Skip to main content

Digital Image Retrieval Based on Selective Conceptual Based Features for Important Documents

  • Conference paper
  • First Online:
Evolutionary Computing and Mobile Sustainable Networks

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 53))

Abstract

Due to the increased level of digitalization, data exchange and collection has grown to a greater extent. This bulk data needs categorization else data collected will be meaningless. The exchange of multimedia data has also increased due to the availability of the Internet. Images collected need a proper categorization that can help in fetching the required data. Government documents need to be uniquely identified from the set of plenty of data to help in different kinds of proceedings. It could help to fetch images only of the required government document. Due to the increased size of data as well as an increased quantity of data, different document image identification techniques are time-consuming. The proposed model quickly identifies specific government documents from a chunk of images with ease. Various filtering categories are applied to ease the process of categorization. To speed up the process of categorization, selective efficient features are shortlisted which contributes majorly toward substantiation of a government document.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mithe R, Indalkar S, Divekar N (2013) Optical character recognition. Int J Recent Technol Eng (IJRTE) 2(1):72–75

    Google Scholar 

  2. Patel C, Patel A, Patel D (2012) Optical character recognition by open-source OCR tool tesseract: A case study. Int J Comput Appl 55(10):50–56

    Google Scholar 

  3. Chaieb R, Kalti K, Essoukri Ben Amara N (2015) Interactive content-based document retrieval using fuzzy attributed relational graph matching. In: 13th International conference on document analysis and recognition (ICDAR), Tunis, 2015, pp. 921–925

    Google Scholar 

  4. Thomee B, Lew MS (2012) Int J Multimed Info Retr 1:71

    Article  Google Scholar 

  5. Nakai T, Kise K, Iwamura M (2006) Use of affine invariants in locally likely arrangement hashing for camera-based document image retrieval. In: H. Bunke, A.L. Spitz (eds) Document analysis systems VII, DAS 2006. Lecture Notes in Computer Science, vol. 3872. Springer, Berlin

    Google Scholar 

  6. Cha MS, Kim SY, Ha JH, Lee MJ, Choi YJ (2015) CBDIR: fast and effective content-based document Information Retrieval system. In: 2015 IEEE/ACIS 14th International conference on computer and information science (ICIS), Las Vegas, NV, pp 203–208

    Google Scholar 

  7. Hou D, Wang X, Liu J (2010) A content-based retrieval algorithm for document image database. In: 2010 International Conference on Multimedia Technology, Ningbo, pp 1–5

    Google Scholar 

  8. Kaur M, Sohi N (2016) A novel technique for content-based image retrieval using color, texture and edge features. In: 2016 International conference on communication and electronics systems (ICCES), Coimbatore, pp 1–7

    Google Scholar 

  9. Rian Z, Christanti V, Hendryli J (2019) Content-based image retrieval using convolutional neural networks. In: 2019 IEEE international conference on signals and systems (ICSigSys), Bandung, Indonesia, pp 1–7

    Google Scholar 

  10. https://profs.info.uaic.ro/~ancai/DIP/lab/Lab_2_DIP.pdf

  11. Maire MR (2009) Contour detection and image segmentation. The University of California, Berkeley

    Google Scholar 

  12. Martin DR, Fowlkes CC, Malik J (2004) Learning to detect natural image boundaries using local brightness, color and texture cues. PAMI

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Premanand Ghadekar .

Editor information

Editors and Affiliations

Ethics declarations

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghadekar, P., Kaneri, S., Undre, A., Jagtap, A. (2021). Digital Image Retrieval Based on Selective Conceptual Based Features for Important Documents. In: Suma, V., Bouhmala, N., Wang, H. (eds) Evolutionary Computing and Mobile Sustainable Networks. Lecture Notes on Data Engineering and Communications Technologies, vol 53. Springer, Singapore. https://doi.org/10.1007/978-981-15-5258-8_53

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5258-8_53

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5257-1

  • Online ISBN: 978-981-15-5258-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics