Skip to main content

Photosynthetic Acclimation and Adaptation to Cold Ecosystems

  • Chapter
  • First Online:
Climate Change, Photosynthesis and Advanced Biofuels

Abstract

Cold-tolerant, photosynthetic organisms are able to either acclimate or, alternatively, adapt to low temperatures. The former are designated as psychrotolerant phototrophs, whereas the latter are defined as psychrophilic phototrophs. Central to cold acclimation and cold adaptation in phototrophs is the capacity to respond to excess excitation energy. This requires the integration of both low temperature sensing/signal transduction pathways and light sensing/signal transduction mechanisms to maintain photostasis, that is, cellular energy balance. The generation of excess excitation energy by high light is mimicked by exposure to low temperatures. Although modulation of the redox state of the photosynthetic apparatus is a common feature in sensing excess excitation energy, the response to this redox sensing/signalling mechanism is species dependent. These concepts are discussed with respect to acclimation and adaptation of green algae, cyanobacteria, and terrestrial plants to the extreme environments represented by the Antarctic and Arctic ecosystems. Our comparative discussions illustrate that phototrophs have evolved different strategies to deal with excess excitation energy which results in an impressive array of phenotypes in response to acclimation and adaptation to cold environments. Consequently, we conclude that the photosynthetic apparatus is not only a critical energy transformer for all phototrophs, but it is also a crucial sensor of the abiotic environment. Furthermore, our comparative analyses of green algae, cyanobacteria, and terrestrial plants native to Antarctic and Arctic ecosystems clearly indicate that psychrophily is not essential for survival in these extreme cold environments. We suggest that there is an urgent need for more comprehensive research focussed on the physiology, biochemistry, genomics, and metabolomics of the myriad, yet undiscovered, organisms that inhabit these extreme environments, which may provide novel biotechnological applications to industry, agriculture, and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams WW III, Demmig-Adams B, Verhoeven AS, Barker DH (1995) ‘Photoinhibition’ during winter stress: involvement of sustained xanthophyll cycle-dependent energy dissipation. Aust J Plant Physiol 22:261–276

    CAS  Google Scholar 

  • Adams W III, Muller O, Cohu C, Demmig-Adams B (2013) May photoinhibition be a consequence, rather than a cause, of limited plant productivity? Photosynth Res 117:31–44

    CAS  PubMed  Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098:275–335

    CAS  PubMed  Google Scholar 

  • Allen JF, Bennett J, Steinback KE, Arntzen CJ (1981) Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291:21–25

    Google Scholar 

  • Aluru MR, Rodermel SR (2004) Control of chloroplast redox by the IMMUTANS terminal oxidase. Physiol Plant 120:4–11

    CAS  PubMed  Google Scholar 

  • Aquist J, Isaksen GV, Brandsdal BO (2017) Computation of enzyme cold adaptation. Nat Rev Chem 1:1–14

    Google Scholar 

  • Asada K (1994a) Mechanisms for scavenging reactive molecules generated in chloroplasts under light stress. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis. From molecular mechanisms to the field. Bios Scientific, Oxford, pp 129–142

    Google Scholar 

  • Asada K (1994b) In: Foyer CH, Mullineaux PM (eds) Production and action of active oxygen species in photosynthetic tissues. CRC Press, Boca Raton, pp 77–104

    Google Scholar 

  • Badawi M, Danyluk J, Boucho B, Houde M, Sarhan F (2007) The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. Mol Gen Genet 277:533–554

    CAS  Google Scholar 

  • Bailey S, Grossman A (2008) Photoprotection in cyanobacteria: regulation of light harvesting. Photochem Photobiol 84:1410–1420

    CAS  PubMed  Google Scholar 

  • Bailey-Serres J, Mittler R (2006) The roles of reactive oxygen species in plant cells. Plant Physiol 141:311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bakermans C (2012) Psychrophiles: life in the cold. In: Aniton RP (ed) Extremophiles: microbiology and biotechnology. Caister Academic, Norfolk, pp 53–76

    Google Scholar 

  • Bascunan-Godoy L, Uribe E, Zuniga-Feest A, Corcuera L, Bravo L (2006) Low temperature regulates sucrose-phosphate synthase activity in Colobanthus quitensis (Kunth) Bartl. by decreasing its sensitivity to Pi and increased activation by glucose-6-phosphate. Polar Biol 29:1011–1017

    Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    CAS  PubMed  Google Scholar 

  • Bennett J (1991) Protein phosphorylation in green plant chloroplasts. Annu Rev Plant Physiol Plant Mol Biol 42:281–311

    CAS  Google Scholar 

  • Bhaya D, Schwarz R, Grossman AR (2000) Molecular responses to environmental stress. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic, Dordrecht, pp 397–442

    Google Scholar 

  • Bielewicz S, Bell E, Kong W, Friedberg I, Priscu JC, Morgan-Kiss RM (2011) Protist diversity in a permanently ice-covered Antarctic Lake during the polar night transition. ISME J 5:1559–1564

    PubMed  PubMed Central  Google Scholar 

  • Bode R, Ivanov AG, Hüner NPA (2016) Global transcriptome analyses provide evidence that chloroplast redox state contributes to intracellular as well as long-distance signalling in response to stress and acclimation in Arabidopsis. Photosynth Res 128:287–312

    CAS  PubMed  Google Scholar 

  • Boehm M, Alahuhta M, Mulder DW, Peden EA, Long H, Brunecky R, Lunin VV, King PW, Ghirardi ML, Dubini A (2015) Crystal structure and biochemical characterization of Chlamydomonas FDX2 reveal two residues that, when mutated, partially confer FDX2 the redox potential and catalytic properties of FDX1. Photosynth Res 128:45–57

    PubMed  PubMed Central  Google Scholar 

  • Brakstad OG (2008) Natural and stimulated biodegradation of petroleum in cold marine environments. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles. From biodiversity to biotechnology. Springer, Berlin, pp 389–407

    Google Scholar 

  • Bravo LA, Griffith M (2005) Characterization of antifreeze activity in Antarctic plants. J Exp Bot 56:1189–1196

    CAS  PubMed  Google Scholar 

  • Bravo LA, Ulloa N, Zuniga GE, Casanova A, Corcuera LJ, Alberdi M (2001) Cold resistance in Antarctic angiosperms. Physiol Plant 111:55–65

    CAS  Google Scholar 

  • Butler WL (1978) Energy distribution in the photochemical apparatus of photosynthesis. Annu Rev Plant Physiol 29:345–378

    CAS  Google Scholar 

  • Casal JJ, Fankhauser C, Coupland G, Blazquez MA (2004) Signalling for developmental plasticity. Trends Plant Sci 9:309–314

    CAS  PubMed  Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261

    CAS  PubMed  Google Scholar 

  • Chaffin J, Mishra S, Kuhaneck R, Heckathorn S, Bridgeman T (2012) Environmental controls on growth and lipid content for the freshwater diatom, Fragilaria capucina: a candidate for biofuel production. J Appl Phycol 24:1045–1051

    CAS  Google Scholar 

  • Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol 50:631–642

    CAS  PubMed  Google Scholar 

  • Chory J, Wu D (2001) Weaving the complex web of signal transduction. Plant Physiol 125:77–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chown SL, Clarke A, Fraser CI, Cary SC, Moon KL, McGeoch MA (2015) The changing form of Antarctic biodiversity. Nature 522:431–438

    CAS  PubMed  Google Scholar 

  • Collins T, Roulling F, Piette F, Marx J-C, Feller G, Gerday C, D’Amico S (2008) Fundamentals of cold-adapted enzymes. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles. From biodiversity to biotechnology. Springer, Berlin, pp 211–227

    Google Scholar 

  • Cvetkovska M, Hüner NPA, Smith DR (2017) Chilling out: the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales. Polar Biol 40:1169–1184

    Google Scholar 

  • Cvetkovska M, Szyszka-Mroz B, Possmayer M, Pittock P, Lajoie G, Smith DR, Hüner NPA (2018) Characterization of photosynthetic ferredoxin from the Antarctic alga Chlamydomonas sp. UWO241 reveals novel features of cold adaptation. New Phytol 219:588–604

    CAS  PubMed  Google Scholar 

  • Cvetkovska M, Orgnero S, Hüner NPA, Smith DR (2019) The enigmatic loss of light-independent chlorophyll biosynthesis from an Antarctic green alga in a light-limited environment. New Phytol 222(2):651–656

    PubMed  Google Scholar 

  • D’Amico S, Marx J-C, Gerday C, Feller G (2003) Activity-stability relationships in extremophilic enzymes. J Biol Chem 278:7891–7896

    PubMed  Google Scholar 

  • D’Amico S, Marx J-C, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    PubMed  PubMed Central  Google Scholar 

  • Dahal K, Gadapati W, Savitch L, Singh J, Huner N (2012a) Cold acclimation and BnCBF17-over-expression enhance photosynthetic performance and energy conversion efficiency during long-term growth of Brassica napus under elevated CO2 conditions. Planta 236:1639–1652

    CAS  PubMed  Google Scholar 

  • Dahal K, Kane K, Gadapati W, Webb E, Savitch LV, Singh J, Sharma P, Sarhan F, Longstaffe FJ, Grodzinski B, Huner NPA (2012b) The effects of phenotypic plasticity on photosynthetic performance in winter rye, winter wheat and Brassica napus. Physiol Plant 144:169–188

    CAS  PubMed  Google Scholar 

  • Dahal K, Weraduwage SM, Kane K, Rauf SA, Leonardos ED, Gadapati W, Savitch L, Singh J, Marillia E-F, Taylor DC, Micallef MC, Knowles V, Plaxton W, Barron J, Sarhan F, Hüner N, Grodzinski B, Micallef BJ (2014) Enhancing biomass production and yield by maintaining enhanced capacity for CO2 uptake in response to elevated CO2. Can J Plant Sci 94:1075–1083

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626

    CAS  Google Scholar 

  • Demmig-Adams B, Cohu C, Muller O, Adams W (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth Res 113:75–88

    CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Stewart JJ, Burch TA, Adams WW III (2014) Insights from placing photosynthetic light harvesting into context. J Phys Chem Lett 5:2880–2889

    CAS  PubMed  Google Scholar 

  • Derks A, Schaven K, Bruce D (2015) Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. Biochim Biophys Acta 1847:468–485

    CAS  PubMed  Google Scholar 

  • Dietz K-J, Schreiber U, Heber U (1985) The relationship between the redox state of QA and photosynthesis in leaves at various carbon-dioxide, oxygen and light regimes. Planta 166:219–226

    CAS  PubMed  Google Scholar 

  • Dietz K-J, Mittler R, Noctor G (2016a) Recent progress in understanding the role of reactive oxygen species in plant cell signaling. Plant Physiol 171:1535–1539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dietz K-J, Turkan I, Krieger-Liszkay A (2016b) Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiol 171:1541–1550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dolhi JM, Maxwell DP, Morgan-Kiss RM (2013) Review: the Antarctic Chlamydomonas raudensis: an emerging model for cold adaptation of photosynthesis. Extremophiles 17:711–722

    CAS  PubMed  Google Scholar 

  • Duffy CDP, Ruban AV (2015) Dissipative pathways in the photosystem-II antenna in plants. J Photochem Photobiol B Biol 152:215–226

    CAS  Google Scholar 

  • Eberhard S, Finazzi G, Wollman F-A (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515

    CAS  PubMed  Google Scholar 

  • Ensminger I, Sveshnikov D, Campbell DA, Funk C, Jansson S, Lloyd J, Shibistova O, Oquist G (2004) Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Glob Chang Biol 10:995–1008

    Google Scholar 

  • Ensminger I, Busch F, Huner NPA (2006) Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plant 126:28–44

    CAS  Google Scholar 

  • Ernst R, Ejsing CS, Antony B (2016) Homeoviscous adaptation and the regulation of membrane lipids. J Mol Biol 428:4776–4791

    CAS  PubMed  Google Scholar 

  • FAO (2001) Climate change and forests. In: State of the world’s forests. FAO, Rome

    Google Scholar 

  • Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841

    CAS  PubMed  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    CAS  PubMed  Google Scholar 

  • Finster K (2008) Anaerobic bacteria and Archaea in cold environments. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles. From biodiversity to biotechnology. Springer, Berlin, pp 103–119

    Google Scholar 

  • Fork DC, Satoh K (1986) The control by state transitions of the distribution of excitation energy in photosynthesis. Annu Rev Plant Physiol 37:335–361

    CAS  Google Scholar 

  • Fowler DB (2012) Wheat production in the high winter stress climate of the Great Plains of North America. An experiment in crop adaptation. Crop Sci 52:11–20

    Google Scholar 

  • Fowler DB, Limin AE, Wang SY, Ward RW (1996) Relationship between low-temperature tolerance and vernalization response in wheat and rye. Can J Plant Sci 76:37–42

    Google Scholar 

  • Fowler DB, Byrns BM, Greer KJ (2014) Overwinter low-temperature responses of cereals: analyses and simulation. Crop Sci 54:2395–2405

    Google Scholar 

  • Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J (2012) Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot 63:1637–1661

    CAS  PubMed  Google Scholar 

  • Foyer CH, Ruban AV, Noctor G (2017) Viewing oxidative stress through the lens of oxidative signalling rather than damage. Biochem J 474:877–883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin KA (2009) Light and temperature signal crosstalk in plant development. Curr Opin Plant Biol 12:63–68

    CAS  PubMed  Google Scholar 

  • Franklin KA, Whitelam GC (2007) Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nat Genet 39:1410–1413

    CAS  PubMed  Google Scholar 

  • Franklin KA, Toledo-Ortiz G, Pyott DE, Halliday KJ (2014) Interaction of light and temperature signalling. J Exp Bot 65:2859–2871

    CAS  PubMed  Google Scholar 

  • Fréchette E, Wong CYS, Junker LV, Chang CY-Y, Ensminger I (2015) Zeaxanthin-independent energy quenching and alternative electron sinks cause a decoupling of the relationship between the photochemical reflectance index (PRI) and photosynthesis in an evergreen conifer during spring. J Exp Bot 66:7309–7323

    PubMed  PubMed Central  Google Scholar 

  • Fréchette E, Chang CY-Y, Ensminger I (2016) Photoperiod and temperature constraints on the relationship between the photochemical reflectance index and the light use efficiency of photosynthesis in Pinus strobus. Tree Physiol 36:311–324

    PubMed  PubMed Central  Google Scholar 

  • Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR (1998) Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize during periods of low temperature. Plant Physiol 116:571–580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita Y, Murakami A, Aizawa K, Ohki K (1994) Short-term and long-term adaptation of the photosynthetic apparatus: homeostatic properties of thylakoids. In: Bryant DA (ed) Advances in photosynthesis. The molecular biology of cyanobacteria, vol 1. Kluwer Academic, Dordrecht, pp 677–692

    Google Scholar 

  • Galiba G, Vágújfalvi A, Li C, Soltész A, Dubcovsky J (2009) Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Sci 176:12–19

    CAS  Google Scholar 

  • Gantt E (1994) Supramolecular membrane organization. In: Bryant DA (ed) Advances in photosynthesis. Molecular biology of cyanobacteria, vol 1. Kluwer Academic, Dordrecht, pp 119–138

    Google Scholar 

  • Gray GR, Chauvin L-P, Sarhan F, Huner NPA (1997) Cold acclimation and freezing tolerance. A complex interaction of light and temperature. Plant Physiol 114:467–474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith M, Timonin M, Wong ACE, Gray GR, Akhter SR, Saldanha M, Rogers MA, Weretilnyk EA, Moffatt B (2007) Thellungiella: an Arabidopsis-related model plant adapted to cold temperatures. Plant Cell Environ 30:529–538

    CAS  PubMed  Google Scholar 

  • Griffiths M, Hille R, Harrison S (2012) Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol 24:989–1001

    CAS  Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG, Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57:725–749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG, Collier JL (1994) The responses of cyanobacteria to environmental conditions: light and nutrients. In: Bryant DA (ed) Advances in photosynthesis. The molecular biology of cyanobacteria, vol 1. Kluwer Academic, Dordrecht, pp 641–675

    Google Scholar 

  • Grossman AR, Waasenbergen LG, Kehoe DM (2003) Environmental regulation of phycobilisome biosynthesis. In: Green BG, Parson W (eds) Advances in photosynthesis and respiration. Light-harvesting antennas in photosynthesis, vol 13. Kluwer Academic, Dordrecht, pp 471–493

    Google Scholar 

  • Grossman AR, Mackey KRM, Bailey S (2010) A perspective on photosynthesis in the oligotrophic oceans: hypothesis concerning alternate routes of electron flow. J Phycol 46:629–634

    CAS  Google Scholar 

  • Guadagno CR, Ewers BE, Weinig C (2018) Circadian rhythms and redox state in plants: till stress do us part. Front Plant Sci 9:247

    PubMed  PubMed Central  Google Scholar 

  • Gudynaite-Savitch L, Gretes M, Morgan-Kiss R, Savitch L, Simmonds J, Kohalmi S, Huner N (2006) Cytochrome f from the Antarctic psychrophile, Chlamydomonas raudensis UWO 241: structure, sequence, and complementation in the mesophile, Chlamydomonas reinhardtii. Mol Gen Genomics 275:387–398

    CAS  Google Scholar 

  • Gudynaite-Savitch L, Loiselay C, Savitch LV, Simmonds J, Kohalmi S, Choquet Y, Huner NPA (2007) The small domain of cytochrome f from the psychrophile, Chlamydomonas raudensis UWO 241, modulates the apparent molecular mass and decreases the accumulation of cytochrome f in the mesophile, Chlamydomonas reinhardtii. Biochem Cell Biol 85:616–627

    CAS  PubMed  Google Scholar 

  • Gupta R (2013) Genome profiling of two strains of the green alga Chlamydomonas raudensis. MSc Thesis, University of Western Ontario

    Google Scholar 

  • Gusta LV, Wisniewski M (2013) Understanding plant cold hardiness: an opinion. Physiol Plant 147:4–14

    CAS  PubMed  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223

    CAS  Google Scholar 

  • Halliday KJ, Whitelam GC (2003) Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for phyD and phyE. Plant Physiol 131:1913–1920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu Rev Physiol 57:19–42

    CAS  PubMed  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation. Mechanisms and process in physiological evolution. Oxford University Press, Oxford

    Google Scholar 

  • Hollis L, Huner NPA (2014) Retrograde operational sensing and signalling pathways maintain photostasis in green algae, cyanobacteria and terrestrial plants. Trends Photochem Photobiol 16:47–61

    CAS  Google Scholar 

  • Hollis L, Ivanov AG, Hüner NPA (2019) Chlorella vulgaris integrates photoperiod and chloroplast redox signals in response to growth at high light. Planta 249:1189–1205

    CAS  PubMed  Google Scholar 

  • Hopkins WG, Huner NPA (2009) Introduction to plant physiology, 4th edn. Wiley and Sons, Hoboken

    Google Scholar 

  • Horton P (2012) Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences. Philos Trans R Soc B 367:3455–3465

    CAS  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684

    CAS  PubMed  Google Scholar 

  • Horton P, Johnson MP, Perez-Bueno ML, Kiss AZ, Ruban AV (2008) Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states? FEBS J 275:1069–1079

    CAS  PubMed  Google Scholar 

  • Houde M, Dhindsa RS (1992) A molecular marker to select for freezing tolerance in Gramineae. Mol Gen Genet 234:43–48

    CAS  PubMed  Google Scholar 

  • Huner NPA, Grodzinski B (2011) Photosynthesis and photoautotrophy. In: Moo-Young M (ed) Comprehensive biotechnology, vol 1, 2nd edn. Elsevier, Amsterdam, pp 315–322

    Google Scholar 

  • Huner NPA, Maxwell DP, Gray GR, Savitch LV, Krol M, Ivanov AG, Falk S (1996) Sensing environmental temperature change through imbalances between energy supply and energy consumption: redox state of photosystem II. Physiol Plant 98:358–364

    CAS  Google Scholar 

  • Huner N, Oquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Google Scholar 

  • Huner NPA, Oquist G, Melis A (2003) Photostasis in plants, green algae and cyanobacteria: the role of light harvesting antenna complexes. Advances in photosynthesis and respiration. In: Green BR, Parson WW (eds) Light harvesting antennas in photosynthesis, vol 13. Kluwer Academic, Dordrecht, pp 401–421

    Google Scholar 

  • Huner NPA, Krol M, Ivanov AG, Sarhan F (2004) Solar radiation protection. US Patent No. 6787147 B1

    Google Scholar 

  • Huner NPA, Wilson KE, Miskiewicz E, Maxwell DP, Gray GR, Krol M, Ivanov AG (2005) Regulation of light harvesting in photosystem II of plants, green algae and cyanobacteria. In: Andrews DI (ed) Energy harvesting materials. World Scientific, London, pp 97–142

    Google Scholar 

  • Huner N, Dahal K, Hollis L, Bode R, Rosso D, Krol M, Ivanov AG (2012) Chloroplast redox imbalance governs phenotypic plasticity: the “grand design of photosynthesis” revisited. Front Plant Physiol 3:255

    CAS  Google Scholar 

  • Huner NPA, Bode R, Dahal K, Busch FA, Possmayer M, Szyszka B, Rosso D, Ensminger I, Krol M, Ivanov AG, Maxwell DP (2013) Shedding some light on cold acclimation, cold adaptation, and phenotypic plasticity. Botany 91:127–136

    CAS  Google Scholar 

  • Huner NPA, Dahal K, Kurepin LV, Savitch L, Singh J, Ivanov AG, Kane K, Sarhan F (2014) Potential for increased photosynthetic performance and crop productivity in response to climate change: role of CBFs and gibberellic acid. Front Chem 2:18

    PubMed  PubMed Central  Google Scholar 

  • Hüner NPA, Dahal K, Bode R, Kurepin LV, Ivanov AG (2016) Photosynthetic acclimation, vernalization, crop productivity and ‘the grand design of photosynthesis’. J Plant Physiol 203:29–43

    PubMed  Google Scholar 

  • Huston AL (2008) Biotechnological aspects of cold-adapted enzymes. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles. From biodiversity to biotechnology. Springer-Verlag, Berlin, pp 347–363

    Google Scholar 

  • Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, Zhu J-K (2004) Salt cress: A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov AG, Miskiewicz E, Clarke AK, Greenberg BM, Huner NPA (2000) Protection of photosystem II against UV-A and UV-B radiation in the cyanobacterium Plectonema boryanum: the role of growth temperature and growth irradiance. Photochem Photobiol 72:772–779

    CAS  PubMed  Google Scholar 

  • Ivanov AG, Sane PV, Zeinalov Y, Malmberg G, Gardestrom P, Huner NPA, Oquist G (2001) Photosynthetic electron transport adjustments in overwintering Scots pine (Pinus sylvestris L). Planta 213:575–585

    CAS  PubMed  Google Scholar 

  • Ivanov AG, Rosso D, Savitch LV, Stachula P, Rosembert M, Oquist G, Hurry V, Hüner NPA (2012) Implications of alternative electron sinks in increased resistance of PSII and PSI photochemistry to high light stress in cold-acclimated Arabidopsis thaliana. Photosynth Res 113:191–206

    CAS  PubMed  Google Scholar 

  • Janmohammadi M, Zolla L, Rinalducci S (2015) Low temperature tolerance in plants: changes at the protein level. Phytochemistry 117:76–89

    CAS  PubMed  Google Scholar 

  • Johnson GN, Stepien P (2016) Plastid terminal oxidase as a route to improving plant stress tolerance: known knowns and known unknowns. Plant Cell Physiol 57:1387–1396

    CAS  PubMed  Google Scholar 

  • Jung H-S, Chory J (2010) Signaling between chloroplasts and the nucleus: can a systems biology approach bring clarity to a complex and highly regulated pathway? Plant Physiol 152:453–459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung J-H, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak AK, Box MS, Charoensawan V, Cortijo S, Kumar M, Grant A, Locke JCW, Schäfer E, Jaeger KE, Wigge PA (2016) Phytochromes function as thermosensors in Arabidopsis. Science 354:886

    CAS  PubMed  Google Scholar 

  • Kaksonen AH, Dopson M, Karnachuk O, Tuovinen OH, Puhakka JA (2008) Biological iron oxidation in the treatment of acid mine drainage at low temperatures. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles. From biodiversity to biotechnology. Springer, Berlin, pp 429–454

    Google Scholar 

  • Kant S, Bi Y-M, Weretilnyk E, Barak S, Rothstein SJ (2008) The Arabidopsis halophytic relative Thellungiella halophila tolerates nitrogen-limiting conditions by maintaining growth, nitrogen uptake, and assimilation. Plant Physiol 147:1168–1180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657

    CAS  PubMed  Google Scholar 

  • Kazachkova Y, Eshel G, Pantha P, Cheeseman JM, Dassanayake M, Barak S (2018) Halophytism: what have we learnt from Arabidopsis thaliana relative model systems? Plant Physiol 178:972–988

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kianianmomeni A, Hallmann A (2014) Algal photoreceptors: in vivo functions and potential applications. Planta 239:1–26

    CAS  PubMed  Google Scholar 

  • Kirilovsky D (2007) Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynth Res 93:7–16

    CAS  PubMed  Google Scholar 

  • Kirilovsky D (2015) Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions. Photosynth Res 126:3–17

    CAS  PubMed  Google Scholar 

  • Knaff DB (1996) Ferredoxin and ferredoxin-dependent enzymes. In: Ort DR, Yocum CF (eds) Advances in photosynthesis. Oxygenic photosynthesis: the light reactions, vol 4. Kluwer Academic, Dordrecht, pp 333–361

    Google Scholar 

  • Knight H, Knight MR (2000) Imaging spatial and cellular characteristics of low temperature calcium signature after cold acclimation in Arabidopsis. J Exp Bot 51:1679–1686

    CAS  PubMed  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis thaliana responding to salinity. Plant J 12:1067–1078

    CAS  PubMed  Google Scholar 

  • Knight H, Brandt S, Knight MR (1998) A history of stress alters drought calcium signalling pathways in Arabidopsis. Plant J 16:681–687

    CAS  PubMed  Google Scholar 

  • Krivosheeva A, Tao D-L, Ottander C, Wingsle G, Dube SL, Oquist G (1996) Cold acclimation and photoinhibition of photosynthesis in Scots pine. Planta 200:296–305

    CAS  Google Scholar 

  • Krol M, Maxwell DP, Huner NPA (1997) Exposure of Dunaliella salina to low temperature mimics the high light-induced accumulation of carotenoids and the carotenoid binding protein (Cbr). Plant Cell Physiol 38:213–216

    CAS  Google Scholar 

  • Kurepin L, Dahal K, Savitch L, Singh J, Bode R, Ivanov AG, Hurry V, Huner NPA (2013) Role of CBFs as integrators of chloroplast redox, phytochrome and plant hormone signaling during cold acclimation. Int J Mol Sci 14:12729–12763

    PubMed  PubMed Central  Google Scholar 

  • Kurepin L, Park J, Lazarovits G, Hüner N (2015) Involvement of plant stress hormones in Burkholderia phytofirmans-induced shoot and root growth promotion. Plant Growth Regul 77:179–187

    CAS  Google Scholar 

  • Langwaldt JH, Tiirola M, Puhakka JA (2008) Microbial adaptation to boreal saturated subsurface: implications for bioremediation of polychlorophenols. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles. From biodiversity to biotechnology. Springer, Berlin, pp 409–427

    Google Scholar 

  • Larkin RM, Ruckle ME (2008) Integration of light and plastid signals. Curr Opin Plant Biol 11:593–599

    CAS  PubMed  Google Scholar 

  • Lee C-M, Thomashow MF (2012) Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc Natl Acad Sci U S A 109:15054–15059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Legris M, Klose C, Burgie ES, Rojas CCR, Neme M, Hiltbrunner A, Wigge PA, Schäfer E, Vierstra RD, Casal JJ (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354:897–900

    CAS  PubMed  Google Scholar 

  • Leonardos ED, Savitch LV, Huner NPA, Oquist G, Grodzinski B (2003) Daily photosynthetic and C-export patterns in winter wheat leaves during cold stress and acclimation. Physiol Plant 117:521–531

    CAS  PubMed  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. In: Chilling, freezing, and high temperature stresses, vol I. Academic, New York, p 497

    Google Scholar 

  • Li F-L (2015) Thermophilic microorganisms. Caister Academic, Poole, p 254

    Google Scholar 

  • Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260

    CAS  PubMed  Google Scholar 

  • Limin AE, Fowler DB (2006) Low-temperature tolerance and genetic potential in wheat (Triticum aestivum L.): response to photoperiod, vernalization, and plant development. Planta 224:360–366

    CAS  PubMed  Google Scholar 

  • Lizotte MP, Priscu JC (1992) Spectral irradiance and bio-optical properties in perennially ice-covered lakes of the dry valleys (McMurdo Sound, Antarctica). Ant Res Ser 57:1–14

    Google Scholar 

  • Los DA, Murata N (2002) Sensing and responses to low temperature in cyanobacteria. In: Storey KB, Storey JM (eds) Sensing, signalling and cell adaptation. Elsevier Science BV, Amsterdam, pp 139–153

    Google Scholar 

  • Los D, Mironov K, Allakhverdiev S (2013) Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth Res 116:489–509

    CAS  PubMed  Google Scholar 

  • Lyon BR, Mock T (2014) Polar microalgae: new approaches to an extreme and changing environment. Biology 3:56–80

    PubMed  PubMed Central  Google Scholar 

  • Mahfoozi S, Limin AE, Fowler DB (2001a) Developmental regulation of low-temperature tolerance in winter wheat. Ann Bot 87:751–757

    Google Scholar 

  • Mahfoozi S, Limin AE, Fowler DB (2001b) Influence of vernalization and photoperiod responses on cold hardiness in winter cereals. Crop Sci 41:1006–1011

    Google Scholar 

  • Manuel N, Cornic G, Aubert S, Choler P, Bligny R, Heber U (1999) Protection against photoinhibition in the alpine plant Geum montanum. Oecologia 119:149–158

    CAS  PubMed  Google Scholar 

  • Margesin R, Schinner F, Marx J-C, Gerday C (2008) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin

    Google Scholar 

  • Maxwell DP, Falk S, Trick CG, Huner NPA (1994) Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol 105:535–543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell DP, Falk S, Huner NPA (1995a) Photosystem II excitation pressure and development of resistance to photoinhibition I. LHCII abundance and zeaxanthin content in Chlorella vulgaris. Plant Physiol 107:687–694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell DP, Laudenbach DE, Huner NPA (1995b) Redox regulation of light-harvesting complex II and cab mRNA abundance in Dunaliella salina. Plant Physiol 109:787–795

    CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald AE, Ivanov AG, Bode R, Maxwell DP, Rodermel SR, Hüner NPA (2011) Flexibility in photosynthetic electron transport: the physiological role of plastoquinol terminal oxidase (PTOX). Biochim Biophys Acta 1807:954–967

    CAS  PubMed  Google Scholar 

  • McKay RML, La Roche J, Yakunin AF, Durnford DG, Geider RJ (1999) Accumulation of ferredoxin and flavodoxin in a marine diatom in response to Fe. J Phycol 35:510–519

    CAS  Google Scholar 

  • Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058:87–106

    CAS  Google Scholar 

  • Melis A (1998) Photostasis in plants. In: Williams, Thistle (eds) Photostasis and related phenomena. Plenum Press, New York, pp 207–220

    Google Scholar 

  • Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135

    CAS  PubMed  Google Scholar 

  • Miskiewicz E, Ivanov AG, Williams JP, Khan MU, Falk S, Huner NPA (2000) Photosynthetic acclimation of the filamentous cyanobacterium, Plectonema boryanum UTEX 485, to temperature and light. Plant Cell Physiol 41:767–775

    CAS  PubMed  Google Scholar 

  • Miskiewicz E, Ivanov AG, Huner NPA (2002) Stoichiometry of the photosynthetic apparatus and phycobilisome structure of the cyanobacterium Plectonema boryanum UTEX 485 are regulated by both light and temperature. Plant Physiol 130:1414–1425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, van Breusegem F (2011) ROS signalling: the new wave? Trends Plant Sci 16:300–308

    CAS  PubMed  Google Scholar 

  • Mock T, Thomas DN (2008) Microalgae in polar regions: linking functional genomics and physiology with environmental conditions. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles. From biodiversity to biotechnology. Springer, Berlin, pp 285–312

    Google Scholar 

  • Mock T, Otillar RP, Strauss J, McMullan M, Paajanen P, Schmutz J, Salamov A, Sanges R et al (2017) Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541:536–540

    CAS  PubMed  Google Scholar 

  • Moellering ER, Muthan B, Benning C (2010) Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science 330:226–228

    CAS  PubMed  Google Scholar 

  • Monroy AF, Sarhan F, Dhindsa RS (1993) Cold-induced changes in freezing tolerance, protein phosphorylation, and gene expression. Plant Physiol 102:1227–1235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan RM, Ivanov AG, Priscu JC, Maxwell DP, Huner NPA (1998) Structure and composition of the photochemical apparatus of Antarctic green alga, Chlamydomonas subcaudata. Photosynth Res 56:303–314

    CAS  Google Scholar 

  • Morgan-Kiss R (2006) Photosynthesis on the edge: phytoplankton life in the ice-covered lakes of the McMurdo Dry Valleys. Can Antarct Res Netw 21:17–18

    Google Scholar 

  • Morgan-Kiss R, Ivanov AG, Williams J, Mobashsher K, Huner NPA (2002) Differential thermal effects on the energy distribution between photosystem II and photosystem I in thylakoid membranes of a psychrophilic and a mesophilic alga. Biochim Biophys Acta 1561:251–265

    CAS  PubMed  Google Scholar 

  • Morgan-Kiss RM, Ivanov AG, Pocock T, Krol M, Gudynaite-Savitch L, Huner NPA (2005) The Antarctic psychrophile, Chlamydomonas raudensis ETTL (UWO241) (CHLOROPHYCEAE, CHLOROPHYTA), exhibits a limited capacity to photoacclimate to red light. J Phycol 41:791–800

    Google Scholar 

  • Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222–252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan-Kiss R, Ivanov AG, Modla S, Czymmek K, Huner NPA, Priscu JC, Lisle JT, Hanson TE (2008) Identity and physiology of a new psychrophilic eukaryotic green alga, Chlorella sp., strain BI, isolated from a transitory pond near Bratina Island, Antarctica. Extremophiles 12:701–711

    CAS  PubMed  Google Scholar 

  • Morgan-Kiss R, Lizotte MP, Kong W, Priscu JC (2015) Photoadaptation to the polar night by phytoplankton in a permanently ice-covered Antarctic lake. Limnol Oceanogr 61:3–13

    Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mou S, Xu D, Ye N, Zhang X, Liang Q, Zhen Z, Zhuang Z, Miao J (2012) Rapid estimation of lipid content in an Antarctic ice alga (Chlamydomonas sp.) using the lipophilic fluorescent dye, BODIPY505/515. J Appl Phycol 24:1169–1176

    CAS  Google Scholar 

  • Murata N, Los DA (1997) Membrane fluidity and temperature perception. Plant Physiol 115:875–879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murata N, Los DA (2006) Histidine kinase Hik33 is an important participant in cold-signal transduction in cyanobacteria. Physiol Plant 126:17–27

    CAS  Google Scholar 

  • Murchie EH, Pinto M, Horton P (2009) Agriculture and the new challenges for photosynthesis research. New Phytol 181:532–552

    CAS  PubMed  Google Scholar 

  • Nadeau TL, Castenholz RW (2000) Characterization of psychrophilic oscillatorians (cyanobacteria) from Antarctic meltwater ponds. J Phycol 36:914–923

    Google Scholar 

  • Nawrocki WJ, Tourasse NJ, Taly A, Rappaport F, Wollman F-A (2015) The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology. Annu Rev Plant Biol 66:49–74

    CAS  PubMed  Google Scholar 

  • Neale PJ, Priscu JC (1995) The photosynthetic apparatus of phytoplankton from a perennially ice-covered Antarctic lake: acclimation to an extreme shade environment. Plant Cell Physiol 36:253–263

    CAS  Google Scholar 

  • Nelson N, Ben-Shem A (2004) The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol 5:971–982

    CAS  PubMed  Google Scholar 

  • Nemhauser JL, Chory J (2009) Photomorphogenesis. In: The Arabidopsis book. The American Society of Plant Biologists, Rockville, pp 1–12

    Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568

    CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (2016) Intracellular redox Compartmentation and ROS-related communication in regulation and signaling. Plant Physiol 171:1581–1592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nott A, Jung H-S, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759

    CAS  PubMed  Google Scholar 

  • Oliver SN, Finnegan EJ, Dennis ES, Peacock WJ, Trevaskis B (2009) Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc Natl Acad Sci U S A 106:8386–8391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Öquist G (1983) Effects of low temperature on photosynthesis: review. Plant Cell Environ 6:281–301

    Google Scholar 

  • Öquist G, Huner NPA (1991) Effects of cold acclimation on the susceptibility of photosynthesis to photoinhibition in Scots pine and in winter and spring cereals: a fluorescence analysis. Funct Ecol 5:91–100

    Google Scholar 

  • Oquist G, Huner NPA (2003) Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol 54:329–355

    PubMed  Google Scholar 

  • Öquist G, Martin B (1986) Cold climates. In: Baker NR, Long SP (eds) Photosynthesis in contrasting environments, vol 7. Elsevier, New York, pp 237–293

    Google Scholar 

  • Ort DR (2001) When there is too much light. Plant Physiol 125:29–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ort D, Baker NR (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis? Curr Opin Plant Biol 5:193–198

    CAS  PubMed  Google Scholar 

  • Ottander C, Campbell D, Öquist G (1995) Seasonal changes in photosystem II organization and pigment composition in Pinus sylvestris. Planta 197:176–183

    CAS  Google Scholar 

  • Oxborough K, Lee P, Horton P (1987) Regulation of thylakoid protein phosphorylation by high-energy-state quenching. FEBS Lett 221:211–214

    CAS  Google Scholar 

  • Papke RT, Oren A (2014) Halophiles: genetics and genomes. Caister Academic, Poole, p 196

    Google Scholar 

  • Park S, Steen CJ, Lyska D, Fischer AL, Endelman B, Iwai M, Niyogi KK, Fleming GR (2019) Chlorophyll–carotenoid excitation energy transfer and charge transfer in Nannochloropsis oceanica for the regulation of photosynthesis. Proc Natl Acad Sci U S A 116:3385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel D, Franklin KA (2009) Temperature-regulation of plant architecture. Plant Signal Behav 4:577–579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peden EA, Boehm M, Mulder DW, Davis R, Old WM, King PW, Ghirardi ML, Dubini A (2013) Identification of global ferredoxin interaction networks in Chlamydomonas reinhardtii. J Biol Chem 288:35192–35209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Torres E, Dinamarca J, Bravo L, Corcuera L (2004) Responses of Colobanthus quitensis (Kunth) Bartl. to high light and low temperature. Polar Biol 27:183–189

    Google Scholar 

  • Perez-Torres E, Bravo LA, Corcuera LJ, Johnson GN (2007) Is electron transport to oxygen an important mechanism in photoprotection? Contrasting responses from Antarctic vascular plants. Physiol Plant 130:185–194

    CAS  Google Scholar 

  • Pesaresi P, Pribil M, Wunder T, Leister D (2011) Dynamics of reversible protein phosphorylation in thylakoids of flowering plants: the roles of STN7, STN8 and TAP38. Biochim Biophys Acta 1807:887–896

    CAS  PubMed  Google Scholar 

  • Pfannschmidt T (2003) Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci 8(1):33–41

    CAS  PubMed  Google Scholar 

  • Pfannschmidt T, Yang C (2012) The hidden function of photosynthesis: a sensing system for environmental conditions that regulates plant acclimation responses. Protoplasma 249:125–136. Springer Wien

    CAS  Google Scholar 

  • Pocock TH, Hurry V, Savitch LV, Huner NPA (2001) Susceptibility to low-temperature photoinhibition and the acquisition of freezing tolerance in winter and spring wheat: the role of growth temperature and irradiance. Physiol Plant 113:499–506

    CAS  Google Scholar 

  • Pocock T, Lachance M-A, Proschold T, Priscu JC, Kim SS, Huner NPA (2004) Identification of a psychrophilic green alga from lake Bonney Antarctica: Chlamydomonas raudensis ETTL. (UWO 241) Chlorophyceae. J Phycol 40:1138–1148

    Google Scholar 

  • Pocock TH, Koziak A, Rosso D, Falk S, Hüner NPA (2007) Chlamydomonas raudensis (UWO 241), Chlorophyceae, exhibits the capacity for rapid D1 repair in response to chronic photoinhibition at low temperature. J Phycol 43:924–936

    CAS  Google Scholar 

  • Pogson BJ, Woo NS, Förster B, Small ID (2008) Plastid signalling to the nucleus and beyond. Trends Plant Sci 13:602–609

    CAS  PubMed  Google Scholar 

  • Possmayer M (2018) Phylogeny, heat-stress and enzymatic heat sensitivity in the Antarctic psychrophile, Chlamydomonas UWO241. PhD Thesis, Western University

    Google Scholar 

  • Possmayer M, Berardi G, Beall BFN, Trick CG, Huner NPA, Maxwell DP (2011) Plasticity of the psychrophilic green alga Chlamydomonas raudensis (UWO 241) (Chlorophyta) to supraoptimal temperature stress. J Phycol 47:1098–1109

    CAS  PubMed  Google Scholar 

  • Possmayer M, Gupta RK, Szyszka-Mroz B, Maxwell DP, Lachance MA, Hüner NPA, Smith DR (2016) Resolving the phylogenetic relationship between Chlamydomonas sp. UWO 241 and Chlamydomonas raudensis SAG 49.72 (Chlorophyceae) with nuclear and plastid DNA sequences. J Phycol 52:305–310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Priscu JC, Fritsen CH, Adams EE, Giovannoni J, Paerl HW, McKay CP, Doran PT, Gordon DA, Lanoil BD, Pinckney JL (1998) Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280:2095–2098

    CAS  PubMed  Google Scholar 

  • Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D (1995) Phytochromes: photosensory perception and signal transduction. Science 268:675–680

    CAS  PubMed  Google Scholar 

  • Quatrini R, Johnson DB (2016) Acidophiles: life in extremely acidic environments. Caister Academic, Poole, p 310

    Google Scholar 

  • Queval G, Foyer CH (2012) Redox regulation of photosynthetic gene expression. Philos Trans R Soc B 367:3475–3485

    CAS  Google Scholar 

  • Quint M, Delker C, Franklin KA, Wigge PA, Halliday KJ, van Zanten M (2016) Molecular and genetic control of plant thermomorphogenesis. Nat Plants 2:15190

    CAS  PubMed  Google Scholar 

  • Rapacz M, Wolanin B, Hura K (2008) The effects of cold acclimation on the photosynthetic apparatus and the expression of COR14b in four genotypes of barley (Hordeum vulgare) contrasting in their tolerance to freezing and high light treatment in cold conditions. Ann Bot 101:689–699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reinbothe S, Reinbothe C (1996) Regulation of chlorophyll biosynthesis in angiosperms. Plant Physiol 111:1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rochaix J-D (2011) Regulation of photosynthetic electron transport. Biochim Biophys Acta 1807:878–886

    CAS  PubMed  Google Scholar 

  • Rochaix J-D (2013) Fine-tuning photosynthesis. Science 342:50–51

    CAS  PubMed  Google Scholar 

  • Rochaix J-D (2014) Regulation and dynamics of the light-harvesting system. Annu Rev Plant Biol 65:287–309

    CAS  PubMed  Google Scholar 

  • Ruckle ME, DeMarco SM, Larkin RM (2007) Plastid signals remodel light signaling networks and are essential for efficient chloroplast biogenesis in Arabidopsis. Plant Cell 19:3944–3960

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruckle ME, Burgoon LD, Lawrence LA, Sinkler CA, Larkin RM (2012) Plastids are major regulators of light signaling in Arabidopsis. Plant Physiol 159:366–390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russell NJ (1984) Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends Biochem Sci 9:108–112

    CAS  Google Scholar 

  • Russell NJ (1990) Cold adaptations of microorganisms. Philos Trans R Soc Lond B Biol Sci 326:595–608

    CAS  PubMed  Google Scholar 

  • Russell NJ (2008) Membrane components and cold sensing. In: Psychrophiles. From biodiversity to biotechnology (Margesin R, Schinner F, Marx J-C, Gerday C, eds) Springer, Berlin: 177–190

    Google Scholar 

  • Russell NJ, Fukunaga N (1990) A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol Rev 75:171–182

    CAS  Google Scholar 

  • Sarhan F, Ouellet F, Vazquez-Tello A (1997) The wheat wcs120 gene family. A useful model to understand the molecular genetics of freezing tolerance in cereals. Physiol Plant 101:439–445

    CAS  Google Scholar 

  • Schorsch M, Kramer M, Goss T, Eisenhut M, Robinson N, Osman D, Wilde A, Sadaf S, Brückler H, Walder L, Scheibe R, Hase T, Hanke GT (2018) A unique ferredoxin acts as a player in the low-iron response of photosynthetic organisms. Proc Natl Acad Sci U S A 115:E12111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seckbach J (2007) Algae and cyanobacteria in extreme environments. Springer, Dordrecht

    Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    CAS  PubMed  Google Scholar 

  • Siddiqui KS, Williams TJ, Wilkins D, Yau S, Allen MA, Brown MV, Lauro FM, Cavicchioli R (2013) Psychrophiles. Annu Rev Earth Planet Sci 41:87–115

    CAS  Google Scholar 

  • Sidler WA (1994) Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) Advances in photosynthesis. Molecular biology of cyanobacteria, vol 1. Kluwer Academic, Dordrecht, pp 139–216

    Google Scholar 

  • Siliakus MF, van der Oost J, Kengen SWM (2017) Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 21:651–670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slavov C, Reus M, Holzwarth AR (2013) Two different mechanisms cooperate in the desiccation-induced excited state quenching in Parmelia lichen. J Phys Chem B 117:11326–11336

    CAS  PubMed  Google Scholar 

  • Slavov C, Schrameyer V, Reus M, Ralph PJ, Hill R, Büchel C, Larkum AWD, Holzwarth AR (2016) “Super-quenching” state protects Symbiodinium from thermal stress—implications for coral bleaching. Biochim Biophys Acta 1857:840–847

    CAS  PubMed  Google Scholar 

  • Small D, Huner NPA, Wan W (2011) Effect of static magnetic fields on the growth, photosynthesis and ultrastructure of Chlorella kessleri microalgae. Bioelectromagnetics 33:298–308

    PubMed  Google Scholar 

  • Stepien P, Johnson GN (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol 149:1154–1165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35:543–584

    CAS  Google Scholar 

  • Steponkus PL, Lanphear FO (1968) The role of light in cold acclimation of Hedera helix L. var. Thorndale. Plant Physiol 43:151–156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stinziano JR, Hüner NPA, Way DA (2015) Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies). Tree Physiol 35:1303–1313

    CAS  PubMed  Google Scholar 

  • Streb P, Josse E-M, Gallouet E, Baptist F, Kuntz M, Cornic G (2005) Evidence for alternative electron sinks to photosynthetic carbon assimilation in the high mountain plant species Ranunculus glacialis. Plant Cell Environ 28:1123–1135

    CAS  Google Scholar 

  • Sung S, Amasino RM (2005) Remembering winter: toward a molecular understanding of vernalization. Annu Rev Plant Biol 56:491–508

    CAS  PubMed  Google Scholar 

  • Susuki I, Los DA, Kanesaki Y, Mikami K, Murata N (2000) The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J 19:1327–1334

    Google Scholar 

  • Sveshnikov D, Ensminger I, Ivanov AG, Campbell DA, Lloyd J, Funk C, Huner NPA, Oquist G (2006) Excitation energy partitioning and quenching during cold acclimation in Scots pine. Tree Physiol 26:325–336

    CAS  PubMed  Google Scholar 

  • Szyszka B, Ivanov AG, Huner NPA (2007) Psychrophily is associated with differential energy partitioning, photosystem stoichiometry and polypeptide phosphorylation in Chlamydomonas raudensis. Biochim Biophys Acta 1767:789–800

    CAS  PubMed  Google Scholar 

  • Szyszka-Mroz B, Cvetkovska M, Ivanov AG, Smith DR, Possmayer M, Maxwell DP, Hüner NPA (2019) Protein kinases of the Antarctic polyextremophile, Chlamydomonas sp. UWO241, confer a distinct protein phosphorylation pattern associated with a remodelling of thylakoid membrane architecture and light energy distribution between photosystem I and photosystem II. Plant Physiol. (in press)

    Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    CAS  PubMed  Google Scholar 

  • Takizawa K, Takahashi S, Huner NPA, Minagawa J (2009) Salinity affects the photoacclimation of Chlamydomonas raudensis Ettl UWO241. Photosynth Res 99:195–203

    CAS  PubMed  Google Scholar 

  • Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346

    CAS  PubMed  Google Scholar 

  • Tang EPY, Vincent WF (1999) Strategies of thermal adaptation by high-latitude cyanobacteria. New Phytol 142:315–323

    Google Scholar 

  • Tang EPY, Tremblay R, Vincent WF (1997) Cyanobacterial dominance of polar freshwater ecosystems—high-latitude mat-formers adapted to low temperature. J Phycol 33:171–181

    Google Scholar 

  • Terauchi AM, Lu S-F, Zaffagnini M, Tappa S, Hirasawa M, Tripathy JN, Knaff DB, Farmer PJ, Lemaire SD, Hase T, Merchant SS (2009) Pattern of expression and substrate specificity of chloroplast ferredoxins from Chlamydomonas reinhardtii. J Biol Chem 284:25867–25878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50:571–599

    CAS  Google Scholar 

  • Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trevaskis B (2010) The central role of the vernalization1 gene in the vernalization response of cereals. Funct Plant Biol 37:479–487

    CAS  Google Scholar 

  • Trevaskis B (2015) Wheat gene for all seasons. Proc Natl Acad Sci U S A 112:11991–11992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trevaskis B, Hemming MN, Dennis ES, Peacock WJ (2007) The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci 12:352–357

    CAS  PubMed  Google Scholar 

  • Ueno Y, Aikawa S, Kondo A, Akimoto S (2016) Energy transfer in cyanobacteria and red algae: confirmation of spillover in intact megacomplexes of phycobilisome and both photosystems. J Phys Chem Lett 7:3567–3571

    CAS  PubMed  Google Scholar 

  • Ünlü C, Drop B, Croce R, van Amerongen H (2014) State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I. Proc Natl Acad Sci U S A 111:3460–3465

    PubMed  PubMed Central  Google Scholar 

  • Velasco VME, Mansbridge J, Bremner S, Carruthers K, Summers PS, Sung WWL, Champigny MJ, Weretilnyk EA (2016) Acclimation of the crucifer Eutrema salsugineum to phosphate limitation is associated with constitutively high expression of phosphate-starvation genes. Plant Cell Environ 39:1818–1834

    CAS  PubMed  Google Scholar 

  • Verhoeven AS (2014) Sustained energy dissipation in winter evergreens. New Phytol 201:57–65

    Google Scholar 

  • Verhoeven AS, Adams WW III, Demmig-Adams B, Croce R, Bassi R (1999) Xanthophyll cycle pigment localization and dynamics during exposure to low temperatures and light stress in Vinca major. Plant Physiol 120:727–738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent W (2000) Cyanobacterial dominance in the polar regions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic, Dordrecht, pp 321–340

    Google Scholar 

  • Vincent WF (2007) Cold tolerance in cyanobacteria and life in the cryosphere. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht

    Google Scholar 

  • Wada H, Gombos Z, Sakamoto T, Murata N (1993) Role of lipids in low temperature adaptation. In: photosynthetic responses to the environment (Yamomoto HY, Smith CM, eds). Am Soc Plant Physiol 8:78–87

    CAS  Google Scholar 

  • Walters RG, Rogers JJM, Shephard F, Horton P (1999) Acclimation of Arabidopsis thaliana to the light environment: the role of photoreceptors. Planta 209:517–527

    CAS  PubMed  Google Scholar 

  • Way DA, Sage RF (2008) Thermal acclimation of photosynthesis in black spruce Picea mariana (Mill.) B.S.P. Plant Cell Environ 31:1250–1262

    CAS  PubMed  Google Scholar 

  • Way DA, Yamori W (2014) Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynth Res 119:89–100

    CAS  PubMed  Google Scholar 

  • Whitton BA, Potts M (2000) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic, Dordrecht

    Google Scholar 

  • Wilson A, Ajlani G, Verbavatz J-M, Vass I, Kerfeld CA, Kirilovsky D (2006a) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18:992–1007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson KE, Ivanov AG, Oquist G, Grodzinski B, Sarhan F, Huner NPA (2006b) Energy balance, organellar redox status and acclimation to environmental stress. Can J Bot 84:1355–1370

    CAS  Google Scholar 

  • Wilson A, Punginelli C, Gall A, Bonetti C, Alexandre M, Routaboul J-M, Kerfeld CA, van Grondelle R, Robert B, Kennis JTM, Kirilovsky D (2008) A photoactive carotenoid protein acting as light intensity sensor. Proc Natl Acad Sci U S A 105:12075–12080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winfield MO, Lu CG, Wilson ID, Coghill JA, Edwards KJ (2009) Cold- and light-induced changes in the transcriptome of wheat leading to phase transition from vegetative to reproductive growth. BMC Plant Biol 9:55

    PubMed  PubMed Central  Google Scholar 

  • Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J 8:749–771

    CAS  PubMed  Google Scholar 

  • Woodson JD, Chory J (2008) Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genet 9:383–395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wunder T, Xu W, Liu Q, Wanner G, Leister D, Pribil M (2013) The major thylakoid protein kinases STN7 and STN8 revisited: effects of altered STN8 levels and regulatory specificities of the STN kinases. Front Plant Physiol 4:417

    Google Scholar 

  • Wynn-Williams DD (2000) Cyanobacteria in deserts- life at the limit? In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic, Dordrecht, pp 341–366

    Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    CAS  PubMed  Google Scholar 

  • Yang Y-W, Yin Y-C, Li Z-K, Huang D, Shang J-L, Chen M, Qiu B-S (2019) Orange and red carotenoid proteins are involved in the adaptation of the terrestrial cyanobacterium Nostoc flagelliforme to desiccation. Photosynth Res 140:103–113

    CAS  PubMed  Google Scholar 

  • Yumoto I (2013) Cold adapted microorganisms. Caister Academic, Norfolk

    Google Scholar 

  • Zakhia F, Jungblut A-D, Taton A, Vincent W, Wilmotte A (2008) Cyanobacteria in cold ecosystems. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles. From biodiversity to biotechnology. Springer, Berlin, pp 121–135

    Google Scholar 

  • Zarka DG, Vogel JT, Cook D, Thomashow MF (2003) Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol 133:910–918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zer H, Ohad I (2003) Light, redox state, thylakoid-protein phosphorylation and signaling gene expression. Trends Biochem Sci 28:467–470

    CAS  PubMed  Google Scholar 

  • Zhu J, Pearce S, Burke A, See D, Skinner D, Dubcovsky J, Garland-Campbell K (2014) Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated with frost tolerance in hexaploid wheat. Theor Appl Genet 127:1183–1197

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman P. A. Hüner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hüner, N.P.A., Ivanov, A.G., Cvetkovska, M., Szyszka, B., Possmayer, M., Porter, P. (2020). Photosynthetic Acclimation and Adaptation to Cold Ecosystems. In: Kumar, A., Yau, YY., Ogita, S., Scheibe, R. (eds) Climate Change, Photosynthesis and Advanced Biofuels. Springer, Singapore. https://doi.org/10.1007/978-981-15-5228-1_6

Download citation

Publish with us

Policies and ethics