Skip to main content

Technological Advancement in Cancer Stem Cell Research

  • Chapter
  • First Online:
Cancer Stem Cells: New Horizons in Cancer Therapies

Abstract

Cancer stem cells (CSCs) display a significant role in cancer research, evidenced from past decade studies. Although, with the passage of time, effective cancer therapy has been developed, still up to now, cancer possesses the second highest mortality worldwide. The only defined characteristic for every therapy failure is the presence of cells with self-renewable capacity known as cancer stem cells in the heterogeneous population of tumor. These CSCs provide a tumor resistance against various therapies like chemotherapy and radiotherapy. Thus, to prolong survival time period of cancer patients, it is prerequisite to eliminate CSC population. Thus, to develop novel effective therapeutics against primary tumors, isolation and characterization of CSCs will provide a novel insight to develop cancer therapeutics. Thus, various in vitro and in vivo approaches have been developed to isolate and target CSCs. In this chapter, we will discuss about how researchers have developed various powerful tools to characterize CSCs to develop better therapeutics to target CSCs and thus cancer and also how technology has sprung up to generate advanced preclinical models of human tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14(3):275–291

    Article  CAS  PubMed  Google Scholar 

  2. Nagle PW, Plukker JTM, Muijs CT, van Luijk P, Coppes RP (2018) Patient-derived tumor organoids for prediction of cancer treatment response. Semin Cancer Biol 53:258–264

    Article  CAS  PubMed  Google Scholar 

  3. Podlaha O, Riester M, De S, Michor F (2012) Evolution of the cancer genome. Trends Genet 28(4):155–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726

    Article  CAS  PubMed  Google Scholar 

  5. Dragu DL, Necula LG, Bleotu C, Diaconu CC, Chivu-Economescu M (2015) Therapies targeting cancer stem cells: current trends and future challenges. World J Stem Cells 7(9):1185

    PubMed  PubMed Central  Google Scholar 

  6. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645

    Article  CAS  PubMed  Google Scholar 

  7. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, Fuhlbrigge RC, Kupper TS, Sayegh MH, Frank MH (2008) Identification of cells initiating human melanomas. Nature 451(7176):345–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317(5836):337

    Article  CAS  PubMed  Google Scholar 

  10. Aiken C, Werbowetski-Ogilvie T (2013) Animal models of cancer stem cells: what are they really telling us? Curr Pathobiol Rep 1(2):91–99

    Article  Google Scholar 

  11. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, Nakamura R, Tanaka T, Tomiyama H, Saito N (2007) Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 25(11):1315

    Article  CAS  PubMed  Google Scholar 

  12. Ishizawa K, Rasheed ZA, Karisch R, Wang Q, Kowalski J, Susky E, Pereira K, Karamboulas C, Moghal N, Rajeshkumar N (2010) Tumor-initiating cells are rare in many human tumors. Cell Stem Cell 7(3):279–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sengupta A, Cancelas JA (2010) Cancer stem cells: a stride towards cancer cure? J Cell Physiol 225(1):7–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rycaj K, Tang DG (2015) Cell-of-origin of cancer versus cancer stem cells: assays and interpretations. Cancer Res 75(19):4003–4011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen J, Li Y, Yu T-S, McKay RM, Burns DK, Kernie SG, Parada LF (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488(7412):522–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kwon CH, Zhao D, Chen J, Alcantara S, Li Y, Burns DK, Mason RP, Lee EY, Wu H, Parada LF (2008) Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res 68(9):3286–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH, van de Wetering M, Clevers HJS (2012) Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337(6095):730–735

    Article  CAS  PubMed  Google Scholar 

  18. Driessens G, Beck B, Caauwe A, Simons BD, Blanpain CJN (2012) Defining the mode of tumour growth by clonal analysis. Nature 488(7412):527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183(4):1797–1806

    Article  CAS  PubMed  Google Scholar 

  20. Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC, Johnson RP (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3(12):1337

    Article  CAS  PubMed  Google Scholar 

  21. Tirino V, Desiderio V, Paino F, De Rosa A, Papaccio F, La Noce M, Laino L, De Francesco F, Papaccio G (2013) Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB J 27(1):13–24

    Article  CAS  PubMed  Google Scholar 

  22. Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG, Di Fiore PP (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140(1):62–73

    Article  CAS  PubMed  Google Scholar 

  23. Tomita H, Tanaka K, Tanaka T, Hara A (2016) Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget 7(10):11018–11032

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mele L, Liccardo D, Tirino V (2018) Evaluation and isolation of cancer stem cells using ALDH activity assay. Cancer stem cells. Springer, New York, pp 43–48

    Google Scholar 

  25. Hilton J (1984) Role of aldehyde dehydrogenase in cyclophosphamide-resistant L1210 leukemia. Cancer Res 44(11):5156–5160

    CAS  PubMed  Google Scholar 

  26. Colella G, Fazioli F, Gallo M, De Chiara A, Apice G, Ruosi C, Cimmino A, De Nigris F (2018) Sarcoma spheroids and organoids—promising tools in the era of personalized medicine. Int J Mol Sci 19(2):615

    Article  PubMed Central  CAS  Google Scholar 

  27. Wilding JL, Bodmer WF (2014) Cancer cell lines for drug discovery and development. Cancer Res 74(9):2377–2384

    Article  CAS  PubMed  Google Scholar 

  28. Bahmad HF, Cheaito K, Chalhoub RM, Hadadeh O, Monzer A, Ballout F, El-Hajj A, Mukherji D, Liu Y-N, Daoud G (2018) Sphere-formation assay: three-dimensional in vitro culturing of prostate cancer stem/progenitor sphere-forming cells. Front Oncol 8:347

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gitschier H, Fang Y, Eglen RM (2017) Three-dimensional cell culture: a rapidly emerging technique for drug discovery. Drug Dicov 55

    Google Scholar 

  30. Dutta D, Heo I, Clevers H (2017) Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med 23(5):393–410

    Article  CAS  PubMed  Google Scholar 

  31. Zhao H, Yan C, Hu Y, Mu L, Huang K, Li Q, Li X, Tao D, Qin J (2019) Sphere-forming assay vs. organoid culture: determining long-term stemness and the chemoresistant capacity of primary colorectal cancer cells. Int J Oncol 54(3):893–904

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pastrana E, Silva-Vargas V, Doetsch F (2011) Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8(5):486–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ma X-L, Sun Y-F, Wang B-L, Shen M-N, Zhou Y, Chen J-W, Hu B, Gong Z-J, Zhang X, Cao Y, Pan B-S, Zhou J, Fan J, Guo W, Yang X-R (2019) Sphere-forming culture enriches liver cancer stem cells and reveals stearoyl-CoA desaturase 1 as a potential therapeutic target. BMC Cancer 19(1):760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Franco SS, Szczesna K, Iliou MS, Al-Qahtani M, Mobasheri A, Kobolák J, Dinnyés A (2016) In vitro models of cancer stem cells and clinical applications. BMC Cancer 16(2):738

    Article  CAS  Google Scholar 

  35. Coles‐Takabe BL, Brain I, Purpura KA, Karpowicz P, Zandstra PW, Morshead CM, Van der Kooy D (2008) Don’t look: growing clonal versus nonclonal neural stem cell colonies. Stem Cells 26(11):2938–2944

    Article  PubMed  Google Scholar 

  36. Ferrón SR, Andreu-Agulló C, Mira H, Sánchez P, Marqués-Torrejón MÁ, Farinas I (2007) A combined ex/in vivo assay to detect effects of exogenously added factors in neural stem cells. Nat Protoc 2(4):849

    Article  PubMed  CAS  Google Scholar 

  37. Chojnacki A, Weiss S (2008) Production of neurons, astrocytes and oligodendrocytes from mammalian CNS stem cells. Nat Protoc 3(6):935

    Article  CAS  PubMed  Google Scholar 

  38. Reynolds BA, Rietze RL (2005) Neural stem cells and neurospheres—re-evaluating the relationship. Nat Methods 2(5):333

    Article  CAS  PubMed  Google Scholar 

  39. Stingl J (2009) Detection and analysis of mammary gland stem cells. J Pathol 217(2):229–241

    Article  CAS  PubMed  Google Scholar 

  40. Xu H, Lyu X, Yi M, Zhao W, Song Y, Wu K (2018) Organoid technology and applications in cancer research. J Hematol Oncol 11(1):116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, Khan K, Lampis A, Eason K, Huntingford I, Burke R (2018) Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359(6378):920–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Seidlitz T, Merker SR, Rothe A, Zakrzewski F, von Neubeck C, Grützmann K, Sommer U, Schweitzer C, Schölch S, Uhlemann H (2019) Human gastric cancer modelling using organoids. Gut 68(2):207–217

    Article  CAS  PubMed  Google Scholar 

  43. Schütte M, Risch T, Abdavi-Azar N, Boehnke K, Schumacher D, Keil M, Yildiriman R, Jandrasits C, Borodina T, Amstislavskiy V (2017) Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors. Nat Commun 8:14262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, Ohta Y, Toshimitsu K, Nakazato Y, Kawasaki K (2016) A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18(6):827–838

    Article  CAS  PubMed  Google Scholar 

  45. Weeber F, van de Wetering M, Hoogstraat M, Dijkstra KK, Krijgsman O, Kuilman T, Gadellaa-van Hooijdonk CG, van der Velden DL, Peeper DS, Cuppen EP (2015) Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc Natl Acad Sci U S A 112(43):13308–13311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nuciforo S, Fofana I, Matter MS, Blumer T, Calabrese D, Boldanova T, Piscuoglio S, Wieland S, Ringnalda F, Schwank G (2018) Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep 24(5):1363–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang HC, Kuo C (2015) Personalizing pancreatic cancer organoids with hPSCs. Nat Med 21(11):1249

    Article  CAS  PubMed  Google Scholar 

  48. Boj SF, Hwang C-I, Baker LA, Chio IIC, Engle DD, Corbo V, Jager M, Ponz-Sarvise M, Tiriac H, Spector MS (2015) Organoid models of human and mouse ductal pancreatic cancer. Cell 160(1–2):324–338

    Article  CAS  PubMed  Google Scholar 

  49. Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, Balgobind AV, Wind K, Gracanin A, Begthel H (2018) A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172(1–2):373–386.e10

    Article  CAS  PubMed  Google Scholar 

  50. Lee SH, Hu W, Matulay JT, Silva MV, Owczarek TB, Kim K, Chua CW, Barlow LJ, Kandoth C, Williams AB (2018) Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 173(2):515–528.e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shenoy T, Boysen G, Wang M, Xu Q, Guo W, Koh F, Wang C, Zhang L, Wang Y, Gil V (2017) CHD1 loss sensitizes prostate cancer to DNA damaging therapy by promoting error-prone double-strand break repair. Ann Oncol 28(7):1495–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Conflict of interest: Authors have declared no conflict of interest for this book chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, T., Mandal, C.C. (2020). Technological Advancement in Cancer Stem Cell Research. In: Pathak, S., Banerjee, A. (eds) Cancer Stem Cells: New Horizons in Cancer Therapies. Springer, Singapore. https://doi.org/10.1007/978-981-15-5120-8_14

Download citation

Publish with us

Policies and ethics