Skip to main content

Revisiting Alzheimer’s Disease

  • Chapter
  • First Online:
Principles of Neurochemistry
  • 542 Accesses

Abstract

Alzheimer’s disease (AD) is a baneful neurodegenerative disorder affecting mainly geriatric folk. The cumulative brain insults of this multifaceted disease results in progressive decline in cognition ultimately leading to dementia. As the world’s population ages, risk of developing Alzheimer’s disease becomes more prevalent. An estimated 40 million patients over the globe are suffering from AD. Bio imaging has played many crucial roles in AD research and practice making a move from a minor exclusionary role to a substantial central position. Initially, computed tomography (CT) and magnetic resonance imaging (MRI) were being used for the diagnosis. More recently, structural and functional MRI and positron emission tomography (PET) studies has taken a leap in ruling out AD pathophysiological process. Several rodent models extensively explored by the scientists has been focused here which would help in translating the promising results from bench to bedside. This chapter seeks to integrate the advances in understanding the molecular mechanisms and newer target sites that underlie Alzheimer’s disease. Also, the novel insights provided would ignite the basis for further drug development for this devastating disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson RS, Segawa E, Boyle PA, Anagnos SE et al (2012) The natural history of cognitive decline in Alzheimer’s disease. Psychol Aging 27:1008–1017

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alzheimer’s Association (2012) 2012 Alzheimer’s disease facts and figures. http://www.alz.org/documents_custom/2012_facts_figures_fact_sheet.pdf. Accessed 21 June 2019

  3. Alzheimer’s Association (2016) Alzheimer’s disease facts and figures. Alzheimer’s Dementia 12:459–509

    Article  Google Scholar 

  4. Kar S, Issa AM, Seto D, Auld DS et al (1998) Amyloid β-peptide inhibits high-affinity choline uptake and acetylcholine release in rat hippocampal slices. J Neurochem 70:2179–2187

    Article  CAS  PubMed  Google Scholar 

  5. Nordberg A, Alafuzoff I, Winblad B (1992) Nicotinic and muscarinic subtypes in the human brain: changes with aging and dementia. J Neurosci Res 31:103–111

    Article  CAS  PubMed  Google Scholar 

  6. Owokotomo IA, Ekundayo O, Abayomi TG, Chukwuka AV (2015) In vitro anti-cholinesterase activity of essential oil from four tropical medicinal plants. Toxicol Rep 2:850–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kushal K, Ashwani K, Richard MK, Rahul D (2018) Recent advances in the neurobiology and neuropharmacology of Alzheimer’s disease. Biomed Pharmacother 98:297–307

    Article  CAS  Google Scholar 

  8. D’Souza I, Poorkaj P, Hong M, Nochlin D, Lee VM et al (1999) Missense and silent tau gene mutations cause frontotemporal dementia with parkinsonism-chromosome 17 type, by affecting multiple alternative RNA splicing regulatory elements. Proc Natl Acad Sci U S A 96:5598–5603

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hasegawa M, Smith MJ, Goedert M (1998) Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly. FEBS Lett 437:207–210

    Article  CAS  PubMed  Google Scholar 

  10. Hong M, Zhukareva V, Vogelsberg-Ragaglia V, Wszolek Z, Reed L et al (1998) Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282:1914–1917

    Article  CAS  PubMed  Google Scholar 

  11. Goedert M, Jakes R, Crowther RA (1999) Effects of frontotemporal dementia FTDP-17 mutations on heparin-induced assembly of tau filaments. FEBS Lett 450:306–311

    Article  CAS  PubMed  Google Scholar 

  12. Ming C (2015) The maze of APP processing in Alzheimer’s disease: where did we go wrong in reasoning? Front Cell Neurosci 9(186):1–10

    Google Scholar 

  13. Bishop GM, Robinson SR (2002) The amyloid hypothesis: let sleeping dogmas lie. Neurobiol Aging 23(6):1101–1105

    Article  CAS  PubMed  Google Scholar 

  14. Sloane PD, Zimmerman S, Suchindran C, Reed P, Wang L, Boustani M, Sudha S (2002) The public health impact of Alzheimer’s disease, 2000–2050: Potential implication of treatment advances. Annu Rev Public Health 23:213–231

    Article  PubMed  Google Scholar 

  15. Karen C, Edward HK (2014) Emerging therapeutics for Alzheimer’s disease. Annu Rev Pharmacol Toxicol 54:381–405

    Article  CAS  Google Scholar 

  16. Buée L, Bussiére T, Buée-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 33(1):95–130

    Article  PubMed  Google Scholar 

  17. Zhang B, Maiti A, Shively S, Lakhani F, McDonald-Jones G et al (2005) Microtubule binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci U S A 102:227–231

    Article  CAS  PubMed  Google Scholar 

  18. Congdon EE, Wu JW, Myeku N, Figueroa YH et al (2012) Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy 8(4):609–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Giommarelli C, Zuco V, Favini E, Pisano C et al (2010) The enhancement of antiproliferative and proapoptotic activity of HDAC inhibitors by curcumin is mediated by Hsp90 inhibition. Cell Mol Life Sci 67(6):995–1004

    Article  CAS  PubMed  Google Scholar 

  20. Roberds SL, Anderson J, Basi G, Bienkowski MJ, Branstetter DG et al (2001) BACE knockout mice are healthy despite lacking the primary beta-secretase activity in brain: implications for Alzheimer’s disease therapeutics. Hum Mol Genet 10:1317–1324

    Article  CAS  PubMed  Google Scholar 

  21. Grüninger-Leitch F, Schlatter D, Kung E, Nelbock P, Dobeli H (2002) Substrate and inhibitor profile of BACE (beta-secretase) and comparison with other mammalian aspartic proteases. J Biol Chem 277:4687–4693

    Article  PubMed  CAS  Google Scholar 

  22. Hong L, Koelsch G, Lin X, Wu S, Terzyan S et al (2000) Structure of the protease domain of memapsin 2 (beta-secretase) complexed with inhibitor. Science 290:150–153

    Article  CAS  PubMed  Google Scholar 

  23. Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R et al (1999) Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402:537–540

    Article  CAS  PubMed  Google Scholar 

  24. Yiannopoulou KG, Papageorgiou SG (2013) Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord 6(1):19–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Doody RS, Raman R, Farlow M, Iwatsubo T et al (2013) Semagacestat study, a phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med 369:341–350

    Article  CAS  PubMed  Google Scholar 

  26. Skovronsky DM, Lee VMY, Trojanowski JQ (2006) Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications. Annu Rev Pathol Mech Dis 1:151–170

    Article  CAS  Google Scholar 

  27. Morgan D (2011) Immunotherapy for Alzheimer’s disease. J Intern Med 269(1):54–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H et al (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177

    Article  CAS  PubMed  Google Scholar 

  29. Gilman S, Koller M, Black RS, Jenkins L et al (2005) Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64:1553–1562

    Article  CAS  PubMed  Google Scholar 

  30. Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M et al (2003) Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61:46–54

    Article  CAS  PubMed  Google Scholar 

  31. Wilcock D, Jantzen P, Li Q, Morgan D, Gordon M (2007) Amyloid-beta vaccination, but not nitro-nonsteroidal anti-inflammatory drug treatment, increases vascular amyloid and microhemorrhage while both reduce parenchymal amyloid. Neuroscience 144:950–960

    Article  CAS  PubMed  Google Scholar 

  32. Weggen S, Eriksen JL, Das P, Sagi SA, Wang R et al (2001) A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 414:212–216

    Article  CAS  PubMed  Google Scholar 

  33. Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA (2000) Statins and the risk of dementia. Lancet 356:1627–1631

    Article  CAS  PubMed  Google Scholar 

  34. Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M et al (2003) Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer’s disease: a pilot phase 2 clinical trial. Arch Neurol 60:1685–1691

    Article  PubMed  Google Scholar 

  35. Coman H, Nemeş B (2017) New therapeutic targets in Alzheimer’s disease. Int J Geronol 11(1):2–6

    Article  Google Scholar 

  36. Sala Frigerio C, De Strooper B (2016) Alzheimer’s disease mechanisms and emerging roads to novel therapeutics. Annu Rev Neurosci 39:57–79

    Article  CAS  PubMed  Google Scholar 

  37. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lewis J, Dickson DW, Lin WL, Chisholm L et al (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293(5534):1487–1491

    Article  CAS  PubMed  Google Scholar 

  39. Shi Y, Kirwan P, Smith J, MacLean G, Orkin SH, Livesey FJ (2012a) A human stem cell model of early Alzheimer’s disease pathology in Down syndrome. Sci Transl Med 4(124):124ra, 1–23

    Article  Google Scholar 

  40. Shi Y, Kirwan P, Livesey FJ (2012b) Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc 10:1836–1846

    Article  CAS  Google Scholar 

  41. De Leon MJ, Mosconi L, Blennow K, De Santi S, Zinkowski R et al (2007) Imaging and CSF studies in the preclinical diagnosis of Alzheimer’s disease. Ann N Y Acad Sci 1097:114–145

    Article  PubMed  CAS  Google Scholar 

  42. Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS et al (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s Disease Neuroimaging Initiative subjects. Ann Neurol 65:403–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Harry VV (2015) Emerging concepts in Alzheimer’s disease. Annu Rev Pathol Mech Dis 10:291–319

    Article  CAS  Google Scholar 

  44. Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS et al (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9:119–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ et al (2011) The Alzheimer’s Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement 8(1):S1–S6

    PubMed  PubMed Central  Google Scholar 

  46. Risacher SL, Saykin AJ (2013) Neuroimaging and other biomarkers for Alzheimer’s disease: the changing landscape of early detection. Annu Rev Clin Psychol 9:621–648

    Article  PubMed  PubMed Central  Google Scholar 

  47. Johnson KA, Fox NC, Spering RA, Klunk WE (2012) Brain imaging in Alzheimer’s disease. Cold Spring Harb Perspect Med 2(4):1–23

    Article  CAS  Google Scholar 

  48. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97:11050–11055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jagust WJ, Bandy D, Chen K, Foster NL, Landau SM et al (2010) The Alzheimer’s Disease Neuroimaging Initiative positron emission tomography core. Alzheimers Dement 6:221–229

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C et al (2010) 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol 68:319–329

    Article  PubMed  Google Scholar 

  51. Wong DF, Rosenberg PB, Zhou Y, Kumar A, Raymont V et al (2010) In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir [corrected] F 18). J Nucl Med 51:913–920

    Article  CAS  PubMed  Google Scholar 

  52. Karran E, Hardy J (2014) A critique of the drug discovery and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer’s disease. Ann Neurol 76:185–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10:698–712

    Article  CAS  PubMed  Google Scholar 

  54. De Strooper B (2014) Lessons from a failed gamma-secretase Alzheimer trial. Cell 159:721–726

    Article  PubMed  CAS  Google Scholar 

  55. Bard F, Cannon C, Barbour R, Burke RL et al (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer’s disease. Nat Med 6:916–919

    Article  CAS  PubMed  Google Scholar 

  56. Cummings J, Cho W, Ward M, Friesenhahn M et al (2014) A randomized, double-blind, placebo-controlled phase 2 study to evaluate the efficacy and safety of crenezumab in patients with mild to moderate Alzheimer’s disease. Alzheimer’s Associat Int Conf 10(4 Suppl):P275. https://doi.org/10.1016/j.jalz.2014.04.450

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salwa, Kumar, L. (2020). Revisiting Alzheimer’s Disease. In: Mathew, B., Thomas Parambi, D.G. (eds) Principles of Neurochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-15-5167-3_7

Download citation

Publish with us

Policies and ethics