Skip to main content

Emission of Greenhouse Gases from Soil: An Assessment of Agricultural Management Practices

  • Chapter
  • First Online:
Plant Responses to Soil Pollution
  • 703 Accesses

Abstract

Increasing concentrations of the atmospheric greenhouse gases (GHGs) are serious threats to the living beings and their niches. The rapid increase in GHGs is undoubtedly related to anthropogenic activities. Literature related to GHG emissions and mitigation approaches is widely available, but very few reviews concentrated on spatial-temporal trends of GHG emission from the agriculture sector. Agriculture is a potent contributor to GHG emissions, involving different agricultural practices followed by the farmers, which affect the rate of emission either positively or negatively. Agricultural soil management practices add excess nutrients, which disturb the natural mineral cycling leading to soil and water pollution and increase emission from soil to atmosphere, thus contributing to climate change. Research papers and reports related to GHG emission from different agricultural sectors in different parts of the world were reviewed to find the variations in emission pattern and intensities, and the factors influencing the emissions from the soil. The soil GHG emissions are directly or indirectly modified by natural as well as anthropogenic factors, like pH, soil texture, tilling, fertilizer application, mulching, irrigation, etc. The determinants taking part in the soil GHG emissions varied with region and different agricultural practices. Different mitigation approaches for GHGs from the agriculture sector were also compared for their efficacy in reducing emissions. A variety of advanced techniques developed to enhance the yield of crops were found to influence GHG emissions by direct influence on soil pH, temperature, and moisture. The conditions favorable for GHG emissions can be modified to reduce the emissions as the soil acts both as a reservoir and as an emitter of GHGs based on local natural and anthropogenic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas F, Hammad HM, Fahad S, Cerdà A, Rizwan M, Farhad W, Ehsan S, Bakhat HF (2017) Agroforestry: a sustainable environmental practice for carbon sequestration under the climate change scenarios—a review. Environ Sci Pollut Res Int 24(12):11177–11191

    Article  CAS  PubMed  Google Scholar 

  • Abbasi MK, Adams WA (2000) Gaseous N emission during simultaneous nitrification–denitrification associated with mineral N fertilization to a grassland soil under field conditions. Soil Biol Biochem 32(8–9):1251–1259

    Article  CAS  Google Scholar 

  • Almaraz JJ, Zhou X, Mabood F, Madramootoo C, Rochette P, Ma BL, Smith DL (2009) Greenhouse gas fluxes associated with soybean production under two tillage systems in Southwestern Quebec. Soil Till Res 104(1):134–139

    Article  Google Scholar 

  • Babu YJ, Nayak DR, Adhya TK (2006) Potassium application reduces methane emission from a flooded field planted to rice. Biol Fertil Soils 42(6):532–541

    Article  CAS  Google Scholar 

  • Baggs EM, Rees RM, Smith KA, Vinten AJA (2000) Nitrous oxide emission from soils after incorporating crop residues. Soil Use Manage 16(2):82–87

    Article  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8(1):1–16

    Article  Google Scholar 

  • Behnke GD, Zuber SM, Pittelkow CM, Nafziger ED, Villamil MB (2018) Long-term crop rotation and tillage effects on soil greenhouse gas emissions and crop production in Illinois, USA. Agric Ecosyst Environ 261:62–70

    Article  CAS  Google Scholar 

  • Berglund Ö, Berglund K, Klemedtsson L (2010) A lysimeter study on the effect of temperature on CO2 emission from cultivated peat soils. Geoderma 154(3–4):211–218

    Article  CAS  Google Scholar 

  • Bhatia A, Pathak H, Jain N, Singh PK, Tomer R (2012) Greenhouse gas mitigation in rice–wheat system with leaf color chart-based urea application. Environ Monit Assess 184(5):3095–3107

    Article  CAS  PubMed  Google Scholar 

  • Birch HF (1958) The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil 10(1):9–31

    Article  CAS  Google Scholar 

  • Bodelier PL, Roslev P, Henckel T, Frenzel P (2000) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403(6768):421

    Article  CAS  PubMed  Google Scholar 

  • Bouwman AF (1990) Soils and the greenhouse effect. Wiley, New York

    Google Scholar 

  • Bouwman AF (1996) Direct emission of nitrous oxide from agricultural soils. Nutr Cycl Agroecosyst 46(1):53–70

    Article  CAS  Google Scholar 

  • Brentrup F, Küsters J, Lammel J, Kuhlmann H (2000) Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int J Life Cycle Assess 5(6):349

    Article  CAS  Google Scholar 

  • Cayuela ML, Van Zwieten L, Singh BP, Jeffery S, Roig A, Sánchez-Monedero MA (2014) Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agric Ecosyst Environ 191:5–16

    Article  CAS  Google Scholar 

  • CDIAC (Carbon Dioxide Information Analysis Center) (2016). http://cdiac.ess-dive.lbl.gov/pns/current ghg.html. Accessed 10 Jan 2018

  • Chapuis-Lardy L, Wrage-Monnig N, Metay A, Chotte JL, Bernoux M (2007) Soils, a sink for N2O? A review. Glob Chang Biol 13(1):1–17

    Article  Google Scholar 

  • Cha-un N, Chidthaisong A, Yagi K, Sudo S, Towprayoon S (2017) Greenhouse gas emissions, soil carbon sequestration and crop yields in a rain-fed rice field with crop rotation management. Agric Ecosyst Environ 237:109–120

    Article  CAS  Google Scholar 

  • ÄŒuhel J, Å imek M, Laughlin RJ, Bru D, Chèneby D, Watson CJ, Philippot L (2010) Insights into the effect of soil pH on N2O and N2 emissions and denitrifier community size and activity. Appl Environ Microbiol 76(6):1870–1878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Da Cunha-Santino MB, Bitar AL, Junior IB (2016) Gas emission from anaerobic decomposition of plant resources. Acta Limnol Brasiliensia 28:e30

    Article  CAS  Google Scholar 

  • Dahlman L (2017) Climate change: global temperature. https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature. Accessed 24 Feb 2018

  • Dalal RC, Allen DE (2008) Greenhouse gas fluxes from natural ecosystems. Aust J Bot 56(5):369–407

    Article  CAS  Google Scholar 

  • Das S, Ghosh A, Adhya TK (2011) Nitrous oxide and methane emission from a flooded rice field as influenced by separate and combined application of herbicides bensulfuron methyl and pretilachlor. Chemosphere 84(1):54–62

    Article  CAS  PubMed  Google Scholar 

  • Denef K, Stewart CE, Brenner J, Paustian K (2008) Does long-term center-pivot irrigation increase soil carbon stocks in semi-arid agro-ecosystems? Geoderma 145(1–2):121–129

    Article  CAS  Google Scholar 

  • Dilustro JJ, Collins B, Duncan L, Crawford C (2005) Moisture and soil texture effects on soil CO2 efflux components in southeastern mixed pine forests. For Ecol Manage 204(1):87–97

    Article  Google Scholar 

  • ESRL GMD (Earth System Research Laboratory Global Monitoring Division) (2014) CDIAC (Carbon Dioxide information analysis center). https://www.esrl.noaa.gov/gmd/ccgg/trends/ff.html. Accessed 28 Feb 2018

  • ESRL GMD (Earth System Research Laboratory Global Monitoring Division) (2016). https://www.esrl.noaa.gov/gmd/dv/iadv/graph.php?code=MLO&program=ozwv&type=ts. Accessed 28 Feb 2018

  • FAO (Food and Agriculture Organization) (2003) World Agriculture: towards 2015/2030 - an FAO perspective. http://www.fao.org/docrep/005/y4252e/y4252e06.html. Accessed 3 Mar 2018

  • FAO (Food and Agriculture Organization). http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/. Accessed 3 Mar 2018

  • Freibauer A, Rounsevell MD, Smith P, Verhagen J (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma 122(1):1–23

    Article  CAS  Google Scholar 

  • Fuhrer J (2003) Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agric Ecosyst Environ 97(1–3):1–20

    Article  CAS  Google Scholar 

  • Gao B, Ju X, Su F, Meng Q, Oenema O, Christie P, Chen X, Zhang F (2014) Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China plain: a two-year field study. Sci Tot Environ 472:112–124

    Article  CAS  Google Scholar 

  • Garcia JL, Patel BK, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6(4):205–226

    Article  CAS  PubMed  Google Scholar 

  • Goldberg SD, Gebauer G (2009) N2O and NO fluxes between a Norway spruce forest soil and atmosphere as affected by prolonged summer drought. Soil Biol Biochem 41(9):1986–1995

    Article  CAS  Google Scholar 

  • Gomes J, Bayer C, de Souza Costa F, de Cassia Piccolo M, Zanatta JA, Vieira FCB, Six J (2009) Soil nitrous oxide emissions in long-term cover crops-based rotations under subtropical climate. Soil Till Res 106(1):36–44

    Article  Google Scholar 

  • Gregorich EG, Rochette P, Vanden Bygaart AJ, Angers DA (2005) Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil Till Res 83(1):53–72

    Article  Google Scholar 

  • Grybos M, Davranche M, Gruau G, Petitjean P, Pédrot M (2009) Increasing pH drives organic matter solubilization from wetland soils under reducing conditions. Geoderma 154(1–2):13–19

    Article  CAS  Google Scholar 

  • Gupta DK, Bhatia A, Kumar A, Das TK, Jain N, Tomer R, Malyan SK, Fagodiya RK, Dubey R, Pathak H (2016) Mitigation of greenhouse gas emission from rice–wheat system of the Indo-Gangetic plains: through tillage, irrigation and fertilizer management. Agric Ecosyst Environ 230:1–9

    Article  CAS  Google Scholar 

  • INCCA (Indian Network for Climate Change Assessment) (2010, May) India: greenhouse gas emissions 2007. Ministry of Environment and Forests, Government of India, New Delhi

    Google Scholar 

  • IPCC (2007) Fourth assessment report of the Intergovernmental Panel on Climate Change. http://www.ipcc.ch/report/ar4/. Accessed 25 Jan 2018

  • IPCC (2014) Fifth assessment report of the Intergovernmental Panel on Climate Change. http://www.ipcc.ch/report/ar5/. Accessed 25 Jan 2018

  • Islam SFU, Van Groenigen JW, Jensen LS, Sander BO, de Neergaard A (2018) The effective mitigation of greenhouse gas emissions from rice paddies without compromising yield by early-season drainage. Sci Tot Environ 612:1329–1339

    Article  CAS  Google Scholar 

  • Jain N, Arora P, Tomer R, Mishra SV, Bhatia A, Pathak H, Chakraborty D, Kumar V, Dubey DS, Harit RC, Singh JP (2016) Greenhouse gases emission from soils under major crops in Northwest India. Sci Tot Environ 542:551–561

    Article  CAS  Google Scholar 

  • Jena UR, Swain DK, Hazra KK, Maity MK (2018) Effect of elevated [CO2] on yield, intra–plant nutrient dynamics, and grain quality of rice cultivars in Eastern India. J Sci Food Agric 98:5841. https://doi.org/10.1002/jsfa.9135

    Article  CAS  PubMed  Google Scholar 

  • Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJ, Morrison MJ (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron Sustain Dev 32(2):329–364

    Article  CAS  Google Scholar 

  • Jia Z, Cai Z, Xu H, Li X (2001) Effect of rice plants on CH4 production, transport, oxidation and emission in rice paddy soil. Plant Soil 230(2):211–221

    Article  CAS  Google Scholar 

  • Junna S, Bingchen W, Gang X, Hongbo S (2014) Effects of wheat straw biochar on carbon mineralization and guidance for large-scale soil quality improvement in the coastal wetland. Ecol Eng 62:43–47

    Article  Google Scholar 

  • Kallenbach CM, Rolston DE, Horwath WR (2010) Cover cropping affects soil N2O and CO2 emissions differently depending on type of irrigation. Agric Ecosyst Environ 137(3–4):251–260

    Article  CAS  Google Scholar 

  • Kang MS, Banga SS (2013) Global agriculture and climate change. J Crop Improve 27(6):667–692

    Article  Google Scholar 

  • Karhu K, Mattila T, Bergström I, Regina K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity–results from a short-term pilot field study. Agric Ecosyst Environ 140(1–2):309–313

    Article  CAS  Google Scholar 

  • Kyaw KM, Toyota K (2007) Suppression of nitrous oxide production by the herbicides glyphosate and propanil in soils supplied with organic matter. Soil Sci Plant Nutr 53(4):441–447

    Article  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123(1–2):1–22

    Article  CAS  Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37(1):25–50

    Article  Google Scholar 

  • Linquist B, van Groenigen KJ, Adviento-Borbe MA, Pittelkow C, van Kessel C (2012) An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob Chang Biol 18(1):194–209

    Article  Google Scholar 

  • Liu XJ, Mosier AR, Halvorson AD, Zhang FS (2006) The impact of nitrogen placement and tillage on NO, N2O, CH4 and CO2 fluxes from a clay loam soil. Plant Soil 280(1–2):177–188

    Article  CAS  Google Scholar 

  • Liu C, Wang K, Meng S, Zheng X, Zhou Z, Han S, Chen D, Yang Z (2011) Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat–maize rotation field in northern China. Agric Ecosyst Environ 140(1–2):226–233

    Article  CAS  Google Scholar 

  • Liu S, Ji C, Wang C, Chen J, Jin Y, Zou Z, Li S, Niu S, Zou J (2018) Climatic role of terrestrial ecosystem under elevated CO2: a bottom-up greenhouse gases budget. Ecol Lett 21(7):1108–1118

    Article  PubMed  Google Scholar 

  • Lobell DB, Bänziger M, Magorokosho C, Vivek B (2011) Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat Clim Chang 1(1):42

    Article  Google Scholar 

  • Ludwig J, Meixner FX, Vogel B, Förstner J (2001) Soil-air exchange of nitric oxide: an overview of processes, environmental factors, and modeling studies. Biogeochemistry 52(3):225–257

    Article  CAS  Google Scholar 

  • Ma J, Li XL, Xu H, Han Y, Cai ZC, Yagi K (2007) Effects of nitrogen fertilizer and wheat straw application on CH4 and N2O emissions from a paddy rice field. Soil Res 45(5):359–367

    Article  CAS  Google Scholar 

  • Marcotullio PJ, Sarzynski A, Albrecht J, Schulz N (2012) The geography of urban greenhouse gas emissions in Asia: a regional analysis. Glob Environ Chang 22(4):944–958

    Article  Google Scholar 

  • Mishra AK, Agrawal SB (2014) Cultivar specific response of CO2 fertilization on two tropical mung bean (Vigna radiata L.) cultivars: ROS generation, antioxidant status, physiology, growth, yield and seed quality. J Agron Crop Sci 200(4):273–289

    Article  CAS  Google Scholar 

  • Mohanty SR, Bharati K, Moorthy BTS, Ramakrishnan B, Rao VR, Sethunathan N, Adhya TK (2001) Effect of the herbicide butachlor on methane emission and ebullition flux from a direct-seeded flooded rice field. Biol Fertil Soils 33(3):175–180

    Article  CAS  Google Scholar 

  • Mosier AR, Bleken MA, Chaiwanakupt P, Ellis EC, Freney JR, Howarth RB, Matson PA, Minami K, Naylor R, Weeks K, Zhu Z (2002) Policy implications of human-accelerated nitrogen cycling. In: Boyer EW, Howarth RW (eds) The nitrogen cycle at regional to global scales. Springer, Dordrecht, pp 477–516

    Chapter  Google Scholar 

  • Muhammad W, Vaughan SM, Dalal RC, Menzies NW (2011) Crop residues and fertilizer nitrogen influence residue decomposition and nitrous oxide emission from a Vertisol. Biol Fertil Soils 47(1):15–23

    Article  CAS  Google Scholar 

  • Muñoz C, Paulino L, Monreal C, Zagal E (2010) Greenhouse gas (CO2 and N2O) emissions from soils: a review. Chilean J Agric Res 70(3):485–497

    Article  Google Scholar 

  • Myers SS, Zanobetti A, Kloog I, Huybers P, Leakey AD, Bloom AJ, Carlisle E, Dietterich LH, Fitzgerald G, Hasegawa T, Holbrook NM, Nelson RL, Ottman MJ, Raboy V, Sakai H, Sartor KA, Schwartz J, Seneweera S, Tausz M, Usui Y (2014) Increasing CO2 threatens human nutrition. Nature 510(7503):139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NASA (National Aeronautics and Space Administration) (2010) Earth observatory. https://earthobservatory.nasa.gov/Features/GlobalWarming/page2.php. Accessed 27 Dec 2017

  • Nath CP, Das TK, Rana KS, Bhattacharyya R, Pathak H, Paul S, Meena MC, Singh SB (2017) Greenhouse gases emission, soil organic carbon and wheat yield as affected by tillage systems and nitrogen management practices. Arch Agron Soil Sci 63(12):1644–1660

    Article  CAS  Google Scholar 

  • Nelson PN, Ladd JN, Oades JM (1996) Decomposition of 14C-labelled plant material in a salt-affected soil. Soil Biol Biochem 28(4–5):433–441

    Article  CAS  Google Scholar 

  • Nishiwaki J, Mizoguchi M, Noborio K (2015) Greenhouse gas emissions from paddy fields with different organic matter application rates and water management practices. J Dev Sustain Agric 10(1):1–6

    Google Scholar 

  • Pandey D, Agrawal M (2015) Greenhouse gas fluxes from sugarcane and pigeon pea cultivated soils. Agric Res 4(3):245–253

    Article  CAS  Google Scholar 

  • Pandey D, Agrawal M, Bohra JS (2012) Greenhouse gas emissions from rice crop with different tillage permutations in rice–wheat system. Agric Ecosyst Environ 159:133–144

    Article  CAS  Google Scholar 

  • Pathak H, Rao DLN (1998) Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biol Biochem 30(6):695–702

    Article  CAS  Google Scholar 

  • Pathak H, Bhatia A, Jain N, Aggarwal PK (2010) Greenhouse gas emission and mitigation in Indian agriculture–a review. ING Bulletins Regional Assess Reactive Nitrogen 19:1–34

    Google Scholar 

  • Peyron M, Bertora C, Pelissetti S, Said-Pullicino D, Celi L, Miniotti E, Romani M, Sacco D (2016) Greenhouse gas emissions as affected by different water management practices in temperate rice paddies. Agric Ecosyst Environ 232:17–28

    Article  CAS  Google Scholar 

  • Poffenbarger HJ, Needelman BA, Megonigal JP (2011) Salinity influence on methane emissions from tidal marshes. Wetlands 31(5):831–842

    Article  Google Scholar 

  • Prasad PV, Boote KJ, Allen LH Jr (2006) Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric For Meteorol 139(3–4):237–251

    Article  Google Scholar 

  • Prasad PV, Bheemanahalli R, Jagadish SK (2017) Field crops and the fear of heat stress—opportunities, challenges and future directions. Field Crops Res 200:114–121

    Article  Google Scholar 

  • Reay D, Grace J (2007) Carbon dioxide: importance sources and sinks. In: Reay D, Hewitt CN, Smith K, Grace J (eds) Greenhouse gas sinks. CAB International, Wallingford, pp 1–10

    Chapter  Google Scholar 

  • Sánchez B, Rasmussen A, Porter JR (2014) Temperatures and the growth and development of maize and rice: a review. Glob Chang Biol 20(2):408–417

    Article  PubMed  Google Scholar 

  • Schaufler G, Kitzler B, Schindlbacher A, Skiba U, Sutton MA, Zechmeister-Boltenstern S (2010) Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature. Eur J Soil Sci 61(5):683–696

    Article  CAS  Google Scholar 

  • Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci 106(37):15594–15598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scialabba NEH, Müller-Lindenlauf M (2010) Organic agriculture and climate change. Renew Agric Food Syst 25(2):158–169

    Article  Google Scholar 

  • Shang Q, Yang X, Gao C, Wu P, Liu J, Xu Y, Shen Q, Zou J, Guo S (2011) Net annual global warming potential and greenhouse gas intensity in Chinese double rice cropping systems: a 3 year field measurement in long-term fertilizer experiments. Glob Chang Biol 17(6):2196–2210

    Article  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenke O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B Biol Sci 363(1492):789–813

    Article  CAS  Google Scholar 

  • Soane BD, Ball BC, Arvidsson J, Basch G, Moreno F, Roger-Estrade J (2012) No-till in Northern, Western and South-Western Europe: a review of problems and opportunities for crop production and the environment. Soil Till Res 118:66–87

    Article  Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    Article  CAS  Google Scholar 

  • Sponseller RA (2007) Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem. Glob Chang Biol 13(2):426–436

    Article  Google Scholar 

  • Stevens RJ, Laughlin RJ (1998) Measurement of nitrous oxide and di-nitrogen emissions from agricultural soils. Nutr Cycling Agroecosyst 52(2–3):131–139

    Article  CAS  Google Scholar 

  • Tan IYS, van Es HM, Duxbury JM, Melkonian JJ, Schindelbeck RR, Geohring LD, Hively WD, Moebius BN (2009) Single-event nitrous oxide losses under maize production as affected by soil type, tillage, rotation, and fertilization. Soil Till Res 102(1):19–26

    Article  Google Scholar 

  • Tang J, Baldocchi DD, Qi Y, Xu L (2003) Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors. Agric For Meteor 118(3–4):207–220

    Article  Google Scholar 

  • Tang J, Liang S, Li Z, Zhang H, Wang S, Zhang N (2016) Emission laws and influence factors of greenhouse gases in saline-alkali paddy fields. Sustainability 8(2):163

    Article  CAS  Google Scholar 

  • Thangarajan R, Bolan NS, Tian G, Naidu R, Kunhikrishnan A (2013) Role of organic amendment application on greenhouse gas emission from soil. Sci Tot Environ 465:72–96

    Article  CAS  Google Scholar 

  • Thomson AJ, Giannopoulos G, Pretty J, Baggs EM, Richardson DJ (2012) Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philos Trans R Soc Biol Sci 367:1157–1168

    Article  CAS  Google Scholar 

  • Tiwari S, Agrawal M (2018) Tropospheric ozone and its impacts on crop plants: a threat to future global food security. Springer, Cham

    Book  Google Scholar 

  • Toma Y, Hatano R (2007) Effect of crop residue C: N ratio on N2O emissions from Gray Lowland soil in Mikasa, Hokkaido, Japan. Soil Sci Plant Nutr 53(2):198–205

    Article  CAS  Google Scholar 

  • Tongwane M, Mdlambuzi T, Moeletsi M, Tsubo M, Mliswa V, Grootboom L (2016) Greenhouse gas emissions from different crop production and management practices in South Africa. Environ Dev 19:23–35

    Article  Google Scholar 

  • Tubiello FN, Salvatore M, Rossi S, Ferrara A, Fitton N, Smith P (2013) The FAOSTAT database of greenhouse gas emissions from agriculture. Environ Res Lett 8(1):015009

    Article  Google Scholar 

  • U.S. EIA, U.S. Energy Information Administration (2016, August) The annual energy outlook 2016 with projection to 2040. U.S. EIA, U.S. Energy Information Administration, Washington

    Google Scholar 

  • U.S. EPA (United States Environmental Protection Agency) (2016). https://www.epa.gov/ghgemissions. Accessed 25 Jan 2018

  • US EPA (United States Environmental Protection Agency) (2017). https://www.epa.gov/climate-indicators/greenhouse-gases. Accessed 25 Jan 2018

  • Wang ZP, Delaune RD, Patrick WH, Masscheleyn PH (1993) Soil redox and pH effects on methane production in a flooded rice soil. Soil Sci Soc Am J 57(2):382–385

    Article  CAS  Google Scholar 

  • Wang Z, Zeng D, Patrick WH (1996) Methane emissions from natural wetlands. Environ Monitor Assess 42(1–2):143–161

    Article  CAS  Google Scholar 

  • WDCGG, World Data Centre for Greenhouse Gases (2016). http://ds.data.jma.go.jp/gmd/wdcgg/pub/global/2017/. Accessed 10 Mar 2018

  • Weston NB, Neubauer SC, Velinsky DJ, Vile MA (2014) Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient. Biogeochemistry 120(1–3):163–189

    Article  CAS  Google Scholar 

  • Wu X, Yao Z, Brüggemann N, Shen ZY, Wolf B, Dannenmann M, Zheng X, Butterbach-bahl K (2010) Effects of soil moisture and temperature on CO2 and CH4 soil–atmosphere exchange of various land use/cover types in a semi-arid grassland in Inner Mongolia, China. Soil Biol Biochem 42(5):773–787

    Article  CAS  Google Scholar 

  • Yao Z, Zheng X, Dong H, Wang R, Mei B, Zhu J (2012) A 3-year record of N2O and CH4 emissions from a sandy loam paddy during rice seasons as affected by different nitrogen application rates. Agric Ecosyst Environ 152:1–9

    Article  CAS  Google Scholar 

  • Yao Z, Zheng X, Zhang Y, Liu C, Wang R, Lin S, Zhao Q, Butterbach-Bahl K (2017) Urea deep placement reduces yield-scaled greenhouse gas (CH4 and N2O) and NO emissions from a ground cover rice production system. SC Rep 7(1):11415

    Article  CAS  Google Scholar 

  • Ye R, Jin Q, Bohannan B, Keller JK, McAllister SA, Bridgham SD (2012) pH controls over anaerobic carbon mineralization, the efficiency of methane production, and methanogenic pathways in peatlands across an ombrotrophic–minerotrophic gradient. Soil Biol Biochem 54:36–47

    Article  CAS  Google Scholar 

  • Zhang J, Han X (2008) N2O emission from the semi-arid ecosystem under mineral fertilizer (urea and superphosphate) and increased precipitation in Northern China. Atmos Environ 42(2):291–302

    Article  CAS  Google Scholar 

  • Zhang A, Cui L, Pan G, Li L, Hussain Q, Zhang X, Zheng J, Crowley D (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric Ecosyst Environ 139(4):469–475

    Article  CAS  Google Scholar 

  • Ziska LH (2000) The impact of elevated CO2 on yield loss from a C3 and C4 weed in field grown soybean. Glob Chang Biol 6(8):899–905

    Article  Google Scholar 

  • Zou J, Huang Y, Jiang J, Zheng X, Sass RL (2005) A 3 year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer application. Global Biogeochem Cycles 19(2):GB2021. https://doi.org/10.1029/2004GB002401

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Head, Department of Botany, Coordinators DST FIST, CAS, ISLS for laboratory and library facilities. Financial support from APN (Asia Pacific Network) project (CRRP2016-09MY-Lokupitaiya) and UGC JRF & SRF to Bhavna Jaiswal are also acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jaiswal, B., Mukherjee, A., Pandey, B., Agrawal, M. (2020). Emission of Greenhouse Gases from Soil: An Assessment of Agricultural Management Practices. In: Singh, P., Singh, S.K., Prasad, S.M. (eds) Plant Responses to Soil Pollution. Springer, Singapore. https://doi.org/10.1007/978-981-15-4964-9_14

Download citation

Publish with us

Policies and ethics