Skip to main content

Abstract

The introduction of nano-sized energetic ingredients first occurred in Russia about 60 years ago and produced great expectations in the rocket propulsion community. While steady combustion regimes of solid rocket propellants loaded with nanometals are discussed in a companion paper, several instances of unsteady combustion regimes are examined in this paper. Ignition, extinction by fast depressurization, self-sustained oscillatory burning, pressure deflagration limit, and other transient burning processes are considered. Both steady and unsteady combustion papers describe the main features in terms of solid propellant performance and intend to emphasize the unique properties or operating conditions made possible by the addition of nano-sized energetic ingredients. Attention is mainly focused on nAl addition to AP/HTPB formulations, the workhorse of solid space launcher motors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADN:

Ammonium DiNitramide

AFM:

Atomic Force Microscopy

Alex :

ALuminum Electro-eXploded

ALICE:

ALuminum-ICE

AN:

Ammonium Nitrate

AP:

Ammonium Perchlorate

APT:

Advanced Powder Technologies, Tomsk, Russia

ARM:

Arrested Reactive Milling

ASD-4, -6:

Conventional μAl powders (used in Russia)

BET:

Brunauer–Emmett–Teller

BR or BKL:

Butyl rubber (used as inert binder in Russia)

CCP:

Condensed Combustion Products

C/F:

Coarse/Fine

CL-20:

2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane

CMDB:

Composite Modified Double-Base

DB:

Double-Base

DOA:

DiOctyl Adipate (plasticizer)

DOS:

Di(2-ehtylhexyl) Sebacate, also known as Dioctyl Sebacate (plasticizer)

EB:

Energetic Binder

EDX (EDS):

Energy Dispersive X-ray analysis

EEW:

Electrical Explosion of Wires

EM:

Energetic Materials

EMCDB:

Elastomer Modified Cast Double-Base

EnC:

Energetic NanoComposites

ESD:

ElectroStatic Discharge

FGL:

First Gasification Line (ignitability threshold)

GNG:

Ignition boundary determined by Go/No-Go testing (flame retention threshold)

HEM:

High-Energy Material

HMX:

Cyclotetramethylenetetranitramine

HTPB:

Hydroxyl-terminated polybutadiene (plasticized by transformer oil in Russia)

H-Alex:

ALuminum EXploded, coated by HTPB

ICKC:

Institute of Chemical Kinetics and Combustion, Novosibirsk, Russia

ICP:

Institute of Chemical Physics, Moscow, Russia

IPDI:

IsoPhorone DiIsocyanate (curing agent)

IR:

InfraRed

LEF:

Leading Edge Flame

MIC:

Metastable Intermolecular Composites

MPVT-LD:

Tetrazole copolymer plasticized by mixed nitroester (used as EB in Russia)

nAl:

Nano-sized Al particles

nAl@NA:

Nano-sized Al particles coated with nickel acetylacetonate

nAl@OA:

Nano-sized Al particles coated with oleic acid

nAl@PA:

Nano-sized Al particles coated with perfluorotetradecanoic acid

nAlloy:

Alloy of nano-sized particles

nBiMe:

Nano-sized BiMetallic particles

nEM:

Nano-sized Energetic Materials

nFe2O3:

Nano-sized Fe2O3

nMe:

Nano-sized Metal particles

nonAl:

NonAluminized formulations

NC:

NitroCellulose

NG:

NitroGlycerine

PB:

PolyButadiene

PBAN:

PolyButadiene AcryloNitrile

PCP:

PolyCaprolactone triols

PDL:

Pressure Deflagration Limit

PEI:

PolyEthyleneImine

PS:

PolySulfide

QE:

Quinol Ether

RDX:

Cyclotrimethylenetrinitramine

SKD, SKDM:

Butadiene rubber plasticized by transformer oil (used as inert binder in Russia)

SPLab:

Space Propulsion Laboratory, Politecnico di Milano, Milan, Italy

SRM:

Solid Rocket Motor

TDI:

Toluene Di-Isocyanate (curing agent)

ZN:

Zeldovich–Novozhilov

μAl:

Micron-sized Al particles

μEM:

Micron-sized Energetic Materials

µscale:

Micron-sized scale

2P:

Two-phase flow

bif :

Bifurcation

c…, c c , c g :

