Skip to main content

Nanophytomedicine Ethical Issues, Regulatory Aspects, and Challenges

  • Chapter
  • First Online:
Nanophytomedicine

Abstract

Herbal medicines have been used around the globe since times immemorial. Nanophytomedicine is an emerging domain of medicine which helps to encapsulate the active phytoconstituents from medicinal plants and treat various diseases such as cancer and diabetes. So it is very crucial to identify the potential active phytoconstituents and encapsulate them to treat diseases without any major side effects. Nanophytomedicine has led to increment in the bioavailability of water and therapeutic compounds which are insoluble by utilizing drug formulations of various combinatorial. Increasing evidence has suggested that phyto-bioactive compounds show enhanced benefits in curing various diseases. Curcumin, resveratrol, ginsenosides, quercetin, and catechin are phyto-derived bioactive compounds with important roles in the prevention and treatment of neurological diseases. However, in vivo studies suggest that their concentrations are very low to cross blood–brain barrier thereby it limits bioavailability, stability, and dissolution at target sites in the brain. To overcome these problems, nanophytomedicine with the controlled size of 1–100 nm is used to maximize efficiency. Nanosizing of phyto-bioactive compounds enhances the permeability into the brain with maximized efficiency and stability. Several nano-delivery techniques, including solid lipid nanoparticles, nanostructured lipid carriers, nanoliposomes, and nanoniosomes can be used for controlled delivery of nano-bioactive compounds to brain. Nanocompounds, such as ginsenosides (19.9 nm) synthesized using a nanoemulsion technique, showed enhanced bioavailability in the rat brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng Z, Zhen C (2004) The Cheng Zhi-Fan collectanea of medical history. Peking University Medical Press, Beijing

    Google Scholar 

  2. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70(3):461–477

    CAS  PubMed  Google Scholar 

  3. Anagnostaki EE, Zografos AL (2012) “Common synthetic scaffolds” in the synthesis of structurally diverse natural products. Chem Soc Rev 41(17):5613–5625

    CAS  PubMed  Google Scholar 

  4. Newman DJ (2008) Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem 51(9):2589–2599

    CAS  PubMed  Google Scholar 

  5. Khare CP (2004) Indian herbal remedies: rational Western therapy, ayurvedic, and other traditional usage. Springer, New York

    Google Scholar 

  6. Rasoanaivo P et al (2011) Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malar J 10(1):S4

    PubMed  PubMed Central  Google Scholar 

  7. Javed MN, Alam MS, Waziri A, Pottoo FH, Yadav AK, Hasnain MS, Almalki FA (2019) QbD applications for the development of nanopharmaceutical products. In: Pharmaceutical quality by design. Academic Press, New York, pp 229–253

    Google Scholar 

  8. Javed MN, Kohli K, Amin S (2018) Risk assessment integrated QbD approach for development of optimized bicontinuous mucoadhesive limicubes for oral delivery of rosuvastatin. AAPS PharmSciTech 19(3):1377–1391

    CAS  PubMed  Google Scholar 

  9. Ghosh V et al (2013) Antibacterial microemulsion prevents sepsis and triggers healing of wound in wistar rats. Colloids Surf B: Biointerfaces 105:152–157

    CAS  PubMed  Google Scholar 

  10. Rajendran R et al (2013) Development of antimicrobial cotton fabrics using herb loaded nanoparticles. Carbohydr Polym 91(2):613–617

    CAS  PubMed  Google Scholar 

  11. Alam MS, Javed MN, Pottoo FH, Waziri A, Almalki FA, Hasnain MS, Garg A, Saifullah MK (2019) QbD approached comparison of reaction mechanism in microwave synthesized gold nanoparticles and their superior catalytic role against hazardous nitro-dye. Appl Organomet Chem 33(9):e5071

    Google Scholar 

  12. Alam MS, Garg A, Pottoo FH, Saifullah MK, Tareq AI, Manzoor O, Mohsin M, Javed MN (2017) Gum ghatti mediated, one pot green synthesis of optimized gold nanoparticles: Investigation of process-variables impact using Box-Behnken based statistical design. Int J Biol Macromol 104:758–767

    CAS  PubMed  Google Scholar 

  13. Hasnain MS, Javed MN, Alam MS, Rishishwar P, Rishishwar S, Ali S, Nayak AK, Beg S (2019) Purple heart plant leaves extract-mediated silver nanoparticle synthesis: optimization by Box-Behnken design. Mater Sci Eng C 99:1105–1114

    CAS  Google Scholar 

  14. Sharma S, Javed MN, Pottoo FH, Rabbani SA, Barkat M, Sarafroz M, Amir M (2019) Bioresponse inspired nanomaterials for targeted drug and gene delivery. Pharma Nanotechnol 7(3):220–233

    CAS  Google Scholar 

  15. Mishra S, Sharma S, Javed MN, Pottoo FH, Barkat MA, Alam MS, Amir M, Sarafroz M (2019) Bioinspired nanocomposites: applications in disease diagnosis and treatment. Pharma Nanotechnol 7(3):206–219

    CAS  Google Scholar 

  16. Dorocki S, Kula A (2015) Przestrzenne zróżnicowanie rozwoju nanotechnologii w Europie. Prace Komisji Geografii Przemysłu Polskiego Towarzystwa Geograficznego 1(29):27–41

    Google Scholar 

  17. Pottoo FH, Barkat MA, Ansari MA, Javed MN, Jamal QM, Kamal MA (2019) Nanotechnologoical based miRNA intervention in the therapeutic management of neuroblastoma. Sem Cancer Biol. https://doi.org/10.1016/j.semcancer.2019a.09.017

  18. Pottoo FH, Tabassum N, Javed MN, Nigar S, Sharma S, Barkat MA, Alam MS, Ansari MA, Barreto GE, Ashraf GM (2020) Raloxifene potentiates the effect of fluoxetine against maximal electroshock induced seizures in mice. Eur J Pharm Sci. https://doi.org/10.1016/j.ejps.2020.105261

  19. Nigar S, Pottoo FH, Tabassum N, Verma SK, Javed MN (2016) Molecular insights into the role of inflammation and oxidative stress in epilepsy. J Adv Med Pharma Sci 10(1):1–9

    Google Scholar 

  20. Pottoo FH, Javed M, Barkat M, Alam M, Nowshehri JA, Alshayban DM, Ansari MA (2019) Estrogen and serotonin: complexity of interactions and implications for epileptic seizures and epileptogenesis. Curr Neuropharmacol 17(3):214–231

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pottoo FH, Tabassum N, Javed MN, Nigar S, Rasheed R, Khan A, Barkat MA, Alam MS, Maqbool A, Ansari MA, Barreto GE (2019) The synergistic effect of raloxifene, fluoxetine, and bromocriptine protects against pilocarpine-induced status epilepticus and temporal lobe epilepsy. Mol Neurobiol 56(2):1233–1247

    CAS  PubMed  Google Scholar 

  22. Ferreira VF, Pinto AC (2010) A fitoterapia no mundo atual. Quím Nova 33(9):1829–1829

    CAS  Google Scholar 

  23. Phillipson JD (2001) Phytochemistry and medicinal plants. Phytochemistry 56(3):237–243

    CAS  PubMed  Google Scholar 

  24. Mara Mainardes R et al (2006) Liposomes and micro/nanoparticles as colloidal carriers for nasal drug delivery. Curr Drug Deliv 3(3):275–285

    Google Scholar 

  25. Grill AE et al (2009) A review of select recent patents on novel nanocarriers. Recent Pat Drug Deliv Formul 3(2):137–142

    CAS  PubMed  Google Scholar 

  26. Chorilli M et al (2007) Aspectos gerais em sistemas transdérmicos de liberação de fármacos. Rev Bras Farm 88(1):7–13

    CAS  Google Scholar 

  27. Bonifacio BV et al (2014) Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine 9:1

    PubMed  Google Scholar 

  28. Harshita A et al (2019) Nanopaclitaxel therapy: an evidence based review on the battle for next-generation formulation challenges. Nanomedicine 14(10):1323–1341

    CAS  Google Scholar 

  29. Sofias AM et al (2017) The battle of “nano” paclitaxel. Adv Drug Deliv Rev 122:20–30

    CAS  PubMed  Google Scholar 

  30. Bernabeu E et al (2017) Paclitaxel: what has been done and the challenges remain ahead. Int J Pharm 526(1-2):474–495

    CAS  PubMed  Google Scholar 

  31. Barkat MA et al (2019) Paclitaxel-loaded nanolipidic carriers with improved oral bioavailability and anticancer activity against human liver carcinoma. AAPS PharmSciTech 20(2):87

    PubMed  Google Scholar 

  32. Kundu P, Mohanty C, Sahoo SK (2012) Antiglioma activity of curcumin-loaded lipid nanoparticles and its enhanced bioavailability in brain tissue for effective glioblastoma therapy. Acta Biomater 8:2670–2687

    CAS  PubMed  Google Scholar 

  33. Li Z et al (2012) Antitumor activity of celastrol nanoparticles in a xenograft retinoblastoma tumor model. Int J Nanomedicine 7:2389

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shi F et al (2012) Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil. Int J Nanomedicine 7:2033

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Deepa V et al (2012) Nanoemulsified ethanolic extract of Pyllanthus amarus Schum & Thonn ameliorates CCl 4 induced hepatotoxicity in Wistar rats. Indian J Exp Biol 50(11):785–794

    CAS  PubMed  Google Scholar 

  36. Han L et al (2012) Co-encapsulation and sustained-release of four components in ginkgo terpenes from injectable PELGE nanoparticles. Fitoterapia 83(4):721–731

    CAS  PubMed  Google Scholar 

  37. Chang L-C et al (2011) Preparation, characterization and cytotoxicity evaluation of tanshinone IIA nanoemulsions. J Biomed Nanotechnol 7(4):558–567

    CAS  PubMed  Google Scholar 

  38. Hu L et al (2010) Preparation and enhanced oral bioavailability of cryptotanshinone-loaded solid lipid nanoparticles. AAPS PharmSciTech 11(2):582–587

    PubMed  PubMed Central  Google Scholar 

  39. Sutthanut K et al (2009) Solid lipid nanoparticles for topical administration of Kaempferia parviflora extracts. J Biomed Nanotechnol 5(2):224–232

    CAS  PubMed  Google Scholar 

  40. Yadav D et al (2011) Novel approach: herbal remedies and natural products in pharmaceutical science as nano drug delivery systems. Int J Pharm Technol 3(3):3092–3116

    CAS  Google Scholar 

  41. Siddique YH et al (2013) Synthesis of alginate-curcumin nanocomposite and its protective role in transgenic Drosophila model of Parkinson’s disease. ISRN Pharmacol 2013:794582

    PubMed  PubMed Central  Google Scholar 

  42. Wang W et al (2012) Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int J Nanomedicine 7:3667

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nair KL et al (2012) Purely aqueous PLGA nanoparticulate formulations of curcumin exhibit enhanced anticancer activity with dependence on the combination of the carrier. Int J Pharm 425(1-2):44–52

    CAS  PubMed  Google Scholar 

  44. Doggui S et al (2012) Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line. J Alzheimers Dis 30(2):377–392

    CAS  PubMed  Google Scholar 

  45. Tsai Y-M et al (2011) Optimised nano-formulation on the bioavailability of hydrophobic polyphenol, curcumin, in freely-moving rats. Food Chem 127(3):918–925

    CAS  PubMed  Google Scholar 

  46. Chang C-Z et al (2015) Curcumin, encapsulated in nano-sized PLGA, down-regulates nuclear factor κB (p65) and subarachnoid hemorrhage induced early brain injury in a rat model. Brain Res 1608:215–224

    CAS  PubMed  Google Scholar 

  47. Tsai W-C et al (2012) Constructing liposomal nanovesicles of ginseng extract against hydrogen peroxide-induced oxidative damage to L929 cells. Food Chem 132(2):744–751

    CAS  Google Scholar 

  48. Mathiyalagan R et al (2014) Ginsenoside compound K-bearing glycol chitosan conjugates: synthesis, physicochemical characterization, and in vitro biological studies. Carbohydr Polym 112:359–366

    CAS  PubMed  Google Scholar 

  49. Frozza RL et al (2010) Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats. J Biomed Nanotechnol 6(6):694–703

    CAS  PubMed  Google Scholar 

  50. Lu X et al (2009) Resveratrol-loaded polymeric micelles protect cells from Aβ-induced oxidative stress. Int J Pharm 375(1-2):89–96

    CAS  PubMed  Google Scholar 

  51. Lee C-W et al (2012) Resveratrol nanoparticle system improves dissolution properties and enhances the hepatoprotective effect of resveratrol through antioxidant and anti-inflammatory pathways. J Agric Food Chem 60(18):4662–4671

    CAS  PubMed  Google Scholar 

  52. Guo W et al (2013) Transferrin modified PEG-PLA-resveratrol conjugates: in vitro and in vivo studies for glioma. Eur J Pharmacol 718(1-3):41–47

    CAS  PubMed  Google Scholar 

  53. Jung K-H et al (2015) Resveratrol-loaded polymeric nanoparticles suppress glucose metabolism and tumor growth in vitro and in vivo. Int J Pharm 478(1):251–257

    CAS  PubMed  Google Scholar 

  54. Dube A, Nicolazzo JA, Larson I (2010) Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (−)-epigallocatechin gallate. Eur J Pharm Sci 41(2):219–225

    CAS  PubMed  Google Scholar 

  55. Liang J et al (2014) Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells. Mater Sci Eng 36:7–13

    CAS  Google Scholar 

  56. Zou L-Q et al (2014) Improved in vitro digestion stability of (−)-epigallocatechin gallate through nanoliposome encapsulation. Food Res Int 64:492–499

    CAS  PubMed  Google Scholar 

  57. Chen C-C et al (2014) Improving anticancer efficacy of (–)-epigallocatechin-3-gallate gold nanoparticles in murine B16F10 melanoma cells. Drug Des Devel Ther 8:459

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hong Z et al (2014) Improving the effectiveness of (−)-epigallocatechin gallate (EGCG) against rabbit atherosclerosis by EGCG-loaded nanoparticles prepared from chitosan and polyaspartic acid. J Agric Food Chem 62(52):12603–12609

    CAS  PubMed  Google Scholar 

  59. Dhawan S, Kapil R, Singh B (2011) Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J Pharm Pharmacol 63(3):342–351

    CAS  PubMed  Google Scholar 

  60. Li H et al (2009) Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release 133(3):238–244

    CAS  PubMed  Google Scholar 

  61. Karadag A, Ozcelik B, Huang Q (2014) Quercetin nanosuspensions produced by high-pressure homogenization. J Agric Food Chem 62(8):1852–1859

    CAS  PubMed  Google Scholar 

  62. Wang G et al (2012) Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death. Int J Nanomedicine 7:271

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Okonogi S, Riangjanapatee P (2015) Physicochemical characterization of lycopene-loaded nanostructured lipid carrier formulations for topical administration. Int J Pharm 478(2):726–735

    CAS  PubMed  Google Scholar 

  64. Ha TVA et al (2015) Antioxidant activity and bioaccessibility of size-different nanoemulsions for lycopene-enriched tomato extract. Food Chem 178:115–121

    CAS  PubMed  Google Scholar 

  65. de Oliveira CC et al (2006) Canova, a Brazilian medical formulation, alters oxidative metabolism of mice macrophages. J Infect 52(6):420–432

    PubMed  Google Scholar 

  66. Ramachandran C et al (2007) Investigation of cytokine expression in human leukocyte cultures with two immune-modulatory homeopathic preparations. J Altern Complementary Med 13(4):403–408

    Google Scholar 

  67. Lussignoli S et al (1999) Effect of Traumeel S, a homeopathic formulation, on blood-induced inflammation in rats. Complement Ther Med 7(4):225–230

    CAS  PubMed  Google Scholar 

  68. Oberbaum M et al (2005) Antiviral activity of Engystol®: an in vitro analysis. J Altern Complement Med 11(5):855–862

    PubMed  Google Scholar 

  69. Hostanska K et al (2012) A homeopathic remedy from arnica, marigold, St. John’s wort and comfrey accelerates in vitro wound scratch closure of NIH 3T3 fibroblasts. BMC Complement Altern Med 12(1):1–10

    Google Scholar 

  70. Bellavite P et al (2012) Testing homeopathy in mouse emotional response models: pooled data analysis of two series of studies. Evid Based Complementary Altern Med 2012:954374

    Google Scholar 

  71. Sunila ES et al (2009) Dynamized preparations in cell culture. Evid Based Complementary Altern Med 6(2):257–263

    Google Scholar 

  72. Pathak S et al (2007) Supportive evidence for the anticancerous potential of alternative medicine against hepatocarcinogenesis in mice. Complementary Med Res 14(3):148–156

    Google Scholar 

  73. Ghosh S et al (2013) Homeopathic mother tincture of Phytolacca decandra induces apoptosis in skin melanoma cells by activating caspase-mediated signaling via reactive oxygen species elevation. J Integr Med 11(2):116–124

    PubMed  Google Scholar 

  74. Ruckmani A et al (2012) Anxiolytic effect of homeopathic preparation of Pulsatilla nigricans in Swiss albino mice. Homeopathy 101(3):171–174

    PubMed  Google Scholar 

  75. Malsch NH (2005) Biomedical nanotechnology. CRC Press, Boca Raton

    Google Scholar 

  76. Resnik DB, Tinkle SS (2007) Ethical issues in clinical trials involving nanomedicine. Contemp Clin Trials 28(4):433–441

    PubMed  Google Scholar 

  77. Resnik DB, Tinkle SS (2007) Ethics in nanomedicine. Nanomedicine 2(3):345–350

    PubMed  Google Scholar 

  78. Gordijn B (2005) Nanoethics: from utopian dreams and apocalyptic nightmares towards a more balanced view. Sci Eng Ethics 11(4):521–533

    PubMed  Google Scholar 

  79. Dupuy J-P (2007) Complexity and uncertainty: a prudential approach to nanotechnology. In: Nanoethics: the ethical and social implications of nanotechnology. Wiley, Hoboken, pp 119–131

    Google Scholar 

  80. Allhoff F et al (2010) Ethics of human enhancement: 25 questions & answers. Stud Ethics Law Technol 4:1

    Google Scholar 

  81. Mohsin J, Zahra B (2008) Protein nanoparticle: a unique system as drug delivery vehicle. Afr J Biotechnol 7(20):4926–4934

    Google Scholar 

  82. Pragati S et al (2009) Solid lipid nanoparticles: a promising drug delivery technology. Int J Pharm Sci Nanotechnol 2:509–516

    CAS  Google Scholar 

  83. Mukherjee S, Ray S, Thakur R (2009) Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci 71(4):349

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Sudarshan B et al (2009) Tamoxifen citrate loaded solid lipid nanoparticles-a novel approach in the treatment of ER+ breast cancer. Res J Pharm Dosage Forms Technol 1(2):143–149

    Google Scholar 

  85. Prabhu P, Patravale V (2012) The upcoming field of theranostic nanomedicine: an overview. J Biomed Nanotechnol 8(6):859–882

    CAS  PubMed  Google Scholar 

  86. Muthu MS et al (2014) Nanotheranostics˗ application and further development of nanomedicine strategies for advanced theranostics. Theranostics 4(6):660

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Mülhopt S et al (2018) Characterization of nanoparticle batch-to-batch variability. Nanomaterials 8(5):311

    PubMed Central  Google Scholar 

  88. Saraf S et al (2015) Advancements and avenues in nanophytomedicines for better pharmacological responses. J Nanosci Nanotechnol 15(6):4070–4079

    CAS  PubMed  Google Scholar 

  89. Gunasekaran T et al (2014) Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac J Trop Biomed 4:S1–S7

    PubMed  PubMed Central  Google Scholar 

  90. Kingston DGI (2011) Modern natural products drug discovery and its relevance to biodiversity conservation. J Nat Prod 74:496–511

    CAS  PubMed  Google Scholar 

  91. Qureshi NA (2013) Mood disorders and complementary and alternative medicine: a literature review. Neuropsychiatr Dis Treat 9:639–658

    PubMed  PubMed Central  Google Scholar 

  92. Egert S (2011) Which sources of flavonoids: complex diets or dietary supplements? Adv Nutr 2:8–14

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kaur IP et al (2014) Issues and concerns in nanotech product development and its commercialization. J Control Release 193:51–62

    CAS  PubMed  Google Scholar 

  94. Khorasani AA, Weaver JL, Salvador-Morales C (2014) Closing the gap: accelerating the translational process in nanomedicine by proposing standardized characterization techniques. Int J Nanomedicine 9:5729

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wei A, Mehtala JG, Patri AK (2012) Challenges and opportunities in the advancement of nanomedicines. J Control Release 164(2):236–246

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu A et al (2008) Toxicological effects of multi-wall carbon nanotubes in rats. J Nanopart Res 10(8):1303–1307

    CAS  Google Scholar 

  97. Borm PJ, Kreyling W (2004) Toxicological hazards of inhaled nanoparticles—potential implications for drug delivery. J Nanosci Nanotechnol 4(5):521–531

    CAS  PubMed  Google Scholar 

  98. Dreher KL (2004) Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci 77(1):3–5

    CAS  PubMed  Google Scholar 

  99. Patel S, Nanda R, Sahoo S (2015) Nanotechnology in healthcare: applications and challenges. Med Chem 5(21):528–533

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulfiqar Ali Bhat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohi-ud-din, R., Mir, R.H., Pottoo, F.H., Sawhney, G., Masoodi, M.H., Bhat, Z.A. (2020). Nanophytomedicine Ethical Issues, Regulatory Aspects, and Challenges. In: Beg, S., Barkat, M., Ahmad, F. (eds) Nanophytomedicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-4909-0_10

Download citation

Publish with us

Policies and ethics