Skip to main content

Temporal and Spatial Dynamics of Microbial Communities in a Genetically Modified Rice Ecosystem

  • Chapter
  • First Online:
Rice Research for Quality Improvement: Genomics and Genetic Engineering
  • 690 Accesses

Abstract

Genetically modified crops are new products of agriculture biotechnology. Rice is one of the top food crops that are modified genetically to fulfill the increasing food demand of the world. However, the benefits and risks of genetically modified crops are the topics of hot debate. Limited reports regarding the effects of genetically modified rice on the structure and function of soil microbial communities are available. Moreover, conclusions based on these studies are very perplexing and create a state of confusion regarding the impact of GM rice and their released products on soil microbiota and ecosystem. Few of the reports on transgenic rice recommend that if the transgene products from the GM rice become accumulated more than their utilization and/or biodegradation, it might cause accretion of these products in the soil beyond their safety level which may cause the long-term impact on the soil ecosystem including soil micro-fauna and micro-flora. Temporal and spatial factors are too much important in determining the influence of GM rice on communities of soil microbes and environment. Therefore, the following chapter is prepared to gather the information regarding the impact of GM rice and its residues on the soil microbial communities. In the first part, a brief description on the interaction of GM crops with soil microbes is presented, and in the second part studies regarding the impact of transgenic crops on the soil microbial communities are reviewed. At the end, a framework to evaluate the effect of GM rice on soil ecosystem relative to its parental variety is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamczyk JJ Jr, Hardee DD, Adams LC, Sumerford DV (2001) Correlating differences in larval survival and development of bollworm (Lepidoptera: Noctuidae) and fall armyworm (Lepidoptera: Noctuidae) to differential expression of Cry1A (c) δ–endotoxin in various plant parts among commercial cultivars of transgenic Bacillus thuringiensis cotton. J Econ Entomol 94(1):284–290

    CAS  PubMed  Google Scholar 

  • Alfred J, Dangl JL, Kamoun S, McCouch SR (2014) New horizons for plant translational research. PLoS Biol 12(6):e1001880

    PubMed  PubMed Central  Google Scholar 

  • Ali Q, Ashraf S, Kamran M, Ijaz M (2019) Affirmative plant–microbe interfaces toward agroecosystem sustainability. In: Microbiome in plant health and disease. Springer, Singapore, pp 145–170

    Google Scholar 

  • Andow DA, Zwahlen C (2006) Assessing environmental risks of transgenic plants. Ecol Lett 9(2):196–214

    CAS  PubMed  Google Scholar 

  • Aulakh MS, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H (2001) Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol 3(02):139–148

    CAS  Google Scholar 

  • Axelsson EP, Hjältén J, LeRoy CJ, Whitham TG, Julkunen-Tiitto R, Wennström A (2011) Leaf litter from insect-resistant transgenic trees causes changes in aquatic insect community composition. J Appl Ecol 48(6):1472–1479

    Google Scholar 

  • Badea EM, Chelu F, Lacatusu A (2010) Results regarding the levels of Cry1Ab protein in transgenic corn tissue (MON810) and the fate of Bt protein in three soil types. Rom Biotechnol Lett 15(1):55–62

    CAS  Google Scholar 

  • Bai X, Zeng X, Huang S, Liang J, Dong L, Wei Y, Li Y, Qu J, Wang Z (2019) Marginal impact of cropping BADH transgenic maize BZ–136 on chemical property, enzyme activity, and bacterial community diversity of rhizosphere soil. Plant Soil 436(1–2):527–541

    CAS  Google Scholar 

  • Bajaj S, Mohanty A (2005) Recent advances in rice biotechnology-towards genetically superior transgenic rice. Plant Biotechnol J 3(3):275–307

    CAS  PubMed  Google Scholar 

  • Bakker MG, Chaparro JM, Manter DK, Vivanco JM (2015) Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays. Plant Soil 392(1–2):115–126

    CAS  Google Scholar 

  • Bandumula N (2018) Rice production in Asia: key to global food security. Proc Natl Acad Sci India Sect B Biol Sci 88(4):1323–1328

    Google Scholar 

  • Bardgett RD (2002) Causes and consequences of biological diversity in soil. Zoology 105:367–374

    PubMed  Google Scholar 

  • Bardgett RD, Denton CS, Cook R (1999) Below–ground herbivory promotes soil nutrient transfer and root growth in grassland. Ecol Lett 2(6):357–360

    Google Scholar 

  • Barton JE, Dracup M (2000) Genetically modified crops and the environment. Agron J 92(4):797–803

    Google Scholar 

  • Baumgarte S, Tebbe CC (2005) Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere. Mol Ecol 14(8):2539–2551

    CAS  PubMed  Google Scholar 

  • Becker R, Behrendt U, Hommel B, Kropf S, Ulrich A (2008) Effects of transgenic fructan–producing potatoes on the community structure of rhizosphere and phyllosphere bacteria. FEMS Microbiol Ecol 66(2):411–425

    CAS  PubMed  Google Scholar 

  • Biden S, Smyth SJ, Hudson D (2018) The economic and environmental cost of delayed GM crop adoption: the case of Australia’s GM canola moratorium. GM Crops Food 9(1):13–20

    PubMed  PubMed Central  Google Scholar 

  • Birch ANE, Griffiths BS, Caul S, Thompson J, Heckmann LH, Krogh PH, Cortet J (2007) The role of laboratory, glasshouse and field scale experiments in understanding the interactions between genetically modified crops and soil ecosystems: a review of the ECOGEN project. Pedobiologia 51(3):251–260

    CAS  Google Scholar 

  • Blackwood CB, Buyer JS (2004) Soil microbial communities associated with Bt and non–Bt corn in three soils. J Environ Qual 33(3):832–836

    CAS  PubMed  Google Scholar 

  • Blevins RL, Lal R, Doran JW, Langdale GW, Frye WW (2018) Conservation tillage for erosion control and soil quality. In: Advances in soil and water conservation. Routledge, pp 51–68

    Google Scholar 

  • Blum SA, Lorenz MG, Wackernagel W (1997) Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils. Syst Appl Microbiol 20(4):513–521

    CAS  Google Scholar 

  • Breidenbach B, Brenzinger K, Brandt FB, Blaser MB, Conrad R (2017) The effect of crop rotation between wetland rice and upland maize on the microbial communities associated with roots. Plant Soil 419(1–2):435–445

    CAS  Google Scholar 

  • Brigulla M, Wackernagel W (2010) Molecular aspects of gene transfer and foreign DNA acquisition in prokaryotes with regard to safety issues. Appl Microbiol Biotechnol 86(4):1027–1041

    CAS  PubMed  Google Scholar 

  • Brodie E, Edwards S, Clipson N (2003) Soil fungal community structure in a temperate upland grassland soil. FEMS Microbiol Ecol 45(2):105–114

    CAS  PubMed  Google Scholar 

  • Bruinsma M, Kowalchuk GA, Van Veen JA (2002) Effects of genetically modified plants on soil ecosystems. NIOO Report (Netherlands).

    Google Scholar 

  • Brzostek ER, Greco A, Drake JE, Finzi AC (2013) Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soils. Biogeochem 115(1–3):65–76

    CAS  Google Scholar 

  • Buée M, De Boer W, Martin F, van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant–associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant and Soil 321(1–2):189–212

    Google Scholar 

  • Busari MA, Kukal SS, Kaur A, Bhatt R, Dulazi AA (2015) Conservation tillage impacts on soil, crop and the environment. Int Soil Water Conserv Res 3(2):119–129

    Google Scholar 

  • Camastra F, Ciaramella A, Giovannelli V, Lener M, Rastelli V, Staiano A, Staiano G, Starace A (2015) A fuzzy decision system for genetically modified plant environmental risk assessment using Mamdani inference. Expert Syst Appl 42(3):1710–1716

    Google Scholar 

  • Cardon ZG, Hungate BA, Cambardella CA, Chapin Iii FS, Field CB, Holland EA, Mooney HA (2001) Contrasting effects of elevated CO2 on old and new soil carbon pools. Soil Biol Biochem 33(3):365–373

    CAS  Google Scholar 

  • Carlile MJ, Watkinson SC, Gooday GW (2001) The fungi. Gulf Professional Publishing

    Google Scholar 

  • Castaldini M, Turrini A, Sbrana C, Benedetti A, Marchionni M, Mocali S, Nuti MP (2005) Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms. Appl Environ Microbiol 71(11):6719–6729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZH, Chen LJ, Zhang YL, Wu ZJ (2011) Microbial properties, enzyme activities and the persistence of exogenous proteins in soil under consecutive cultivation of transgenic cottons (Gossypium hirsutum L.). Plant Soil Environ 57(2):67–74

    Google Scholar 

  • Chen Q, Yang B, Liu X, Chen F, Ge F (2017) Long–term cultivation of Bt rice expressing the Cry1Ab/1Ac gene reduced phytoparasitic nematode abundance but did not affect other nematode parameters in paddy fields. Sci Total Environ 607:463–474

    PubMed  Google Scholar 

  • Christopher BB, Jeffrey SB (2004) Soil microbial communities associated with Bt and non-Bt corn in three soils. J Environ Qual 33:799–804

    Google Scholar 

  • Chun YJ, Kim HJ, Park KW, Jeong SC, Lee B, Back K, Kim CG (2012) Two–year field study shows little evidence that PPO–transgenic rice affects the structure of soil microbial communities. Biol Fertil Soils 48(4):453–461

    Google Scholar 

  • Conner AJ, Glare TR, Nap JP (2003) The release of genetically modified crops into the environment: part II. Overview of ecological risk assessment. Plant J 33(1):19–46

    PubMed  Google Scholar 

  • Crecchio C, Stotzky G (2001) Biodegradation and insecticidal activity of the toxin from Bacillus thuringiensis subsp. kurstaki bound on complexes of montmorillonite-humic acids–Al hydroxypolymers. Soil Biol Biochemi 33(4–5):573–581

    CAS  Google Scholar 

  • Dale PJ, Clarke B, Fontes EM (2002) Potential for the environmental impact of transgenic crops. Nat Biotechnol 20(6):567

    CAS  PubMed  Google Scholar 

  • Dassen S, Cortois R, Martens H, de Hollander M, Kowalchuk GA, van der Putten WH, De Deyn GB (2017) Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity. Mol Ecol 26(15):4085–4098

    CAS  PubMed  Google Scholar 

  • Dastan S, Ghareyazie B, Pishgar SH (2019) Environmental impacts of transgenic Bt rice and non–Bt rice cultivars in northern Iran. Biocatal Agric Biotechnol 20:101160

    Google Scholar 

  • De Vries J, Wackernagel W (2005) Microbial horizontal gene transfer and the DNA release from transgenic crop plants. Plant Soil 266(1–2):91–104

    Google Scholar 

  • Demanèche S, Sanguin H, Poté J, Navarro E, Bernillon D, Mavingui P, Simonet P (2008) Antibiotic–resistant soil bacteria in transgenic plant fields. Proc Natl Acad Sci 105(10):3957–3962

    PubMed  Google Scholar 

  • Demanèche S, Monier JM, Dugat-Bony E, Simonet P (2011) Exploration of horizontal gene transfer between transplastomic tobacco and plant–associated bacteria. FEMS Microbiol Ecol 78(1):129–136

    PubMed  Google Scholar 

  • Deng J, Wang Y, Yang F, Liu Y, Liu B (2019) Persistence of insecticidal Cry toxins in Bt rice residues under field conditions estimated by biological and immunological assays. Sci Total Environ 679:45–51

    CAS  PubMed  Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72(3):313–327

    CAS  PubMed  Google Scholar 

  • Domingo JL, Bordonaba JG (2011) A literature review on the safety assessment of genetically modified plants. Environ Int 37(4):734–742

    PubMed  Google Scholar 

  • Donegan KK, Seidler RJ, Doyle JD, Porteous LA, Digiovanni G, Widmer F, Watrud LS (1999) A field study with genetically engineered alfalfa inoculated with recombinant Sinorhizobium meliloti: effects on the soil ecosystem. J App Ecol. 36(6):920–936

    Google Scholar 

  • Dong HZ, Li WJ (2007) Variability of endotoxin expression in Bt transgenic cotton. J Agron Crop Sci 193(1):21–29

    CAS  Google Scholar 

  • Dunfield KE, Germida JJ (2001) Diversity of bacterial communities in the rhizosphere and root interior of field–grown genetically modified Brassica napus. FEMS Microbiol Ecol 38(1):1–9

    CAS  Google Scholar 

  • Dunfield KE, Germida JJ (2003) Seasonal changes in the rhizosphere microbial communities associated with field–grown genetically modified canola (Brassica napus). Appl Environ Microbiol 69(12):7310–7318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eastham K, Sweet J (2002) Genetically modified organisms (GMOs): the significance of gene flow through pollen transfer. European Environment Agency, Copenhagen, pp 1–74

    Google Scholar 

  • Fang H, Dong B, Yan H, Tang F, Wang B, Yu Y (2012) Effect of vegetation of transgenic Bt rice lines and their straw amendment on soil enzymes, respiration, functional diversity and community structure of soil microorganisms under field conditions. J Environ Sci 24(7):1259–1270

    CAS  Google Scholar 

  • Faragová N, Gottwaldová K, Faragó J (2011) Effect of transgenic alfalfa plants with introduced gene for Alfalfa Mosaic Virus coat protein on rhizosphere microbial community composition and physiological profile. Biologia 66(5):768

    Google Scholar 

  • Faucon MP, Houben D, Lambers H (2017) Plant functional traits: soil and ecosystem services. Trends Plant Sci 22(5):385–394

    CAS  PubMed  Google Scholar 

  • Feng Y, Ling L, Fan H, Liu Y, Tan F, Shu Y, Wang J (2011) Effects of temperature, water content and pH on degradation of Cry1Ab protein released from Bt corn straw in soil. Soil Biol Biochem 43(7):1600–1606

    CAS  Google Scholar 

  • Fernandes EC, Motavalli PP, Castilla C, Mukurumbira L (1997) Management control of soil organic matter dynamics in tropical land–use systems. Geoderma 79(1–4):49–67

    CAS  Google Scholar 

  • Fließbach A, Messmer M, Nietlispach B, Infante V, Mäder P (2012) Effects of conventionally bred and Bacillus thuringiensis (Bt) maize varieties on soil microbial biomass and activity. Biol Fertil Soils 48(3):315–324

    Google Scholar 

  • Flores S, Saxena D, Stotzky G (2005) Transgenic Bt plants decompose less in soil than non–Bt plants. Soil Biol Biochem 37(6):1073–1082

    CAS  Google Scholar 

  • Folmer JD, Grant RJ, Milton CT, Beck J (2002) Utilization of Bt corn residues by grazing beef steers and Bt corn silage and grain by growing beef cattle and lactating dairy cows. J Animal Sci 80(5):1352–1361

    CAS  Google Scholar 

  • Frankenberger W, Dick WA (1983) Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Sci Soc Am J 47(5):945–951

    CAS  Google Scholar 

  • Garbeva P, Van Elsas JD, Van Veen JA (2008) Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302(1–2):19–32

    CAS  Google Scholar 

  • Gardner CM, Gunsch CK (2017) Adsorption capacity of multiple DNA sources to clay minerals and environmental soil matrices less than previously estimated. Chemosphere 175:45–51

    CAS  PubMed  Google Scholar 

  • Giovannetti M, Sbrana C, Turrini A (2005) The impact of genetically modified crops on soil microbial communities. Biology Forum/Rivista di Biologia. 98(3):393–417

    PubMed  Google Scholar 

  • Glick BR (2015) Beneficial plant-bacterial interactions. Springer, Heidelberg

    Google Scholar 

  • Gore J, Leonard BR, Adamczyk JJ (2001) Bollworm (Lepidoptera: Noctuidae) survival on ‘Bollgard’ and ‘Bollgard II’ cotton flower bud and flower components. J Econ Entomol 94(6):1445–1451

    CAS  PubMed  Google Scholar 

  • Griffiths BS, Caul S, Thompson J, Birch ANE, Scrimgeour C, Andersen MN, Krogh PH (2005) A comparison of soil microbial community structure, protozoa and nematodes in field plots of conventional and genetically modified maize expressing the Bacillus thuringiensis is CryIAb toxin. Plant Soil 275(1–2):135–146

    CAS  Google Scholar 

  • Gupta VVSR, Putcha S, Roberts G (2000) Soil health: the role of microbes in crop productivity. In: Proceedings from the 2000 Australian Cotton Conference, (1) 857 p. http://www.insidecotton.com/xmlui/handle/1/857. Accessed 10:44; 07-06-2020

  • Guyonnet JP, Vautrin F, Meiffren G, Labois C, Cantarel AA, Michalet S, Comte G, Haichar FEZ (2017) The effects of plant nutritional strategy on soil microbial denitrification activity through rhizosphere primary metabolites. FEMS Microbiology Ecol 93(4). https://doi.org/10.1093/femsec/fix022

  • Haldar S, Sengupta S (2015) Plant–microbe cross–talk in the rhizosphere: insight and biotechnological potential. Open Microbiol 9:1–7. https://doi.org/10.2174/1874285801509010001

    Article  CAS  Google Scholar 

  • Han L, Wu K, Peng Y, Wang F, Guo Y (2007) Efficacy of transgenic rice expressing Cry1Ac and CpTI against the rice leaffolder, Cnaphalocrocis medinalis (Guenée). J Invertebr Pathol 96(1):71–79

    CAS  PubMed  Google Scholar 

  • Hannula SE, De Boer W, Van Veen JA (2014) Do genetic modifications in crops affect soil fungi? A review. Biol Fertil Soils 50(3):433–446

    CAS  Google Scholar 

  • Head G, Surber JB, Watson JA, Martin JW, Duan JJ (2002) No detection of Cry1Ac protein in soil after multiple years of transgenic Bt cotton (Bollgard) use. Environ Entomol 31(1):30–36

    CAS  Google Scholar 

  • Helassa N, Quiquampoix H, Staunton S (2013) Structure, biological activity and environmental fate of insecticidal Bt (bacillus thuringiensis) cry proteins of bacterial and genetically modified plant origin. In: Molecular environmental soil science. Springer, Dordrecht, pp 49–77

    Google Scholar 

  • Helfrich M, Ludwig B, Thoms C, Gleixner G, Flessa H (2015) The role of soil fungi and bacteria in plant litter decomposition and macroaggregate formation determined using phospholipid fatty acids. Appl Soil Ecol 96:261–264

    Google Scholar 

  • Heuer H, Kroppenstedt RM, Lottmann J, Berg G, Smalla K (2002) Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factors. Appl Environ Microbiol 68(3):1325–1335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Xie M, Yu Y, Zhang Q (2013) Transgenic Bt cotton tissues have no apparent impact on soil microorganisms. Plant Soil Environ 59(8):366–371

    Google Scholar 

  • Hull R, Covey SN, Dale P (2000) Genetically modified plants and the 35S promoter: assessing the risks and enhancing the debate. Microb Ecol Health Dis 12(1):1–5

    CAS  Google Scholar 

  • Hunting ER (2013) UV radiation and organic matter composition shape bacterial functional diversity in sediments. Front Microbiol 4:317

    PubMed  PubMed Central  Google Scholar 

  • Ibarra JG, Colombo RP, Godeas AM, López NI (2019) Analysis of soil bacterial communities associated with genetically modified drought-tolerant corn. Appl Soil Ecol 146:103375

    Google Scholar 

  • Icoz I, Stotzky G (2008) Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biol Biochem 40(3):559–586

    CAS  Google Scholar 

  • Icoz I, Saxena D, Andow DA, Zwahlen C, Stotzky G (2008) Microbial populations and enzyme activities in soil in situ under transgenic corn expressing Cry proteins from Bacillus thuringiensis. J Environ Qual 37(2):647–662

    CAS  PubMed  Google Scholar 

  • Ijaz M, Ali Q, Ashraf S, Kamran M, Rehman A (2019) Development of future bioformulations for sustainable agriculture. In: Microbiome in plant health and disease. Springer, Singapore, pp 421–446

    Google Scholar 

  • ISAAA (2017) ISAAA (The International Service for the Acquisition of Agri–Biotech Applications) Briefs No. 39, Global Status of Commercialized Biotech/GM Crops: 2017. ISAAA, Ithaca, NY

    Google Scholar 

  • Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Front Plant Sci 8:1617

    PubMed  PubMed Central  Google Scholar 

  • James C (2006) Global review of the field testing and commercialization of transgenic plants: 1986 to 1995, ISAAA Briefs No. 1, ISAAA, Ithaca, NY, p. 31

    Google Scholar 

  • James C (2011) Global status of commercialized biotech/GM crops, 2011, vol 44. ISAAA, Ithaca, NY

    Google Scholar 

  • Jazdi N (2014, May) Cyber physical systems in the context of Industry 4.0. In 2014 IEEE international conference on automation, quality and testing, robotics. IEEE, pp 1–4

    Google Scholar 

  • Kathuria H, Giri J, Tyagi H, Tyagi AK (2007) Advances in transgenic rice biotechnology. Crit Rev Plant Sci 26(2):65–103

    CAS  Google Scholar 

  • Keese P (2008) Risks from GMOs due to horizontal gene transfer. Environ Biosafety Res 7(3):123–149

    CAS  PubMed  Google Scholar 

  • Khan MI, Khan AA, Cheema HMN, Khan RSA (2018) Spatio–temporal and intra–plant expression variability of insecticidal gene (Cry1Ac) in upland cotton. Int J Agric Biol 20:715–722

    CAS  Google Scholar 

  • Kim MC, Ahn JH, Shin HC, Kim T, Ryu TH, Kim DH, Ka JO (2008) Molecular analysis of bacterial community structures in paddy soils for environmental risk assessment with two varieties of genetically modified rice, Iksan 483 and Milyang 204. J Microbiol Biotechnol 18(2):207–218

    CAS  PubMed  Google Scholar 

  • Kim SE, Moon JS, Kim JK, Yoo RH, Choi WS, Lee EN, Kim SU (2010) Monitoring of possible horizontal gene transfer from transgenic potatoes to soil microorganisms in the potato fields and the emergence of variants in Phytophthora infestans. J Microbiol Biotechnol 20(6):1027–1031

    CAS  PubMed  Google Scholar 

  • Kim JS, Park HM, Chae S, Lee TH, Hwang DJ, Oh SD, Kim YH (2014) A pepper MSRB2 gene confers drought tolerance in rice through the protection of chloroplast–targeted genes. Plos One 9(3):e90588

    PubMed  PubMed Central  Google Scholar 

  • Koranda M, Schnecker J, Kaiser C, Fuchslueger L, Kitzler B, Stange CF, Sessitsch A, Zechmeister-Boltenstern S, Richter A (2011) Microbial processes and community composition in the rhizosphere of European beech-the influence of plant C exudates. Soil Biol Biochem 43(3):551–558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kos M, van Loon JJ, Dicke M, Vet LE (2009) Transgenic plants as vital components of integrated pest management. Trends Biotechnol 27(11):621–627

    CAS  PubMed  Google Scholar 

  • Kowalchuk GA, Bruinsma M, van Veen JA (2003) Assessing responses of soil microorganisms to GM plants. Trends Ecol Evol 18(8):403–410

    Google Scholar 

  • Kranthi KR, Naidu S, Dhawad CS, Tatwawadi A, Mate K, Patil E, Kranthi S (2005) Temporal and intra–plant variability of Cry1Ac expression in Bt–cotton and its influence on the survival of the cotton bollworm, Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera). Curr Sci Bangalore 89(2):291

    CAS  Google Scholar 

  • Lachnicht SL, Hendrix PF, Potter RL, Coleman DC, Crossley DA Jr (2004) Winter decomposition of transgenic cotton residue in conventional-till and no-till systems. Appl Soil Ecol. 27(2):135–142

    Google Scholar 

  • Lavecchia A, Curci M, Jangid K, Whitman WB, Ricciuti P, Pascazio S, Crecchio C (2015) Microbial 16S gene–based composition of a sorghum cropped rhizosphere soil under different fertilization managements. Biol Fertile Soils 51(6):661–672

    CAS  Google Scholar 

  • Leclerc M, Walker E, Messéan A, Soubeyrand S (2018) Spatial exposure–hazard and landscape models for assessing the impact of GM crops on non-target organisms. Sci Total Environ 624:470–479

    CAS  PubMed  Google Scholar 

  • Lee B, Park JY, Park KW, Harn CH, Kim HM, Kim CG (2010) Evaluating the persistence of DNA from decomposing transgenic watermelon tissues in the field. J Plant Biol 53(5):338–343

    CAS  Google Scholar 

  • Lee YE, Yang SH, Bae TW, Kang HG, Lim PO, Lee HY (2011) Effects of field-grown genetically modified Zoysia grass on bacterial community structure. J Microbiol Biotechnol 21(4):333–340

    CAS  PubMed  Google Scholar 

  • Lee YE, Lee SH, Ryu GD, Kang HG, Kwon YI, Sun HJ, Lee HY (2015) Investigation into effects of transgenic glufosinate–resistant Zoysia grasses with herbicide application on bacterial communities under field conditions. J Plant Biol 58(5):303–310

    CAS  Google Scholar 

  • Li P, Li Y, Ye S, Pan A, Ming F, Tang XM (2018) Cultivation of drought–tolerant and insect–resistant rice affects soil bacterial, but not fungal, abundances and community structures. Front Microbiol 9:1390

    PubMed  PubMed Central  Google Scholar 

  • Li Z, Cui J, Mi Z, Tian D, Wang J, Ma Z, Wang B, Chen HY, Niu S (2019) Responses of soil enzymatic activities to transgenic Bacillus thuringiensis (Bt) crops–A global meta–analysis. Sci Total Environ 651:1830–1838

    CAS  PubMed  Google Scholar 

  • Lilley AK, Bailey MJ, Cartwright C, Turner SL, Hirsch PR (2006) Life in earth: the impact of GM plants on soil ecology? Trends Biotechnol 24(1):9–14

    CAS  PubMed  Google Scholar 

  • Liu W (2009) Effects of Bt transgenic crops on soil ecosystems: a review of a ten–year research in China. Front Agric China 3(2):190–198

    Google Scholar 

  • Liu W (2010) Do genetically modified plants impact arbuscular mycorrhizal fungi? Ecotoxicology 19(2):229–238

    CAS  PubMed  Google Scholar 

  • Liu B, Zeng Q, Yan F, Xu H, Xu C (2005) Effects of transgenic plants on soil microorganisms. Plant and Soil 271(1):1–13

    CAS  Google Scholar 

  • Liu W, Lu HH, Wu W, Wei QK, Chen YX, Thies JE (2008) Transgenic Bt rice does not affect enzyme activities and microbial composition in the rhizosphere during crop development. Soil Biol Biochem 40(2):475–486

    CAS  Google Scholar 

  • Liu Y, Li J, Luo Z, Wang H, Liu F (2016) The fate of fusion Cry1Ab/1Ac proteins from Bt–transgenic rice in soil and water. Ecotoxicol Environ Saf 124:455–459

    CAS  PubMed  Google Scholar 

  • Liu L, Wu L, Eickhorst T (2018) Accumulation of Cry1Ab/Ac proteins released from transgenic Bt–rice in the rhizosphere of a paddy soil. Rhizosphere 6:39–46

    Google Scholar 

  • Liu L, Knauth S, Wu L, Eickhorst T (2019) Cry1Ab/Ac proteins released from subspecies of Bacillus thuringiensis (Bt) and transgenic Bt–rice in different paddy soils. Arch Agron Soil Sci (just accepted). https://doi.org/10.1080/03650340.2019.1681587.

  • Llewellyn DJ, Mares CL, Fitt GP (2007) Field performance and seasonal changes in the efficacy against Helicoverpa armigera (Hübner) of transgenic cotton expressing the insecticidal protein vip3A. Agric For Entomoly 9(2):93–101

    Google Scholar 

  • Lombardo L, Coppola G, Zelasco S (2016) New technologies for insect–resistant and herbicide–tolerant plants. Trends Biotechnol 34(1):49–57

    CAS  PubMed  Google Scholar 

  • Long-ping YUAN (2014) Development of hybrid rice to ensure food security. Rice Sci 21(1):1–2

    Google Scholar 

  • Long XE, Yao H, Huang Y, Wei W, Zhu YG (2018) Phosphate levels influence the utilisation of rice rhizodeposition carbon and the phosphate–solubilising microbial community in a paddy soil. Soil Biol Biochem 118:103–114

    CAS  Google Scholar 

  • Lu H, Wu W, Chen Y, Wang H, Devare M, Thies JE (2010) Soil microbial community responses to Bt transgenic rice residue decomposition in a paddy field. J Soils Sediments 10(8):1598–1605

    Google Scholar 

  • Lu GH, Hua XM, Cheng J, Zhu YL, Wang GH, Pang YJ, Yang RW, Zhang L, Shou H, Wang XM, Qi J (2018) Impact of glyphosate on the rhizosphere microbial communities of an EPSPS-Transgenic Soybean Line ZUTS31 by metagenome sequencing. Curr Genomics 19(1):36–49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas JA, García-Villaraco A, Ramos B, García-Cristobal J, Algar E, Gutierrez-Mañero J (2013) Structural and functional study in the rhizosphere of Oryza sativa L. plants growing under biotic and abiotic stress. J Appl Microbiol 115(1):218–235

    CAS  PubMed  Google Scholar 

  • Lüdemann H, Arth I, Liesack W (2000) Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Appl Environ Microbiol 66(2):754–762

    PubMed  PubMed Central  Google Scholar 

  • Manici LM, Caputo F, Nicoletti F, Leteo F, Campanelli G (2018) The impact of legume and cereal cover crops on rhizosphere microbial communities of subsequent vegetable crops for contrasting crop decline. Biol Control 120:17–25

    Google Scholar 

  • Marschner P, Umar S, Baumann K (2011) The microbial community composition changes rapidly in the early stages of decomposition of wheat residue. Soil Biol Biochem 43(2):445–451

    CAS  Google Scholar 

  • McGregor AN, Turner MA (2000) Soil effects of transgenic agriculture: biological processes and ecological consequences. NZ Soil News 48(6):166–169

    Google Scholar 

  • Miethling-Graff R, Dockhorn S, Tebbe CC (2010) Release of the recombinant Cry3Bb1 protein of Bt maize MON88017 into field soil and detection of effects on the diversity of rhizosphere bacteria. Eur J Soil Biol 46(1):41–48

    CAS  Google Scholar 

  • Mikola J, Bardgett RD, Hedlund K (2002) Biodiversity, ecosystem functioning and soil decomposer food webs. Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 169–180

    Google Scholar 

  • Mina U, Khan SA, Choudhary A, Choudhary R, Aggarwal PK (2008) An approach for impact assessment of transgenic plants on soil ecosystem. Appl Ecol Environ Res 6(3):1–19

    Google Scholar 

  • Munga NW, Motavalli PP, Nelson KA, Kremer RJ (2005) Differences in yields, residue composition and N mineralization dynamics of Bt and non-Bt maize. Nutr Cycl Agroecosyst 73(1):101–109

    Google Scholar 

  • National Research Council (2002) Environmental effects of transgenic plants: the scope and adequacy of regulation. National Academies Press

    Google Scholar 

  • Neal JL, Larson RI, Atkinson TG (1973) Changes in rhizosphere populations of selected physiological groups of bacteria related to substitution of specific pairs of chromosomes in spring wheat. Plant Soil 39(1):209–212

    Google Scholar 

  • Nielsen KM, Van Elsas JD (2001) Stimulatory effects of compounds present in the rhizosphere on natural transformation of Acinetobacter sp. BD413 in soil. Soil Biol Biochem 33(3):345–357

    CAS  Google Scholar 

  • Nielsen KM, Johnsen PJ, Bensasson D, Daffonchio D (2007) Release and persistence of extracellular DNA in the environment. Environ Biosafety Res 6(1–2):37–53

    CAS  PubMed  Google Scholar 

  • Nielsen UN, Ayres E, Wall DH, Bardgett RD (2011) Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity–function relationships. European J Soil Sci 62(1):105–116

    CAS  Google Scholar 

  • Noll M, Matthies D, Frenzel P, Derakshani M, Liesack W (2005) Succession of bacterial community structure and diversity in a paddy soil oxygen gradient. Environ Microbiol 7(3):382–395

    CAS  PubMed  Google Scholar 

  • Oger P, Mansouri H, Dessaux Y (2000) Effect of crop rotation and soil cover on alteration of the soil microflora generated by the culture of transgenic plants producing opines. Mol Ecol 9(7):881–890

    CAS  PubMed  Google Scholar 

  • Olsen KM, Daly JC, Holt HE, Finnegan EJ (2005) Season–long variation in expression of Cry1Ac gene and efficacy of Bacillus thuringiensis toxin in transgenic cotton against Helicoverpa armigera (Lepidoptera: Noctuidae). J Econ Entomol 98(3):1007–1017

    CAS  PubMed  Google Scholar 

  • Oosterhuis DM, Brown RS (2004) Effect of foliar Chaperone TM applications on endotoxin and protein concentration, insect mortality and yield response of cotton. Arkansas Agri Exp Station Res Series 533:51–56

    Google Scholar 

  • Page E, Lebrun M, Freyssinet G, Simonet P (1998) The fate of recombinant plant DNA in soil. Eur J Soil Biol 34:81–88

    Google Scholar 

  • Palm CJ, Seidler RJ, Schaller DL, Donegan KK (1996) Persistence in soil of transgenic plant produced Bacillus thuringiensis var. kurstaki δ–endotoxin. Can J Microbiol 42(12):1258–1262

    CAS  Google Scholar 

  • Parisi C, Tillie P, Rodríguez-Cerezo E (2016) The global pipeline of GM crops out to 2020. Nat Biotechnol 34(1):31

    CAS  PubMed  Google Scholar 

  • Pedersen MW, Overballe-Petersen S, Ermini L, Sarkissian CD, Haile J, Hellstrom M, Spens J, Thomsen PF, Bohmann K, Cappellini E, Schnell IB (2015) Ancient and modern environmental DNA. Philos Trans R Soc B Biol Sci 370(1660):20130383

    Google Scholar 

  • Pettigrew WT, Adamczyk JJ (2006) Nitrogen fertility and planting date effects on lint yield and Cry1Ac (Bt) endotoxin production. Agron J 98(3):691–697

    CAS  Google Scholar 

  • Poerschmann J, Rauschen S, Langer U, Augustin J, Górecki T (2008) Molecular level lignin patterns of genetically modified Bt–maize MON88017 and three conventional varieties using tetramethylammonium hydroxide (TMAH)–induced thermochemolysis. J Agri Food Chem 56(24):11906–11913

    CAS  Google Scholar 

  • Poongothai S, Ilavarasan R, Karrunakaran CM (2010) Cry 1Ac levels and biochemical variations in Bt cotton as influenced by tissue maturity and senescence. J Plant Breed Crop Sci 2(5):96–103

    CAS  Google Scholar 

  • Rehman A, Ijaz M, Mazhar K, Ul-Allah S, Ali Q (2019) Metagenomic approach in relation to microbe–microbe and plant microbiome interactions. In: Microbiome in plant health and disease. Springer, Singapore, pp 507–534

    Google Scholar 

  • Rotter RP, Tao F, Hohn JG, Palosuo T (2015) Use of crop simulation modeling to aid ideotype design of future cereal cultivars. J Exp Bot 66(12):3463–3476

    CAS  PubMed  Google Scholar 

  • Samal KC, Rout GR (2018) Genetic improvement of vegetables using transgenic technology. In: Genetic engineering of horticultural crops. Academic Press, pp 193–224

    Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9(3):283–300

    CAS  PubMed  Google Scholar 

  • Sanchis V (2011) From microbial sprays to insect–resistant transgenic plants: history of the biopesticide Bacillus thuringiensis. A review. Agronomy Sust Develop 31(1):217–231

    CAS  Google Scholar 

  • Sanvido O, Romeis J, Gathmann A, Gielkens M, Raybould A, Bigler F (2012) Evaluating environmental risks of genetically modified crops: ecological harm criteria for regulatory decision–making. Environ Sci Policy 15(1):82–91

    Google Scholar 

  • Sasaki T, Lauenroth WK (2011) Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia 166(3):761–768

    PubMed  Google Scholar 

  • Saxena D, Stotzky G (2001) Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil. Soil Biol Biochem 33(9):1225–1230

    CAS  Google Scholar 

  • Schiemann J, Dietz-Pfeilstetter A, Hartung F, Kohl C, Romeis J, Sprink T (2019) Risk assessment and regulation of plants modified by modern biotechniques: current status and future challenges. Ann Rev Plant Biol 70:699–726

    CAS  Google Scholar 

  • Seymour CL, Simmons RE, Joseph GS, Slingsby JA (2015) On bird functional diversity: species richness and functional differentiation show contrasting responses to rainfall and vegetation structure in an arid landscape. Ecosystems 18(6):971–984

    Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2(1):587

    PubMed  PubMed Central  Google Scholar 

  • Shu Y, Zhang Y, Zeng H, Zhang Y, Wang J (2017) Effects of Cry1Ab Bt maize straw return on bacterial community of earthworm Eisenia fetida. Chemosphere 173:1–13

    CAS  PubMed  Google Scholar 

  • Shukla KP, Sharma S, Singh NK, Singh V, Tiwari K, Singh S (2011) Nature and role of root exudates: efficacy in bioremediation. Afr J Biotechnol 10(48):9717–9724

    Google Scholar 

  • Siebert WM, Patterson TG, Gilles GJ, Nolting SP, Braxton LB, Leonard BR, Lassiter RB (2009) Quantification of Cry1Ac and Cry1F Bacillus thuringiensis insecticidal proteins in selected transgenic cotton plant tissue types. J Econ Entomol 102(3):1301–1308

    CAS  PubMed  Google Scholar 

  • Singh AK, Dubey SK (2016) Current trends in Bt crops and their fate on associated microbial community dynamics: a review. Protoplasma 253(3):663–681

    CAS  PubMed  Google Scholar 

  • Singh Y, Prajapati S (2018) Status of horticultural crops: identifying the Need for transgenic traits. In: Genetic engineering of horticultural crops. Academic Press, pp 1–21

    Google Scholar 

  • Singh RJ, Ahlawat IPS, Singh S (2013) Effects of transgenic Bt cotton on soil fertility and biology under field conditions in subtropical inceptisol. Environ Monit Assess 185(1):485–495

    CAS  PubMed  Google Scholar 

  • Smalla K, Borin S, Heuer H, Gebhard F, van Elsas JD, Nielsen K (2000, July) Horizontal transfer of antibiotic resistance genes from transgenic plants to bacteria. In Proceedings of the Sixth International Symposium on the Biosafety of Genetically Modified Organisms, pp 146–154.

    Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30(4):205–240

    CAS  PubMed  Google Scholar 

  • Song YN, Su J, Chen R, Lin Y, Wang F (2014) Diversity of microbial community in a paddy soil with cry1Ac/cpti transgenic rice. Pedosphere 24(3):349–358

    Google Scholar 

  • Stephen JR, Kowalchuk GA (2003) Ribotyping methods for assessment of in situ microbial community structure. Ency Environ Microbiol. https://doi.org/10.1002/0471263397.env006.

  • Strain KE, Lydy MJ (2015) The fate and transport of the Cry1Ab protein in an agricultural field and laboratory aquatic microcosms. Chemosphere 132:94–100

    CAS  PubMed  Google Scholar 

  • Takeda Y, Koshiba T, Tobimatsu Y, Suzuki S, Murakami S, Yamamura M, Rahman MM, Takano T, Hattori T, Sakamoto M, Umezawa T (2017) Regulation of coniferaldehyde 5-hydroxylase expression to modulate cell wall lignin structure in rice. Planta 246(2):337–349

    CAS  PubMed  Google Scholar 

  • Tan F, Wang J, Feng Y, Chi G, Kong H, Qiu H, Wei S (2010) Bt corn plants and their straw have no apparent impact on soil microbial communities. Plant Soil 329(1–2):349–364

    CAS  Google Scholar 

  • Tapp H, Stotzky G (1995) Insecticidal activity of the toxins from Bacillus thuringiensis subspecies kurstaki and tenebrionis adsorbed and bound on pure and soil clays. Appl Environ Microbiol 61(5):1786–1790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tesfaye M, Dufault NS, Dornbusch MR, Allan DL, Vance CP, Samac DA (2003) Influence of enhanced malate dehydrogenase expression by alfalfa on diversity of rhizobacteria and soil nutrient availability. Soil Biol Biochem 35(8):1103–1113

    CAS  Google Scholar 

  • Timms-Wilson TM, Lilley AK, Bailey MJ (1999) A review of gene transfer from genetically modified micro-organisms. HSE Books

    Google Scholar 

  • Velkov VV, Medvinsky AB, Sokolov MS, Marchenko AI (2005) Will transgenic plants adversely affect the environment? J Biosci 30(4):515–548

    CAS  PubMed  Google Scholar 

  • Verma A, Kumar S, Kumar G, Saini JK, Agrawal R, Satlewal A, Ansari MW (2018) Rhizosphere metabolite profiling: an opportunity to understand plant–microbe interactions for crop improvement. In: Crop improvement through microbial biotechnology. Elsevier, pp 343–361

    Google Scholar 

  • Viebahn M, Veenman C, Wernars K, van Loon LC, Smit E, Bakker PA (2005) Assessment of differences in ascomycete communities in the rhizosphere of field–grown wheat and potato. FEMS Microbiol Ecol 53(2):245–253

    CAS  PubMed  Google Scholar 

  • Vranova V, Rejsek K, Formanek P (2013) Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review. Sci World J 2013:15

    Google Scholar 

  • Vujanovic V, Hamelin RC, Bernier L, Vujanovic G, St-Arnaud M (2007) Fungal diversity, dominance, and community structure in the rhizosphere of clonal Piceamariana plants throughout nursery production chronosequences. Microbiol Ecol 54(4):672–684

    CAS  Google Scholar 

  • Wan P, Zhang Y, Wu K, Huang M (2005) Seasonal expression profiles of insecticidal protein and control efficacy against Helicoverpa armigera for Bt cotton in the Yangtze River valley of China. J Econ Entomol 98(1):195–201

    CAS  PubMed  Google Scholar 

  • Wang H, Ye Q, Wang W, Wu L, Wu W (2006) Cry1Ab protein from Bt transgenic rice does not residue in rhizosphere soil. Environ Pollut 143(3):449–455

    CAS  PubMed  Google Scholar 

  • Wang H, Ye Q, Gan J, Wu L (2007) Biodegradation of Cry1Ab protein from Bt transgenic rice in aerobic and flooded paddy soils. J Agric Food Chem 55(5):1900–1904

    CAS  PubMed  Google Scholar 

  • Wang Y, Zhang G, Du J, Liu B, Wang M (2010) Influence of transgenic hybrid rice expressing a fused gene derived from cry1Ab and cry1Ac on primary insect pests and rice yield. Crop Prot 29(2):128–133

    Google Scholar 

  • Wang Y, Hu H, Huang J, Li J, Liu B, Zhang G (2013a) Determination of the movement and persistence of Cry1Ab/1Ac protein released from Bt transgenic rice under field and hydroponic conditions. Soil Biol Biochem 58:107–114

    CAS  Google Scholar 

  • Wang Y, Huang J, Hu H, Li J, Liu B, Zhang G (2013b) Field and laboratory studies on the impact of two Bt rice lines expressing a fusion protein Cry1Ab/1Ac on aquatic organisms. Ecotoxicol Environ Saf 92:87–93

    CAS  PubMed  Google Scholar 

  • Wang J, Chapman SJ, Ye Q, Yao H (2019) Limited effect of planting transgenic rice on the soil microbiome studied by continuous 13CO2 labeling combined with high–throughput sequencing. Appl Microbiol Biotechnol 103(10):4217–4227

    CAS  PubMed  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press

    Google Scholar 

  • Wei M, Tan F, Hong Z, Cheng K, Xiao W, Lingxi J, Tang X (2012) Impact of Bt–transgenic rice (SHK601) on soil ecosystems in the rhizosphere during crop development. Plant Soil Environ 58(5):217–223

    CAS  Google Scholar 

  • Widmer F, Seidler RJ, Donegan KK, Reed GL (1997) Quantification of transgenic plant marker gene persistence in the field. Mol Ecol 6(1):1–7

    CAS  Google Scholar 

  • Wijerathna-Yapa A (2017) Transgenic plants: resistance to abiotic and biotic stresses. J Agric Environ Int Develop 111(1):245–275

    Google Scholar 

  • Wolfenbarger LL, Phifer PR (2000) The ecological risks and benefits of genetically engineered plants. Science 290(5499):2088–2093

    CAS  PubMed  Google Scholar 

  • Wu G, Cui H, Ye G, Xia Y, Sardana R, Cheng X, Shu Q (2002) Inheritance and expression of the cry1Ab gene in Bt (Bacillus thuringiensis) transgenic rice. Theor Appl Genet 104(4):727–734

    CAS  PubMed  Google Scholar 

  • Xiao M (2013) Impacts of Bt Gene on rice residue decomposition and the environment fate of Bt Toxin (in Chinese). Dissertation, University of Fudan

    Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66(1):345–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Zhang M, Ding G (2012) Effect of transgenic Bt cotton on bioactivities and nutrients in rhizosphere soil. Commun Soil Sci Plant Anal 43(4):689–700

    CAS  Google Scholar 

  • Yasin S, Asghar HN, Ahmad F, Ahmad Zahir Z, Waraich EA (2016) Impact of Bt–cotton on soil microbiological and biochemical attributes. Plant Prod Sci 19(4):458–467

    CAS  Google Scholar 

  • Ye GY, Yao HW, Shu QY, Cheng X, Hu C, Xia YW, Altosaar I (2003) High levels of stable resistance in transgenic rice with a cry1Ab gene from Bacillus thuringiensis Berliner to rice leaffolder, Cnaphalocrocis medinalis (Guenée) under field conditions. Crop Prot 22(1):171–178

    CAS  Google Scholar 

  • Zhang Y, Zhang J, Lan J, Wang J, Liu J, Yang M (2016) Temporal and spatial changes in Bt toxin expression in Bt-transgenic poplar and insect resistance in field tests. J For Res 27(6):1249–1256

    CAS  Google Scholar 

  • Zhaolei L, Naishun B, Jun C, Xueping C, Manqiu X, Feng W, Zhiping S, Changming F (2017) Effects of long–term cultivation of transgenic Bt rice (Kefeng–6) on soil microbial functioning and C cycling. Scientific Rep 7(1):4647

    Google Scholar 

  • Zhaolei L, Naishun B, Xueping C, Jun C, Manqiu X, Zhiping S, Ming N, Changming F (2018) Soil incubation studies with Cry1Ac protein indicate no adverse effect of Bt crops on soil microbial communities. Ecotoxicol Environ Saf 152:33–41

    PubMed  Google Scholar 

  • Zhu W, Lu H, Hill J, Guo X, Wang H, Wu W (2014) 13C pulse–chase labeling comparative assessment of the active methanogenic archaeal community composition in the transgenic and nontransgenic parental rice rhizospheres. FEMS Microbiol Ecol 87(3):746–756

    CAS  PubMed  Google Scholar 

  • Zwahlen C, Hilbeck A, Gugerli P, Nentwig W (2003) Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field. Mol Ecol 12(3):765–775

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qasim Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, Q., Parveen, R., Anwar, A., Rehman, A. (2020). Temporal and Spatial Dynamics of Microbial Communities in a Genetically Modified Rice Ecosystem. In: Roychoudhury, A. (eds) Rice Research for Quality Improvement: Genomics and Genetic Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-5337-0_9

Download citation

Publish with us

Policies and ethics