Specific heat, in the condensed-phase, in the gas-phase, J/(g K)

c-phase:

Condensed-phase

d 43 :

Mass average diameter, cm

d AN :

Average diameter AN particles

d AP :

Average diameter AP particles

g-phase:

Gas-phase

k :

ZN sensitivity parameter of steady mass burning rate to initial temperature

k…, k c , k g :

Thermal conductivity, in the condensed-phase, in the gas-phase, W/(cm K)

n :

Pressure exponent in the Vieille steady burning rate law

n q :

Slope of the FGL ignition boundary in logarithmic plot

p, p i , p f :

Pressure, initial pressure, final pressure, MPa

q :

Radiant flux intensity, W/cm2

q c,s :

Conductive heat flux to the condensed-phase from burning surface, W/cm2

q g,s :

Conductive heat flux to burning surface from the gas-phase, W/cm2

r :

ZN sensitivity parameter of steady surface temperature to initial temperature

r b :

Steady burning rate, cm/s

s :

Burning surface

S sp :

Specific surface area, m2/g

u g :

Steady average gas-phase velocity in the flame zone, m/s

t, t ign :

Time, ignition delay time, s

\(t_{th,c}^{*}\), \(t_{th,g}^{*}\):

Characteristic time thermal wave in the condensed-phase, in the gas-phase, s

\(\it t_{{ext}}^{*}\) :

Characteristic time external disturbance, s

T :

Temperature, K

α…, α c , α g :

Thermal diffusivity, in the condensed-phase, in the gas-phase, cm2/s

ρ…, ρ c , ρ g :

Density, in the condensed-phase, in the gas-phase, g/cm3

σ p :

Steady burning rate temperature sensitivity, 1/K

Ω :

\(= 2\pi \cdot {\text{frequency}} \cdot \alpha_{c} /\left( {r_{b} } \right)^{2}\), nondimensional circular frequency

References

  1. Bhushan B (ed) (2004) Springer handbook of nanotechnology. Springer, Berlin Heidelberg, Germany. ISBN 3-540-01218-4

    Google Scholar 

  2. Gen MY, Ziskin MS, Petrov Y (1959) Research of aluminum aerosols size distribution depending on conditions of their formation. Proc USSR Acad Sci 127(2):366–368

    CAS  Google Scholar 

  3. Bakhman NN, Belyaev AF, Kondrashkov Y (1970) Influence of the metal additives onto the burning rate of the model solid rocket propellants. Phys Combust Explos (in Russian) 1:93–97

    Google Scholar 

  4. Gen MY, Frolov Y, Storozhev VB (1978) On combustion of particles of subdispersed aluminum. Combust Explos Shock Waves 14(5):153–155

    Google Scholar 

  5. Pokhil PM, Belyaev AF, Frolov YV, Logachev VS, Korotkov AI (1972) Combustion of powdered metals in active media, Nauka, Moscow, Russia (in Russian), pp 238–251. FTD-MT-24-5551-73, Foreign Technology Division (in English)

    Google Scholar 

  6. Belyaev AF, Bobolev VK et al (1973) Transition of condensed systems combustion in explosion. Nauka, Moscow, 292 pp (in Russian)

    Google Scholar 

  7. Zhigach AN, Kuskov ML, Leipunskii IO et al (2012) Preparation of ultrafine powders of metals, alloys, and metal compounds by the Gen–Miller method: history, current status, and prospects. Ros Nanoteknolog 7(3–4):28–37

    Google Scholar 

  8. Zeldovich YB, Leipunsky OI, Librovich VB (1975) Theory of non-stationary combustion of powders. Nauka, Moscow

    Google Scholar 

  9. He GQ, Yan QL, Liu PJ, Gozin M (eds) (2018) Nanomaterials in rocket propulsion systems. Elsevier BV, Amsterdam, 569 pp

    Google Scholar 

  10. Teipel U (ed) (2005) Energetic materials: particle processing and characterization. Wiley-VCH, 621 pp. ISBN 3-527-30240-9

    Google Scholar 

  11. Gromov AA, Teipel U (eds) (2014) Metal nanopowders: production, characterization, and energetic applications. Wiley-VCH, 417 pp. ISBN 978-3-527-33361-5

    Google Scholar 

  12. Zarko VE, Gromov AA (eds) (2016) Energetic nanomaterials: synthesis, characterization, and application. Elsevier BV, Amsterdam, 374 pp

    Google Scholar 

  13. Yetter RA, Risha GA, Son SF (2009) Metal particle combustion and nanotechnology. Proceed Comb Inst 32:1819–1838

    CAS  Google Scholar 

  14. Dreizin EL (2009) Metal-based reactive nanomaterials. Prog Energy Combust Sci 35:141–167

    Google Scholar 

  15. Berner MK, Zarko VE, Talawar MB (2013) Nanoparticles of energetic materials: synthesis and properties (Review). Combust Explos Shock Waves 49(6):1–23

    Google Scholar 

  16. Sundaram DS, Yang V, Zarko VE (2015) Combustion of nanoaluminum particles (Review). Combust Explos Shock Waves 51:173–196

    Google Scholar 

  17. Sundaram DS, Yang V, Yetter RA (2017) Metal-based nanoenergetic materials: synthesis, properties, and applications. Prog Energy Combust Sci 61:293–365. See also: (b) Sundaram DS, Puri P, Yang V (2016) A general theory on the ignition and combustion of nano- and micron-sized aluminum particles. Combust Flame 169:94–109

    Google Scholar 

  18. DeLuca LT, Shimada T, Sinditskii VP, Calabro M (Eds) (2016) Chemical rocket propulsion: a comprehensive survey of energetic materials. ISBN 978-3-319-27746-2. https://doi.org/10.1007/978-3-319-27748-6. Springer International Publishing Ag, Ch-6330 Cham, Switzerland. See Ch-08 by DeLuca, Maggi, Dossi, Fassina, Paravan, and Sossi; Ch-09 by Vorozhtsov, Zhukov, Ziatdinov, Bondarchuk, Lerner, and Rodkevich; Ch-11 by Zhao, Yao, S Xu, H Xu, and Hao; Ch-13 by Babuk

  19. Trache D, Klapötke TM, Maiz L, Abd-Elghany M, DeLuca LT (2017) Recent advances in new oxidizers for solid rocket propulsion. R Soc Chem

    Google Scholar 

  20. DeLuca LT, Bohn MA, Gettwert V, Weiser V, Tagliabue C (2018) Innovative solid rocket propellant formulations for space propulsion. In: Goncalves RFB, Rocco JAFF, and Iha K (eds) Energetic Materials Research, Applications, and New Technologies, Chap. 01, IGI Global book series Advances in Chemical and Materials Engineering (ACME). https://doi.org/10.4018/978-1-5225-2903-3.ch001

  21. Kosowski BM, Rudy T (1994) A superior burning rate catalyst for solid rocket propellants. In: 25th international annual conference of ICT, Karlsruhe, Federal Republic of Germany, 28 June–01 July 1994

    Google Scholar 

  22. Yan Q-L, Zhao F-Q, Kuo KK, Zhang X-H, Zeman S, DeLuca LT (2016) Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Prog Energy Combust Sci 57:75–136

    Google Scholar 

  23. Lyon JM, Colclough E, Menke K, Pesce-Rodriguez RA, Slutskiy V, Surapaneni R, Wingborg N (2004) Roundtable on nanotechnology for energetic materials. In: DeLuca LT, Galfetti L, Pesce-Rodriguez RA, Grafiche GSS (eds) Ninth international workshop on combustion and propulsion, Bergamo, Italy. Paper 23

    Google Scholar 

  24. Son SF, Yetter RA, Yang V (2007) Introduction: nanoscale composite energetic materials. J Propul Power 23(4):643–644

    Google Scholar 

  25. Ivanov GV, Tepper F (1997) Activated Aluminum as a stored energy source for propellants. In: Kuo KK (ed) Proceedings of the 4th international symposium on special topics in chemical propulsion, challenges in propellants and combustion 100 years after nobel, Stockholm, Sweden, 27–28 May 1996. Begell House, New York, pp 636–645. See also: (1997) Int J Energ Mater Chem Propul 4(1–6):636–645

    Google Scholar 

  26. Ismail IMK, Hawkins TW (1996) Evaluation of electro exploded aluminum (Alex) for rocket propulsion. In: JANNAF propulsion meeting, vol 2. CPIA Pub. 650, pp 25–39

    Google Scholar 

  27. Katz J, Tepper F, Ivanov G, Lerner M, Davidovich V (1998) Metastable nanosize aluminum powder as a reactant in energetic formulations. In: JANNAF propulsion meeting, vol 3. CPIA Pub. 675, pp 343–349

    Google Scholar 

  28. Mench MM, Kuo KK, Yeh CL, Lu YC (1998) Comparison of thermal behavior of regular and ultra-fine aluminum powders (Alex) made from plasma explosion process. Combust Sci Technol 135(1–6, Special Issue):269–292

    Google Scholar 

  29. DeSena JT, Kuo KK (1999) Evaluation of stored energy in ultrafine aluminum powder produced by plasma explosion. J Propul Power 15(6):794–800

    CAS  Google Scholar 

  30. Mench MM, Yeh CL, Kuo KK (1998) Propellant burning rate enhancement and thermal behavior of ultra-fine aluminum powders (Alex). In: Proceedings of the 29th international annual conference of ICT, Karlsruhe, Germany. Paper 30

    Google Scholar 

  31. Kuo KK, Risha GA, Evans BJ, Boyer E (2004) Potential usage of energetic nano-sized powders for combustion and rocket propulsion. In: Armstrong R, Tadhani N, Wilson W, Gilman J, Simpson R (eds) Materials research society symposium proceedings, vol 800 (Synthesis, Characterization and Properties of Energetic/Reactive Nanomaterials). Paper AA1.1, pp 3–14

    Google Scholar 

  32. Stephens M, Carro R, Wolf S, Sammet T, Petersen E, Smith C (2005) Performance of AP-based composite propellant containing nanoscale aluminum. AIAA Paper 2005-4470

    Google Scholar 

  33. Stephens M, Sammet T, Petersen E, Carro R, Wolf S, Smith C (2010) Performance of ammonium-perchlorate-based composite propellant containing nanoscale aluminum. J Propul Power 26(3):461–466

    CAS  Google Scholar 

  34. Shalom A, Aped H, Kivity M, Horowitz D (2005) The effect of nanosized aluminum on composite propellant properties. AIAA Paper 2005-3604

    Google Scholar 

  35. Jayaraman K, Anand KV, Chakravarthy SR, Sarathi R (2007) Production and characterization of nano-aluminum and its effect in solid propellant combustion. AIAA Paper 07-1430

    Google Scholar 

  36. Jayaraman K, Anand KV, Bhatt DS, Chakravarthy SR, Sarathi R (2009) Production, characterization, and combustion of nanoaluminum in composite solid propellants. J Propul Power 25(2):471–481

    Google Scholar 

  37. Pivkina AN, Ulyanova P, Frolov Y, Zavyalov SA, Schoonman J (2004) Nanomaterials for heterogeneous combustion. Propellants Explos Pyrotech 29(1):39–48

    CAS  Google Scholar 

  38. Pivkina AN, Frolov Y, Ivanov DA (2007) Nanosized components of energetic systems: structure, thermal behavior, and combustion. Combust Explos Shock Waves 43(1):51–55

    Google Scholar 

  39. Frolov YV, Pivkina AN, Zavyalov SA, Murav’ev NV, Skryleva EA, Monogarov KA (2010) Physicochemical characteristics of the components of energetic condensed systems. Russ J Phys Chem B 4(6):916–922

    Google Scholar 

  40. Muravyev NV, Frolov Y, Pivkina A, Monogarov K, Ordzhonikidze O, Bushmarinov I, Korlyukov A (2010) Influence of particle size and mixing technology on combustion of HMX/Al compositions. Propellants Explos Pyrotech 35(2010):226–232

    CAS  Google Scholar 

  41. Wang B, Liao X, Wang Z, DeLuca LT, Liu Z, You F (2017) Preparation and properties of a nRDX-based propellant. Propellants Explos Pyrotech 2017(42):649–658

    Google Scholar 

  42. Wang B, Liao X, Wang Z, DeLuca LT, Liu Z, He W, Bin X (2018) Effects of particle size and content of RDX on burning stability of RDX-based propellants. Combust Flame 193(2018):123–132

    CAS  Google Scholar 

  43. Olivani A, Galfetti L, Severini F, Colombo G, Cozzi F, Lesma F, Sgobba M (2002) Aluminum particle size influence on ignition and combustion of AP/HTPB/Al solid rocket propellants. In: Advances in rocket propellant performance, life and disposal, MP-091. Paper 31

    Google Scholar 

  44. Meda L, Marra GL, Braglia R, Abis L, Gallo R, Severini F, Galfetti L, DeLuca LT (2004) A wide characterization of aluminum powders for propellants. In: DeLuca LT, Galfetti L, Pesce-Rodriguez RA, Grafiche GSS (eds) Ninth international workshop on combustion and propulsion, Bergamo, Italy. Paper 17

    Google Scholar 

  45. Galfetti L, Severini F, DeLuca LT, Marra GL, Meda L (2004) Ballistics and condensed combustion residues of aluminized solid rocket propellants. In: DeLuca LT, Galfetti L, Pesce-Rodriguez RA, Grafiche GSS (eds) Ninth international workshop on combustion and propulsion, Bergamo, Italy. Paper 18

    Google Scholar 

  46. Galfetti L, Severini F, DeLuca LT, Meda L (2004) Nanopropellants for space propulsion. In: 4th international spacecraft propulsion conference, European Space Agency, Sardinia, Italy, June 04. CD Proceedings SP-555/556/557, ISBN 92-9092-866-2/-867-0/-868-9

    Google Scholar 

  47. DeLuca LT, Galfetti L, Meda L, Severini F, Babuk VA, Sedoi VB, Vorozhtsov AB (2004) Nano-propellants for aerospace propulsion. In: International symposium on energy conversion fundamentals, Istanbul, Turkey, June 2004

    Google Scholar 

  48. Galfetti L, Severini F, DeLuca LT, Meda L, Babuk VA (2004) Physical characterization of nanoaluminum formulations. In: Borisov AA, Frolov SM, Kuhl AL (eds) Progress in combustion and detonation, Zel’dovich Memorial II. Torus Press Ltd., Moscow, Russia, pp 145–146

    Google Scholar 

  49. DeLuca LT, Galfetti L, Severini F, Meda L, Kondrikov BN, Vorozhtsov AB, Sedoi VB (2004) Ballistic properties of nanoaluminized solid rocket propellants. In: Borisov AA, Frolov SM, Kuhl AL (eds) Progress in combustion and detonation, Zel’dovich Memorial II. Torus Press Ltd., Moscow, Russia, pp 149–150

    Google Scholar 

  50. DeLuca LT, Galfetti L, Severini F, Meda L, Marra GL, Vorozhtsov AB, Sedoi VB, Babuk VA (2005) Burning of nAl composite rocket propellants. Combust Explos Shock Waves 41(6):680–692. https://doi.org/10.1007/S10573-005-0080-5

    Article  Google Scholar 

  51. Meda L, Marra G, Galfetti L, Inchingalo S, Severini F, DeLuca LT (2005) Nanocomposites for rocket solid propellants. Compos Sci Technol 65(5):769–773

    CAS  Google Scholar 

  52. DeLuca LT (2007) Burning of aluminized solid rocket propellants: from micrometric to nanometric fuel size. In: Ping H, Yajun W, Shengcai L (eds) Proceedings IASPEP (International Autumn Seminar on Propellants, Explosives and Pyrotechnics), Xi’an, China. Theory and practice of energetic materials, vol 7. Science Press, Beijing, pp 277–289

    Google Scholar 

  53. DeLuca LT, Galfetti L (2008) Burning of metallized composite solid rocket propellants: from micrometric to nanometric aluminum size. In: Proceedings AJCPP (3rd Asian Joint Conference on Propulsion and Power). The Korean Society of Propulsion Engineers, Gyeongju, Korea, 06–08 March 2008

    Google Scholar 

  54. DeLuca LT, Galfetti L, Maggi F, Colombo G, Bandera A, Cerri S, Donegà P (2008) Burning of metallized composite solid rocket propellants: toward nanometric fuel size. In: Proceedings of ESA Space Propulsion 2008. Heraklion, Crete, Greece

    Google Scholar 

  55. DeLuca LT, Marchesi E, Spreafico M, Bandera A, Maggi F, Colombo G, Galfetti L, Consaga John P, Kosowski Bernard M (2009) Effects in metallized solid rocket propellants. In: Li S, Wang Y, Cao F, Zhao S, Zhou S (eds) Proceedings IASPEP (International Autumn Seminar on Propellants, Explosives and Pyrotechnics), Kunming, China. Theory and practice of energetic materials, vol 8. Science Press, Beijing, pp 258–270

    Google Scholar 

  56. DeLuca LT, Galfetti L, Colombo G, Maggi F, Bandera A, Babuk VA, Sinditskii VP (2010) Microstructure effects in aluminized solid rocket propellants. J Propul Power 26(4):724–733

    CAS  Google Scholar 

  57. Merotto L, Galfetti L, Colombo G, DeLuca LT (2011) Characterization of nAl powders for rocket propulsion. In: Progress in propulsion physics, vol 2. EDP Sciences, pp 99–120

    Google Scholar 

  58. DeLuca LT, Galfetti L, Maggi F, Colombo G, Reina A, Dossi S, Consoni D, Brambilla M (2012) Innovative metallized formulations for solid rocket propulsion. Chin J Energ Mater 20(4):465–474

    CAS  Google Scholar 

  59. DeLuca LT, Maggi F, Dossi S, Weiser V, Franzin A, Gettwert V, Heintz T (2013) High-energy metal fuels for rocket propulsion: characterization and perfomance. Chin J Explos Propellants 36(6):1–14

    CAS  Google Scholar 

  60. Glotov OG, Zarko VE, Karasev VV, Beckstead MW (1998) Condensed combustion products of metalized propellants of variable formulation. AIAA Paper 98-0449

    Google Scholar 

  61. Dondé R, Riva G, DeLuca LT (1984) Experimental and theoretical extinction of solid rocket propellants by fast depressurization. Acta Astronaut 11(9):569–576

    Google Scholar 

  62. Dondé R, Guarnieri C, Meda L, Marra GL, Orsini D, Prato A, Galfetti L, DeLuca LT (2006) Experimental investigations on transient burning of nano-aluminized solid rocket propellants. In: Changes in aeronautical and space systems, Avignon, France, 26–28 June 2006. Paper 36-33-P

    Google Scholar 

  63. Bruno C, Riva G, Zanotti C, Dondé R, Grimaldi C, DeLuca LT (1985) Experimental and theoretical burning of solid rocket propellants near the pressure deflagration limit. Acta Astronaut 12(5):351–360. IAF Paper 83-367

    Google Scholar 

  64. Zanotti C, Colombo G, Grimaldi C, Carretta U, Riva G, DeLuca LT (1986) Oscillatory burning of composite propellants near pressure deflagration limit. In: XV International Symposium on Space Technology and Science (ISTS), Tokyo, Japan, May 18–24, 1986. ISTS conference proceedings, pp 243–254

    Google Scholar 

  65. Zeldovich YB (1942) On the combustion theory of powder and explosive. J Exp Theor Phys 12:498–510

    CAS  Google Scholar 

  66. Arkhipov VA, Bondarchuk SS, Korotkikh AG, Kuznetsov VT, Gromov AA, Volkov SA, Revyagin LN (2012) Influence of aluminum particle size on ignition and nonstationary combustion of heterogeneous condensed systems. Combust Explos Shock Waves 48(5):625–635

    Google Scholar 

  67. Arkhipov VA, Bondarchuk SS, Korotkikh AG, Vorozhtsov AB, Bandera A, Galfetti L, DeLuca LT, Colombo G (2007) Nonsteady effects of the combustion of high-energy nanocomposites. Russ Phys J 50(9/2):3–12

    Google Scholar 

  68. Arkhipov VA, Bondarchuk SS, Korotkikh AG, Vorozhtsov AB, Bandera A, Galfetti L, DeLuca LT, Colombo G (2007) Transient burning of nanoaluminized solid propellants. In: 2nd European Conference for AeroSpace Science (EuCASS). Paper 5-138, Brussels, Belgium, 1–6 July 2007. See also: (b) Bandera A, Rossettini L, Colombo G, Cerri S, DeLuca LT, Arkhipov VA, Bondarchuk SS, Vorozhtsov AB, Korotkikh AG (2007) Steady and transient burning of microaluminized solid rocket propellants. In: High-Energy Materials (HEM) Performances and Civil Applications. Paper 5-2, Arcachon, France, 1-3 October 2007.

    Google Scholar 

  69. Jayaraman K, Chakravarthy SR, Sarathi R (2011) Quench collection of nano-aluminium agglomerates from combustion of sandwiches and propellants. Proc Combust Inst 33(2011):1941–1947

    CAS  Google Scholar 

  70. Denison MR, Baum E (1961) A simplified model of unstable burning in solid propellants. ARS J 31:1112–1122

    Google Scholar 

  71. Novozhilov BV (1992) Theory of nonsteady burning and combustion stability of solid propellants by the ZN method. In: DeLuca LT, Price EW, Summerfield M (eds) AIAA Progress in astronautics and aeronautics, nonsteady burning and combustion stability of solid propellants, vol 143, Chap. 15. AIAA, Washington, DC, USA, pp 601–641

    Google Scholar 

  72. DeLuca LT, Verri M, Cozzi F, Jalongo A, Colombo G (1997) A survey of pressure-driven burning of energetic solids with arrhenius pyrolysis. In: Kuo KK (ed) Challenges in propellants and combustion: 100 years after Nobel, 4-ISICP. Begell House, New York, pp 493–514

    Google Scholar 

  73. Johnson WE, Nachbar W (1962) Deflagration limits in the steady linear burning of a monopropellant with application to ammonium perchlorate. In: 8th international symposium on combustion, pp 678–689

    Google Scholar 

  74. Blomshield F, Nguyen S, Matheke H, Atwood A, Bui T (2003) Acoustic particle damping of propellants containing ultra-fine aluminum. In: 38th JANNAF (Joint Army, Navy, NASA and Air Force), 8–12 April 2002

    Google Scholar 

  75. Arkhipov VA, Vorozhtsov AB, Shrager ER, Bondarchuk SS, Medvedev YI, Revyagin LN, Volkov SA (2004) Acoustic admittance function study for solid propellants containing ultrafine aluminum. In: DeLuca LT, Galfetti L, Pesce-Rodriguez RA, Grafiche GSS (eds) Ninth international workshop on combustion and propulsion, Bergamo, Italy. Paper 22

    Google Scholar 

  76. Arkhipov VA, Volkov SA, Revyagin LN (2011) Experimental study of the acoustic admittance of the burning surface of composite solid propellants. Fiz Goreniya Vzryva 47(2):74–80 (2011) [also: Combust Expls Shock Waves 47(2), 193–199 (2011)]

    Google Scholar 

  77. Simonenko VN, Zarko VE (1999) Comparative studies of the combustion behavior of composite propellants containing ultra fine aluminum. In: 30th international annual conference of ICT. Paper 21

    Google Scholar 

  78. Glotov OG, Zarko VE, Beckstead MW (2000) Agglomerate and oxide particles generated in combustion of alex containing solid propellants. In: 31st international annual conference of ICT. Paper 130

    Google Scholar 

  79. Zarko VE, Glotov OG, Simonenko VN, Kiskin AB (2004) Study of the combustion behavior of solid propellants containing ultra fine aluminum. In: AA, Frolov SM, Kuhl AL (eds) Progress in combustion and detonation, Zel’dovich Memorial II, Borisov. Torus Press Ltd., Moscow, Russia

    Google Scholar 

  80. Atwood AI, Price CF, Boggs TL (1991) Ignitability measurements of solid propellants. In: 22nd international annual conference of ICT proceedings, 2–5 July 1991. Paper 44

    Google Scholar 

  81. Atwood AI, Ford KP, Bui DT, Curran PO, Lyle T (2009) Radiant ignition studies of ammonium perchlorate-based propellants. In: DeLuca L, Bonnal C, Haidn O, Frolov S (eds) Progress in propulsion physics, vol 1. Torus Press, Moscow, pp 121–140

    Google Scholar 

  82. STANAG 4439 (Mar 2010) Policy for introduction and assessment of insensitive munitions, Edition X

    Google Scholar 

  83. NATO AOP-39 (Mar 2010) Guidance on the assessment and development of insensitive munitions, 3rd edn

    Google Scholar 

  84. Powell IJ (2016) Insensitive munitions–design principles and technology developments, PEP 41 409-413

    Google Scholar 

  85. Caveny L, Summerfield M (1973) Solid propellant flammability including ignitability and combustion limits. In: 10th JANNAF combustion meeting proceedings. CPIA Pub. 243. III:133-156

    Google Scholar 

  86. DeLuca LT, Caveny LH, Ohlemiller TJ, Summerfield M (1976) Radiative ignition of double-base propellants: I. Some formulation effects. AIAA J 14(8):940–946

    Google Scholar 

  87. DeLuca LT, Ohlemiller TJ, Caveny LH, Summerfield M (1976) Radiative Ignition of double-base propellants: II. Pre-ignition events and source effects. AIAA J 14(8):1111–1117

    Google Scholar 

  88. Bandera A, Conti A, Orsini D, DeLuca LT, D’Andrea B, Ford K, Curran P, Atwood A (2007) Laser ignition studies of composite solid rocket propellants. In: Workshop (International) on high energy materials performances and civil applications. Arcachon, France. Association Aéronautique Astronautique de France

    Google Scholar 

  89. Conti A (2007) Steady burning and ignition properties of aluminized solid rocket propellants, MSc thesis, Politecnico di Milano, Milan, Italy

    Google Scholar 

  90. Simonenko VN, Zarko VE, Kiskin AB, Sedoi VS, Biryukov YA (2001) Effect of Alex and Boron additives on ignition and combustion of Al–KNO3 mixture. In: 32th international annual conference of ICT proceedings, 3-6 July 2001. Paper 122

    Google Scholar 

  91. Tepper F, Kaledin LA (2002) Combustion characteristics of kerosene containing alex nano-aluminum. In: Kuo KK, DeLuca LT (eds) Combustion of energetic materials. Begell House, Inc., New York, Wallingford, pp 195–206

    Google Scholar 

  92. Vorozhtsov AB, Arkhipov VA, Bondarchuk SS, Korotkikh AG, Kuznetsov VT, Surkov V, Sedoi V (2003) Ignition and combustion of solid and gelled propellants containing ultra-fine aluminum, 8-IWCP. In: DeLuca LT. Paper 36

    Google Scholar 

  93. Arkhipov VA, Korotkikh AG, Kuznetsov VT, Sinogina ES (2007) Influence of metal powders dispersity on the characteristics of conductive and radiant ignition of mixed compositions. Khim Fiz 26(6):58–67

    CAS  Google Scholar 

  94. Arkhipov VA, Korotkikh AG (2012) The influence of aluminum powder dispersity on composite solid propellants ignitability by laser radiation. Combust Flame 159(2012):409–415

    CAS  Google Scholar 

  95. Korotkikh AG, Kuznetsov VT, Arkhipov VA, Evseenko IA (2012) The influence of radiation spectral composition on the ignition characteristics of composite solid propellants. Khimicheskaya Fizika I mezoskopiya 14(2):186–192

    Google Scholar 

  96. Baer A, Ryan N (1964) Ignition of composite propellants by low radiant fluxes. AIAA J 3(5):884–889

    Google Scholar 

  97. Lengellé G, Bizot A, Duterque J, Amiot J (1991) Ignition of solid propellants. La Recherche Aerospatiale 2:1–20

    Google Scholar 

  98. Friedman R, Macek A (1962) Ignition and combustion of aluminum particles in hot ambient gases. Combust Flame 6:9–19

    CAS  Google Scholar 

  99. Gurevich MA, Lapkina KI, Ozerov ES (1970) Ignition limits of aluminum particles. Combust Explos Shock Waves 6(l):154–157

    Google Scholar 

  100. Belyaev AF, Korotkov AI, Frolov Y (1968) Ignition and combustion of single particle of small grained aluminum. Combust Explos Shock Waves 4(3):323–330

    CAS  Google Scholar 

  101. Beckstead MW (2005) Correlating aluminum burning times. Combust Explos Shock Waves 41(5):533–546

    Google Scholar 

  102. Gurevich MA, Ozerov ES, Yurinov AA (1978) Effect of an oxide film on the inflammation characteristics of aluminum. Combust Explos Shock Waves 14(4):50–55

    CAS  Google Scholar 

  103. Boiko VM, Lotov VV, Papyrin AN (1989) