50. Lee SH, Zhou WY, Wang M, Cheung WL, Ip WY (2009) Selective laser sintering of poly (l-lactide) porous scaffolds for bone tissue engineering. J Biomimet Biomater Tissue Eng 1:81–89

    Google Scholar 

  51. Liulan L, Hanqing L, Qingxi H, Limin L, Minglun F (2006). Research of the method of reconstructing the repair bionic scaffold based on tissue engineering, pp 1275–1279

    Google Scholar 

  52. Pereira TF, Silva MA, Oliveira MF, Maia IA, Silva JV, Costa MF, Thiré RM (2012) Effect of process parameters on the properties of selective laser sintered Poly (3-hydroxybutyrate) scaffolds for bone tissue engineering: This paper analyzes how laser scan spacing and powder layer thickness affect the morphology and mechanical properties of SLS-made scaffolds by using a volume energy density function. Virtual Phys Prototyp 7(4):275–285

    Google Scholar 

  53. Catros S, Fricain JC, Guillotin B, Pippenger B, Bareille R, Remy M, Lebraud E, Desbat B, Amédée J, Guillemot F (2011) Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication 3(2):025001

    Google Scholar 

  54. Doraiswamy A, Narayan RJ, Harris ML, Qadri SB, Modi R, Chrisey DB (2007) Laser microfabrication of hydroxyapatite-osteoblast-like cell composites. J Biomed Mater Res Part A 80(3):635–643

    Google Scholar 

  55. Harris ML, Doraiswamy A, Narayan RJ, Patz TM, Chrisey DB (2008) Recent progress in CAD/CAM laser direct-writing of biomaterials. Mater Sci Eng C 28(3):359–365

    Google Scholar 

  56. Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, Bareille R, Rémy M, Bordenave L, Amédée J, Guillemot F (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31(28):7250–7256

    Google Scholar 

  57. Lan PX, Lee JW, Seol YJ, Cho DW (2009) Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. J Mater Sci Mater Med 20(1):271–279

    Google Scholar 

  58. Lee JW, Ahn G, Kim DS, Cho DW (2009) Development of nano-and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography. Microelectron Eng 86(4):1465–1467

    Google Scholar 

  59. Ronca A, Ambrosio L, Grijpma DW (2013) Preparation of designed poly (D, L-lactide)/nanosized hydroxyapatite composite structures by stereolithography. Acta Biomater 9(4):5989–5996

    Google Scholar 

  60. Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61(9):1189–1224

    Google Scholar 

  61. Black J, Hastings G (1998) Hand book of biomaterial properties, pp 2–5. Chapman & Hall, Springer, Boston, MA

    Google Scholar 

  62. Singh R, Kumar R, Ranjan N, Penna R, Fraternali F (2018) On the recyclability of polyamide for sustainable composite structures in civil engineering. Compos Struct 184:704–713

    Google Scholar 

  63. Singh R, Ranjan N (2017) Experimental investigations for preparation of biocompatible feedstock filament of fused deposition modeling (FDM) using twin screw extrusion process. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705717738297

    Article  Google Scholar 

  64. Singh R, Sharma R, Ranjan N (2017) Four-dimensional printing for clinical dentistry. Reference module in materials science and materials engineering, pp. 1–28. Elsevier, Oxford

    Google Scholar 

  65. Singh R, Kumar R, Ranjan N (2018) Sustainability of recycled ABS and PA6 by banana fiber reinforcement: thermal, mechanical and morphological properties. J Inst Eng (India): Ser C. 1–10. https://doi.org/10.1007/s40032-017-0435-1

  66. Sachs EM, Haggerty JS, Cima MJ, Williams PA (1993) Inventors; Massachusetts institute of technology, assignee. Three-dimensional printing techniques. United States patent US 5,204,055

    Google Scholar 

  67. Sachs E, Cima M, Cornie J (1990) Three-dimensional printing: rapid tooling and prototypes directly from a CAD model. CIRP Ann Manuf Technol 39(1):201–204

    Google Scholar 

  68. Tarafder S, Balla VK, Davies NM, Bandyopadhyay A, Bose S (2013) Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J Tissue Eng Regen Med 7(8):631–641

    Google Scholar 

  69. Warnke PH, Seitz H, Warnke F, Becker ST, Sivananthan S, Sherry E, Liu Q, Wiltfang J, Douglas T (2010) Ceramic scaffolds produced by computer-assisted 3D printing and sintering: Characterization and biocompatibility investigations. J Biomed Mater Res B Appl Biomater 93(1):212–217

    Google Scholar 

  70. Vorndran E, Klarner M, Klammert U, Grover LM, Patel S, Barralet JE, Gbureck U (2008) 3D powder printing of β-tricalcium phosphate ceramics using different strategies. Adv Eng Mater 10(12)

    Google Scholar 

  71. Leukers B, Gülkan H, Irsen SH, Milz S, Tille C, Seitz H, Schieker M (2005) Biocompatibility of ceramic scaffolds for bone replacement made by 3D printing. Materialwiss Werkstofftech 36(12):781–787

    Google Scholar 

  72. Uhland SA, Holman RK, Morissette S, Cima MJ, Sachs EM (2001) Strength of green ceramics with low binder content. J Am Ceram Soc 84(12):2809–2818

    Google Scholar 

  73. Amirkhani S, Bagheri R, Yazdi AZ (2012) Effect of pore geometry and loading direction on deformation mechanism of rapid prototyped scaffolds. Acta Mater 60(6–7):2778–2789

    Google Scholar 

  74. Khalyfa A, Vogt S, Weisser J, Grimm G, Rechtenbach A, Meyer W, Schnabelrauch M (2007) Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. J Mater Sci Mater Med 18(5):909–916

    Google Scholar 

  75. Detsch R, Schaefer S, Deisinger U, Ziegler G, Seitz H, Leukers B (2011) In vitro-osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds. J Biomater Appl 26(3):359–380

    Google Scholar 

  76. Arsiwala A, Desai P, Patravale V (2014) Recent advances in micro/nanoscale biomedical implants. J Control Release 10(189):25–45

    Google Scholar 

  77. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci

    Google Scholar 

  78. Kang R, Le DQ, Li H, Lysdahl H, Chen M, Besenbacher F, Bünger C (2013) Engineered three-dimensional nanofibrous multi-lamellar structure for annulus fibrosus repair. J Mater Chem B 1(40):5462–5468

    Google Scholar 

  79. Peter SJ, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG (1998) Polymer concepts in tissue engineering. J Biomed Mater Res Part A 43(4):422–427

    Google Scholar 

  80. Zhu Y, Gao C, Liu Y, Shen J (2004) Endothelial cell functions in vitro cultured on poly (L-lactic acid) membranes modified with different methods. J Biomed Mater Res Part A 69(3):436–443

    Google Scholar 

  81. Spath S, Seitz H (2014) Influence of grain size and grain-size distribution on workability of granules with 3D printing. Int J Adv Manuf Technol 70(1–4):135–144

    Google Scholar 

  82. Do AV, Khorsand B, Geary SM, Salem AK (2015) 3D printing of scaffolds for tissue regeneration applications. Adv Healthcare Mater 4(12):1742–1762

    Google Scholar 

  83. Walker KJ, Madihally SV (2015) Anisotropic temperature sensitive chitosan-based injectable hydrogels mimicking cartilage matrix. J Biomed Mater Res B Appl Biomater 103(6):1149–1160

    Google Scholar 

  84. Kim YB, Kim GH (2015) PCL/alginate composite scaffolds for hard tissue engineering: fabrication, characterization, and cellular activities. ACS Comb Sci 17(2):87–99

    Google Scholar 

  85. Shim JH, Kim JY, Park M, Park JS, Cho DW (2011) Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Biofabrication 3(3):034102

    Google Scholar 

  86. Lee JS, Hong JM, Jung JW, Shim JH, Oh JH, Cho DW (2014) 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 6(2):024103

    Google Scholar 

  87. Gu BK, Choi DJ, Park SJ, Kim MS, Kang CM, Kim CH (2016) 3-dimensional bioprinting for tissue engineering applications. Biomater Res 20(1):12

    Google Scholar 

  88. Wen J, Xu Y, Li H, Lu A, Sun S (2015) Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging. Chem Commun 51(57):11346–11358

    Google Scholar 

  89. Saito E, Kang H, Taboas JM, Diggs A, Flanagan CL, Hollister SJ (2010) Experimental and computational characterization of designed and fabricated 50: 50 PLGA porous scaffolds for human trabecular bone applications. J Mater Sci Mater Med 21(8):2371–2383

    Google Scholar 

  90. Jorge-Mora A, Imaz N, Frutos N, Alonso A, Santiago CG, Gómez-Vaamonde R, Pino-Minguez J, Bartolomé J, O’connor G, Nieto D (2017) In vitro evaluation of laser-induced periodic surface structures on new zirconia/tantalum biocermet for hard-tissue replacement. Laser Ablation From Fundam Appl

    Google Scholar 

  91. Hong D, Chou DT, Velikokhatnyi OI, Roy A, Lee B, Swink I, Issaev I, Kuhn HA, Kumta PN (2016) Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomater 30(45):375–386

    Google Scholar 

  92. Hansen DC (2008) Metal corrosion in the human body: the ultimate bio-corrosion scenario. Electrochem Soc Interface 17(2):31

    Google Scholar 

  93. Wataha JC, Hobbs DT, Wong JJ, Dogan S, Zhang H, Chung KH, Elvington MC (2010) Titanates deliver metal ions to human monocytes. J Mater Sci Mater Med 21(4):1289–1295

    Google Scholar 

  94. Jayakumar R, Ramachandran R, Divyarani VV, Chennazhi KP, Tamura H, Nair SV (2011) Int J Biol Macromol 48:336

    Google Scholar 

  95. Roy M, Balla VK, Bandyopadhyay A, Bose S (2012) MgO-doped tantalum coating on Ti: microstructural study and biocompatibility evaluation. ACS Appl Mater Interface 4(2):577–580

    Google Scholar 

  96. Lewallen EA, Riester SM, Bonin CA, Kremers HM, Dudakovic A, Kakar S, Cohen RC, Westendorf JJ, Lewallen DG, Van Wijnen AJ (2014) Biological strategies for improved osseointegration and osteoinduction of porous metal orthopedic implants. Tissue Eng Part B: Rev 21(2):218–230

    Google Scholar 

  97. Gu XN, Li SS, Li XM, Fan YB (2014) Magnesium based degradable biomaterials: A review. Front Mater Sci 8(3):200–218

    Google Scholar 

  98. Chen G, Ushida T, Tateishi T (2002) Scaffold design for tissue engineering. Macromol Biosci 2(2):67–77

    Google Scholar 

  99. Zhuang H, Han Y, Feng A (2008) Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds. Mater Sci Eng C 28(8):1462–1466

    Google Scholar 

  100. Wu C, Fan W, Zhou Y, Luo Y, Gelinsky M, Chang J, Xiao Y (2012) 3D-printing of highly uniform CaSiO3 ceramic scaffolds: preparation, characterization and in vivo osteogenesis. J Mater Chem 22(24):12288–12295

    Google Scholar 

  101. Moreno EC, Kresak M, Zahradnik RT (1974) Fluoridated hydroxyapatite solubility and caries formation. Nature 247(5435):64

    Google Scholar 

  102. Leukers B, Gülkan H, Irsen SH, Milz S, Tille C, Schieker M, Seitz H (2005) Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med 16(12):1121–1124

    Google Scholar 

  103. Zhou Z, Buchanan F, Mitchell C, Dunne N (2014) Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Mater Sci Eng C 1(38):1

    Google Scholar 

  104. Castilho M, Moseke C, Ewald A, Gbureck U, Groll J, Pires I, Teßmar J, Vorndran E (2014) Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Biofabrication 6(1):015006

    Google Scholar 

  105. Gevaert E, Dolle L, Billiet T, Dubruel P, van Grunsven L, van Apeldoorn A, Cornelissen R (2014) High throughput micro-well generation of hepatocyte micro-aggregates for tissue engineering. PLoS ONE 9(8):e105171

    Google Scholar 

  106. Shapiro JM, Oyen ML (2013) Hydrogel composite materials for tissue engineering scaffolds. JOM 65(4):505–516

    Google Scholar 

  107. Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8(5):607–626

    Google Scholar 

  108. Park SH, Park DS, Shin JW, Kang YG, Kim HK, Yoon TR, Shin JW (2012) Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA. J Mater Sci Mater Med 23(11):2671–2678

    Google Scholar 

  109. Griffith LG (2000) Polymeric biomaterials. Acta Mater 48(1):263–277

    Google Scholar 

  110. Intra J, Glasgow JM, Mai HQ, Salem AK (2008) Pulsatile release of biomolecules from polydimethylsiloxane (PDMS) chips with hydrolytically degradable seals. J Control Release 127(3):280–287

    Google Scholar 

  111. Mountziaris PM, Spicer PP, Kasper FK, Mikos AG (2011) Harnessing and modulating inflammation in strategies for bone regeneration. Tissue Eng Part B: Rev 17(6):393–402

    Google Scholar 

  112. Rajan V, Murray RZ (2008) The duplicitous nature of inflammation in wound repair wound practice & research. J Aust Wound Manage Assoc 16(3):122

    Google Scholar 

  113. Almeida CR, Serra T, Oliveira MI, Planell JA, Barbosa MA, Navarro M (2014) Impact of 3-D printed PLA-and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation. Acta Biomater 10(2):613–622

    Google Scholar 

  114. Sung HJ, Meredith C, Johnson C, Galis ZS (2004) The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 25(26):5735–42

    Google Scholar 

  115. Moshiri A, Oryan A (2013) Role of platelet rich plasma in soft and hard connective tissue healing: an evidence based review from basic to clinical application. Hard Tissue 2(1):6

    Google Scholar 

  116. Aydin A, Memisoglu K, Cengiz A, Atmaca H, Muezzinoglu B, Muezzinoglu US (2012) J Orthop Sci: Official J Jpn Orthop Assoc 17:796

    Google Scholar 

  117. Choi SH, Park TG (2002) Synthesis and characterization of elastic PLGA/PCL/PLGA tri-block copolymers. J Biomater Sci Polym Ed 13(10):1163–1173

    Google Scholar 

  118. Gong CY, Shi S, Dong PW, Yang B, Qi XR, Guo G, Gu YC, Zhao X, Wei YQ, Qian ZY (2009) Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL–PEG–PCL hydrogel: Part 1—synthesis, characterization, and acute toxicity evaluation. J Pharm Sci 98(12):4684–4694

    Google Scholar 

  119. Inzana JA, Trombetta RP, Schwarz EM, Kates SL, Awad HA (2015) 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection. Eur cells Mater 30:232

    Google Scholar 

  120. Elangovan S, D’Mello SR, Hong L, Ross RD, Allamargot C, Dawson DV, Stanford CM, Johnson GK, Sumner DR, Salem AK (2014) The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor. Biomaterials 35(2):737–747

    Google Scholar 

  121. Lam CX, Mo XM, Teoh SH, Hutmacher DW (2002) Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C 20(1–2):49–56

    Google Scholar 

  122. Harris B (1980) The mechanical behaviour of composite materials. In: Symposia of the society for experimental biology, vol 34, pp 37

    Google Scholar 

  123. Krause WR, Park SH, Straup RA (1989) Mechanical properties of BIS-GMA resin short glass fiber composites. J Biomed Mater Res Part A 23(10):1195–1211

    Google Scholar 

  124. Hastings GW (1986) Carbon and plastic materials for orthopaedic implants. Materials sciences and implant orthopedic surgery, pp 263–284. Springer, Dordrecht

    Google Scholar 

  125. Tayton K, Bradley J (1983) How stiff should semi-rigid fixation of the human tibia be? A clue to the answer. J Bone Joint Surg 65(3):312–5

    Google Scholar 

  126. Tayton KJJ (1983) The use of carbon fibre in human implants: the state of the art. J Med Eng Technol 7(6):271–272

    Google Scholar 

  127. Singh R, Kumar R, Mascolo I, Modano M (2018) On the applicability of composite PA6-TiO2 filaments for the rapid prototyping of innovative materials and structures. Compos Part B Eng 143:132–140. https://doi.org/10.1016/J.COMPOSITESB.2018.01.032

  128. Kumar R, Singh R, Hui D et al (2018) Graphene as biomedical sensing element: State of art review and potential engineering applications. Compos Part B Eng 134. https://doi.org/10.1016/j.compositesb.2017.09.049

  129. Singh R, Kumar R, Feo L, Fraternali F (2016) Friction welding of dissimilar plastic/polymer materials with metal powder reinforcement for engineering applications. Compos Part B Eng 101. https://doi.org/10.1016/j.compositesb.2016.06.082

  130. Kumar R, Singh R, Ahuja IPS et al (2018) Weldability of thermoplastic materials for friction stir welding—a state of art review and future applications. Compos Part B Eng 137. https://doi.org/10.1016/j.compositesb.2017.10.039

  131. Kumar R, Singh R, Ahuja IPS et al (2018) Friction welding for the manufacturing of PA6 and ABS structures reinforced with Fe particles. Compos Part B Eng 132:244–257. https://doi.org/10.1016/j.compositesb.2017.08.018

    Article  Google Scholar 

  132. Kumar R, Singh R, Ahuja IPS (2018) Investigations of mechanical, thermal and morphological properties of FDM fabricated parts for friction welding applications. Meas J Int Meas Confed 120. https://doi.org/10.1016/j.measurement.2018.02.006

  133. Kumar R, Singh R (2018) Prospect of graphene for use as sensors in miniaturized and biomedical sensing devices. Ref Modul Mater Sci Mater Eng 1–13. https://doi.org/10.1016/b978-0-12-803581-8.10334-0

  134. Singh R, Kumar R, Kumar S (2017) Polymer waste as fused deposition modeling feed stock filament for industrial applications. Ref Modul Mater Sci Mater Eng 1–12. https://doi.org/10.1016/b978-0-12-803581-8.04153-9

Download references

Acknowledgements

Financial support by SERB (IMRC/AISTDF/R&D/P-10/2017) was received for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupinder Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ranjan, N., Singh, R., Ahuja, I.P.S., Rahman, M., Ramakrishna, S. (2020). PLA-HAp-CS-Based Biocompatible Scaffolds Prepared Through Micro-Additive Manufacturing: A Review and Future Applications. In: Singh, S., Prakash, C., Singh, R. (eds) 3D Printing in Biomedical Engineering. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-5424-7_10

Download citation

Publish with us

Policies and ethics