Skip to main content

Synthetic Biology Tools for Microalgae

  • Chapter
  • First Online:
Marine Niche: Applications in Pharmaceutical Sciences

Abstract

Microalgae can provide a platform technology to synthetic biologists for the production of pharmaceutical biocommodities. Based on their diversity, the main pathways for a range of plant-derived compounds are innately present across the multiple phyla of microalgae. Current efforts focus primarily on overexpression of genes involved with lipid biosynthesis but the doors are opening for a whole range of therapeutics, including pigments, terpenes, recombinant proteins, and RNAi products. A variety of open source tools are expanding into the academic space for a whole range of molecular tasks. This chapter focusses on heterologous photoautotrophic production of pharmaceuticals in microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajjawi I, Verruto J, Aqui M, Soriaga LB, Coppersmith J, Kwok K, Peach L et al (2017) Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat Biotechnol 35:647–652

    Article  CAS  PubMed  Google Scholar 

  • Baek K, Kim D, Jeong J, Sim S, Melis A, Kim J-S, Jin E et al (2016) DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci Rep 6:30620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bally J, Fishilevich E, Bowling AJ, Pence HE, Narva KE, Waterhouse PM (2018) Improved insect-proofing: expressing doublestranded RNA in chloroplasts. Pest Manag Sci 74:1751–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charoonnart P, Worakajit N, Zedler JA, Meetam M, Robinson C, Saksmerprome V (2019) Generation of microalga Chlamydomonas reinhardtii expressing shrimp antiviral dsRNA without supplementation of antibiotics. Sci Rep 9:3164

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen H, Choi J, Bailey S (2014) Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease. J Biol Chem 289:13284–13294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH et al (2017) Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature 550:407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong L, Ran AF, Cox D, Lin S, Barretto R, Habib N, Hsu PD et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90

    Article  CAS  PubMed  Google Scholar 

  • Croft MT, Warren MJ, Smith AG (2006) Algae need their vitamins. Eukaryot Cell 5:1175–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falciatore A, Casotti R, Leblanc C, Abrescia C, Bowler C (1999) Transformation of nonselectable reporter genes in marine diatoms. Mar Biotechnol 1:239–251

    Article  CAS  Google Scholar 

  • Ferenczi A, Pyott DE, Xipnitou A, Molnar A (2017) Efficient DNA replacement in Chlamydomonas. Proc Natl Acad Sci 114(51):13567–13572. https://doi.org/10.1073/pnas.1710597114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galanie S, Thodey K, Trenchard IJ, Interrante M, Smolke CD (2015) Complete biosynthesis of opioids in yeast. Science 349:1095–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garst AD, Bassalo MC, Pines G, Lynch SA, Halweg-Edwards AL, Liu R, Liang L et al (2016) Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nat Biotechnol 35:48–55

    Article  PubMed  Google Scholar 

  • Greiner A, Kelterborn S, Evers H, Kreimer G, Sizova I, Hegemann P (2017) Targeting of photoreceptor genes in Chlamydomonas reinhardtii via zinc-finger nucleases and CRISPR/Cas9. Plant Cell 29:2498–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helliwell KE, Wheeler GL, Leptos KC, Goldstein RE, Smith AG (2011) Insights into the evolution of vitamin B12 auxotrophy from sequenced algal genomes. Mol Biol Evol 28:2921–2933

    Article  CAS  PubMed  Google Scholar 

  • Helliwell KE, Scaife MA, Sasso S, Araujo A, Purton S, Smith AG (2014) Unraveling vitamin B12-responsive gene regulation in algae. Plant Physiol 165:388–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopes A, Nekrasov V, Kamoun S, Mock T (2016) Editing of the urease gene by CRISPR-Cas in the diatom Thalassiosira pseudonana. BioRxiv 12:062026

    Google Scholar 

  • Jakočiūnas T, Bonde I, Herrgård M, Harrison SJ, Kristensen M, Pedersen LE, Jensen MK et al (2015) Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab Eng 28:213–222

    Article  PubMed  Google Scholar 

  • Jiang W, Weeks DP (2017) A gene-within-a-gene Cas9/sgRNA hybrid construct enables gene editing and gene replacement strategies in Chlamydomonas reinhardtii. Algal Res 26:474–480. https://doi.org/10.1016/j.algal.2017.04.001

    Article  Google Scholar 

  • Jiang W, Brueggeman AJ, Horken KM, Plucinak TM, Weeks DP (2014) Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot Cell 13:1465–1469

    Article  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinkerson RE, Radakovits R, Posewitz MC (2013) Genomic insights from the oleaginous model alga Nannochloropsis gaditana. Bioengineered 4:37–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Karas BJ, Diner RE, Lefebvre SC, McQuaid J, Phillips A, Noddings CM, Brunson JK et al (2015) Designer diatom episomes delivered by bacterial conjugation. Nat Commun 6:6925

    Article  CAS  PubMed  Google Scholar 

  • Krysiak C, Mazus B, Buchowicz J (1999a) Relaxation, linearization and fragmentation of supercoiled circular DNA by tungsten microprojectiles. Transgenic Res 8:303–306

    Article  CAS  PubMed  Google Scholar 

  • Krysiak C, Mazuś B, Buchowicz J (1999b) Generation of DNA double-strand breaks and inhibition of somatic embryogenesis by tungsten microparticles in wheat. Plant Cell Tissue Organ Cult 58:163–170

    Article  CAS  Google Scholar 

  • Nymark M, Sharma A, Sparstad T, Bones AM, Winge P (2016) A CRISPR/Cas9 system adapted for gene editing in marine algae. Sci Rep 6:24951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poliner E, Takeuchi T, Du Z-Y, Benning C, Farre E (2018) Non-transgenic marker-free gene disruption by an episomal CRISPR system in the oleaginous microalga, Nannochloropsis oceanica CCMP1779. ACS Synth Biol 7:962–968

    Article  CAS  PubMed  Google Scholar 

  • Ramundo S, Rochaix JD (2015) Controlling expression of genes in the unicellular alga Chlamydomonas reinhardtii with a vitamin-repressible riboswitch. Methods Enzymol 550:267–281

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro LF, Ribeiro LF, Barreto MQ, Ward RJ (2018) Protein engineering strategies to expand CRISPR-Cas9 applications. Int J Genomics 2018:1652567. https://doi.org/10.1155/2018/1652567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saksmerprome V, Charoonnart P, Gangnonngiw W, Withyachumnarnkul B (2009) A novel and inexpensive application of RNAi technology to protect shrimp from viral disease. J Virol Methods 162:213–217

    Article  CAS  PubMed  Google Scholar 

  • Serif M, Dubois G, Finoux A-L, Teste M-A, Jallet D, Daboussi F (2018) One-step generation of multiple gene knock-outs in the diatom Phaeodactylum tricornutum by DNA-free genome editing. Nat Commun 9:3924

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma AK, Nymark M, Sparstad T, Bones AM, Winge P (2018) Transgene‐free genome editing in marine algae by bacterial conjugation – comparison with biolistic CRISPR/Cas9 transformation. Sci Rep 8:14401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin S-E, Lim J-M, Koh H, Kim E, Kang N, Jeon S, Kwon S et al (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slattery SS, Diamond A, Wang H, Therrien JA, Lant JT, Jazey T, Lee K et al (2018) An expanded plasmid-based genetic toolbox enables Cas9 genome editing and stable maintenance of synthetic pathways in Phaeodactylum tricornutum. ACS Synth Biol 7:328338

    Article  Google Scholar 

  • Somchai P, Jitrakorn S, Thitamadee S, Meetam M, Saksmerprome V (2016) Use of microalgae Chlamydomonas reinhardtii for production of double-stranded RNA against shrimp virus. Aquacult Rep 3:178–183

    Article  Google Scholar 

  • Stukenberg D, Zauner S, Dell’Aquila G, Maier UG (2018) Optimizing CRISPR/Cas9 for the Diatom Phaeodactylum tricornutum. Front Plant Sci 9:740

    Article  PubMed  PubMed Central  Google Scholar 

  • Twyman RM, Christou P (2004) Plant transformation technology: particle bombardment. In: Handbook of plant biotechnology. https://doi.org/10.1002/0470869143.kc015

    Chapter  Google Scholar 

  • Verruto J, Francis K, Wang Y, Low MC, Greiner J, Tacke S, Kuzminov F et al (2018) Unrestrained markerless trait stacking in Nannochloropsis gaditana through combined genome editing and marker recycling technologies. Proc Natl Acad Sci 115:201718193

    Article  Google Scholar 

  • Wang Q, Lu Y, Xin Y, Wei L, Huang S, Xu J (2016) Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. Plant J 88:1071–1081

    Article  CAS  PubMed  Google Scholar 

  • Wolfs JM, Hamilton TA, Lant JT, Laforet M, Zhang J, Salemi LM, Gloor GB et al (2016) Biasing genome-editing events toward precise length deletions with an RNA-guided TevCas9 dual nuclease. Proc Natl Acad Sci 113:14988–14993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reuben B. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brown, R.B., Wass, T.J., Schenk, P.M. (2020). Synthetic Biology Tools for Microalgae. In: Nathani, N.M., Mootapally, C., Gadhvi, I.R., Maitreya, B., Joshi, C.G. (eds) Marine Niche: Applications in Pharmaceutical Sciences . Springer, Singapore. https://doi.org/10.1007/978-981-15-5017-1_13

Download citation

Publish with us

Policies and ethics