Skip to main content

On the Local Axisymmetry of a Vortex

  • Conference paper
  • First Online:
Proceedings of 16th Asian Congress of Fluid Mechanics

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 650 Accesses

Abstract

The local 3D cylindrical axisymmetry of a vortex is examined. Simple scalar quantities with a clear geometrical interpretation are introduced as suitable analytical tools for visualization of the local axisymmetry and skewness of the flow in the domain characterized by complex eigenvalues of the velocity-gradient tensor. Both complex and real eigenvectors are employed, including the real-valued dual-eigenvectors representing the orthogonal elongated directions in the swirl plane. The proposed quantities are applied to an impulsively started incompressible flow around an inclined flat plate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Epps BP (2017) Review of vortex identification methods. AIAA Paper 2017–0989

    Google Scholar 

  2. Holmén V (2012) Methods for vortex identification. Master‘s Theses in Mathematical Sciences LUTFMA-3239–2012, Lund University Libraries

    Google Scholar 

  3. Haller G (2005) An objective definition of a vortex. J Fluid Mech 525:1–26

    Article  MathSciNet  Google Scholar 

  4. Hunt JCR, Wray AA, Moin P (1988) Eddies, streams, and convergence zones in turbulent flows. Report CTR-S88, Center for Turbulence Research, Stanford, pp 193–208

    Google Scholar 

  5. Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  MathSciNet  Google Scholar 

  6. Dallmann U (1983) Topological structures of three-dimensional flow separation. TR-221-82-A07, DLR, German Aerospace Center, Goettingen

    Google Scholar 

  7. Vollmers H, Kreplin H-P, Meier HU (1983) Separation and vortical-type flow around a prolate spheroid—evaluation of relevant parameters. In: Proc. of the AGARD Symp. on Aerodynamics of Vortical Type Flows in Three Dimensions AGARD-CP-342, Rotterdam, Netherlands, April 1983

    Google Scholar 

  8. Chong MS, Perry AE, Cantwell BJ (1990) A general classification of three-dimensional flow fields. Phys Fluids A 2(5):765–777

    Article  MathSciNet  Google Scholar 

  9. Zhou J, Adrian RJ, Balachandar S, Kendall TM (1999) Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 387:353–396

    Article  MathSciNet  Google Scholar 

  10. Chakraborty P, Balachandar S, Adrian RJ (2005) On the relationships between local vortex identification schemes. J Fluid Mech 535:189–214

    Article  MathSciNet  Google Scholar 

  11. Gao Y, Liu C (2018) Rortex and comparison with eigenvalue-based vortex identification criteria. Phys Fluids 30(8):085107

    Article  Google Scholar 

  12. Sujudi D, Haimes R (1995) Identification of swirling flow in 3-D vector fields. AIAA Paper 1995-1715

    Google Scholar 

  13. Nakayama K (2014) Physical properties corresponding to vortical flow geometry. Fluid Dyn Res 46(5):055502

    Article  MathSciNet  Google Scholar 

  14. Nakayama K, Ohira Y, Yamada S (2014) A new parameter in vortex identification and visualization: symmetry of vortical flow. ASME Proc. - Paper IMECE2014-39859

    Google Scholar 

  15. Kolář V (2009) Compressibility effect in vortex identification. AIAA J 47(2):473–475

    Article  Google Scholar 

  16. Zheng X, Pang A (2005) 2D asymmetric tensor analysis. In: Proc IEEE Visualization 2005, Oct 2005

    Google Scholar 

  17. Zhang E, Yeh H, Lin Z, Laramee RS (2009) Asymmetric tensor analysis for flow visualization. IEEE Trans Vis Comput Graph 15(1):106–122

    Article  Google Scholar 

  18. Kolář V (2007) Vortex identification: new requirements and limitations. Int J Heat Fluid Flow 28(4):638–652

    Article  Google Scholar 

  19. Šístek J, Cirak F (2015) Parallel iterative solution of the incompressible Navier-Stokes equations with application to rotating wings. Comput Fluids 122:165–183

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation through Grant 18-09628S, and by the Czech Academy of Sciences through RVO:67985874 and RVO:67985840.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Kolář .

Editor information

Editors and Affiliations

Appendix

Appendix

The determination of dual-eigenvectors is briefly summarized according to [16]. Assume a real matrix with a pair of complex conjugate eigenvalues as in (5). The complex eigenvectors are not unique since multiplying either of them with a complex number yields another set of eigenvectors. However, if \(\left( {{\varvec{a}} + i{\varvec{b}}} \right)\) is an eigenvector corresponding to the eigenvalue \(\left( {\lambda_{cr} + i\lambda_{ci} } \right)\) then \(\left( {{\varvec{a}} - i{\varvec{b}}} \right)\) is an eigenvector corresponding to \(\left( {\lambda_{cr} - i\lambda_{ci} } \right)\). The multiplication by a complex number reads.

$$\left( {{\cos \phi } + i{\sin \phi }} \right)\left( {{\varvec{a}} + i{\varvec{b}}} \right) = \left( {{\varvec{a}}{\cos \phi } - {\varvec{b}}{\sin \phi }} \right) + i\left( {{\varvec{a}}{\sin \phi } + {\varvec{b}}{\cos \phi }} \right) = \left( {{\varvec{a}}^{\user2{*}} + i{\varvec{b}}^{\user2{*}} } \right).$$
(8)

The need to define a unique pair of complex eigenvectors leads to the natural choice of a pair of real-valued vectors \(\left( {{\varvec{a}}^{\user2{*}} ,{\varvec{b}}^{\user2{*}} } \right)\), the so-called dual-eigenvectors, that are mutually perpendicular. To satisfy the orthogonality condition \({\varvec{a}}^{\user2{*}} \cdot{\varvec{b}}^{\user2{*}} = 0\), it requires leading to a quadratic equation for \({\tan \phi }\) of the form

$$\left( {{\varvec{a}}{\cos \phi } - {\varvec{b}}{\sin \phi }} \right)\cdot\left( {{\varvec{a}}{\sin \phi } + {\varvec{b}}{\cos \phi }} \right) = 0,$$
(9)
$${\varvec{a}}\cdot{\varvec{b}}\left( {\tan \phi } \right)^{2} + \left( {\left| {\varvec{b}} \right|^{2} - \left| {\varvec{a}} \right|^{2} } \right){\tan \phi }\user2{ } - {\varvec{a}}\cdot{\varvec{b}} = 0.$$
(10)

This quadratic equation has usually two distinct solutions which are mutually perpendicular. To cope with the problem of two different ways to align them we choose the solution \(\left( {{\varvec{a}}^{\user2{*}} ,{\varvec{b}}^{\user2{*}} } \right)\) for which \(\left| {{\varvec{a}}^{*} } \right| \ge \left| {{\varvec{b}}^{*} } \right|\). Then \({\varvec{a}}^{\user2{*}}\) denotes the major dual-eigenvector and \({\varvec{b}}^{\user2{*}}\) denotes the minor dual-eigenvector.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kolář, V., Šístek, J. (2021). On the Local Axisymmetry of a Vortex. In: Venkatakrishnan, L., Majumdar, S., Subramanian, G., Bhat, G.S., Dasgupta, R., Arakeri, J. (eds) Proceedings of 16th Asian Congress of Fluid Mechanics. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-5183-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5183-3_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5182-6

  • Online ISBN: 978-981-15-5183-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics