Skip to main content

Optical Simulation of III-V Semiconductor Nanowires/PEDOT: PSS-Based Hybrid Solar Cells: Influence of Polymer Coating Thickness and Geometrical Parameters on Light Harvesting and Overall Photocurrent

  • Conference paper
  • First Online:
Energy Systems, Drives and Automations

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 664))

Abstract

Hybrid solar cells (HSCs) can be a new pathway for low-cost, flexible, and high efficiency solar cells. III-V nanowires (NWs) with sub-wavelength scale dimensions have shown excellent optical and electrical properties, and can be easily fabricated on thin substrates together with polymer materials. In order to obtain optimal design requirements for III-V NWs/PEDOT: PSS HSCs, optical simulations using finite-difference-time-domain (FDTD) method is performed. To enhance light absorption properties of NWs, the important geometrical parameter, namely the diameter (D) of the NWs is optimized. Further, to maximize short-circuit current density, polymer (PEDOT: PSS) coating thickness on the NWs is optimized. In comparison to NW/air system, optimized PEDOT: PSS-coated NWs have shown better intrinsic anti-reflection properties, broad absorption spectra, and enhanced optical generation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tsai M, Wei W, Tang L, Chang H, Tai S, Yang P, Lau SP, Chen L, He J (2015) Si hybrid solar cells with 13% Efficiency via concurrent improvement in optical and electrical properties by employing graphene quantum dots. https://doi.org/10.1021/acsnano.5b05928

  2. Ong PL, Levitsky IA (2010) Organic/IV, III-V semiconductor hybrid solar cells. Energies 3:313–334. https://doi.org/10.3390/en3030313

    Article  Google Scholar 

  3. Liu R (2014) Hybrid organic/inorganic nanocomposites for photovoltaic cells. Materials (Basel) 7:2747–2771. https://doi.org/10.3390/ma7042747

    Article  Google Scholar 

  4. Abujetas DR, Paniagua-Domínguez R, Sánchez-Gil JA (2015) Unraveling the Janus role of mie resonances and leaky/guided modes in semiconductor nanowire absorption for enhanced light harvesting. ACS Photonics 2:921–929. https://doi.org/10.1021/acsphotonics.5b00112

    Article  Google Scholar 

  5. Dayal S, Kopidakis N, Olson DC, Ginley DS, Rumbles G (2010) Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency. Nano Lett 10:239–242. https://doi.org/10.1021/nl903406s

    Article  Google Scholar 

  6. Nicolaidis NC, Routley BS, Holdsworth JL, Belcher WJ, Zhou X, Dastoor PC (2011) Fullerene contribution to photocurrent generation in organic photovoltaic cells. J Phys Chem C 115:7801–7805. https://doi.org/10.1021/jp2007683

    Article  Google Scholar 

  7. Kalita G, Adhikari S, Aryal HR, Afre R, Soga T, Sharon M, Koichi W, Umeno M (2009) Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes. p 115104. https://doi.org/10.1088/0022-3727/42/11/115104

  8. Lu W, Wang C, Chen L (2011) Nanoscale Si/PEDOT : PSS core/shell nanowire arrays for efficient hybrid solar cells. pp 3631–3634. https://doi.org/10.1039/c1nr10629e

  9. Sharma M, Pudasaini PR, Ruiz-zepeda F, Elam D, Ayon AA (2014) Ultrathin, flexible organic−inorganic hybrid solar cells based on silicon nanowires and PEDOT : PSS. ACS Appl Mater Interfaces 6:4356–4363. https://doi.org/10.1021/am500063w

  10. Chao J-J, Shiu S-C, Hung S-C, Lin C-F (2010) GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells. Nanotechnology 21:285203. https://doi.org/10.1088/0957-4484/21/28/285203

    Google Scholar 

  11. Sturmberg BCP, Dossou KB, Botten LC, Asatryan AA, Poulton CG, Mcphedran RC, Sterke CM (2014) De: simple semi-analytic approach

    Google Scholar 

  12. Prashant DV, Samajdar DP, Sharma D (2019) Optical simulation and geometrical optimization of P3HT/GaAs nanowire hybrid solar cells for maximal photocurrent generation via enhanced light absorption. Sol Energy 194:848–855. https://doi.org/10.1016/j.solener.2019.11.027

    Article  Google Scholar 

  13. Moiz SA, Nahhas AM, Um H, Jee S, Cho HK, Kim S, Lee J (2012) A stamped PEDOT : PSS—silicon nanowire hybrid solar cell. p 145401. https://doi.org/10.1088/0957-4484/23/14/145401

  14. Mariani G, Laghumavarapu RB, Villers BT, De, Shapiro J, Lin A, Schwartz BJ, Huffaker DL, Mariani G, Laghumavarapu RB, Villers BT De, Huffaker DL (2013) Hybrid conjugated polymer solar cells using patterned GaAs nanopillars Hybrid conjugated polymer solar cells using patterned GaAs nanopillars. 013107, pp 3–6. https://doi.org/10.1063/1.3459961

  15. Khalil A, Ahmed Z, Touati F, Masmoudi M (2016) Review on organic solar cells. In: 13th international multi-conference on systems, signals & devices, SSD. pp 342–353. https://doi.org/10.1109/SSD.2016.7473760

  16. Chao JJ, Shiu SC, Lin CF (2012) GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells with incorporating electron blocking poly(3-hexylthiophene) layer. Sol Energy Mater Sol Cells 105:40–45. https://doi.org/10.1016/j.solmat.2012.05.021

    Article  Google Scholar 

  17. Bi H, LaPierre RR (2009) A GaAs nanowire/P3HT hybrid photovoltaic device. Nanotechnology 20. https://doi.org/10.1088/0957-4484/20/46/465205

  18. Srivastava A, Samajdar DP, Sharma D (2018) Plasmonic effect of different nanoarchitectures in the efficiency enhancement of polymer based solar cells: a review. Sol Energy 173:905–919. https://doi.org/10.1016/j.solener.2018.08.028

    Article  Google Scholar 

  19. Zhang, S., Liu, M., Liu, W., Li, Z., Liu, Y., Wang, X., Yang, F.: High-efficiency photon capturing in ultrathin silicon solar cells with double-sided skewed nanopyramid arrays. J. Opt. (United Kingdom). 19, (2017). https://doi.org/10.1088/2040-8986/aa7ea1

  20. Cao Z, Chen Z, Escoubas L (2014) Optical, structural, and electrical properties of PEDOT : PSS thin films doped with silver nanoprisms. 4: 3375–3384. https://doi.org/10.1364/OME.4.002525

  21. Wu D, Tang X, Wang K, Li X (2017) An analytic approach for optimal geometrical design of GaAs nanowires for maximal light harvesting in photovoltaic cells. Sci Rep 7:1–8. https://doi.org/10.1038/srep46504

    Article  Google Scholar 

  22. Wen L, Zhao Z, Li X, Shen Y, Guo H, Wang Y (2011) Theoretical analysis and modeling of light trapping in high efficiency GaAs nanowire array solar cells. Appl Phys Lett 99:2009–2012. https://doi.org/10.1063/1.3647847

    Article  Google Scholar 

  23. Wang W, Li X, Wen L, Zhao Y, Duan H, Zhou B, Shi T, Zeng X, Li N, Wang Y (2014) Optical simulations of P3HT/Si nanowire array hybrid solar cells. Nanoscale Res Lett 9:1–6. https://doi.org/10.1186/1556-276X-9-238

    Article  Google Scholar 

  24. Wu D, Tang X, Wang K, Li X (2016) Effective coupled optoelectrical design method for fully infiltrated semiconductor nanowires based hybrid solar cells. Opt Express 24:A1336. https://doi.org/10.1364/oe.24.0a1336

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Science and Engineering Research Board, Department of Science and Technology, Government of India (ECR/2017/002369) (Established through an Act of Parliament), for providing the financial support to carry out this work. This work has been implemented under the research project titled “Analytical Modelling and Simulation of III-V nanostructure based Hybrid Solar Cells” which is funded by this board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dip Prakash Samajdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prashant, D.V., Samajdar, D.P., Sachchidanand (2020). Optical Simulation of III-V Semiconductor Nanowires/PEDOT: PSS-Based Hybrid Solar Cells: Influence of Polymer Coating Thickness and Geometrical Parameters on Light Harvesting and Overall Photocurrent. In: Sikander, A., Acharjee, D., Chanda, C., Mondal, P., Verma, P. (eds) Energy Systems, Drives and Automations. Lecture Notes in Electrical Engineering, vol 664. Springer, Singapore. https://doi.org/10.1007/978-981-15-5089-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5089-8_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5088-1

  • Online ISBN: 978-981-15-5089-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics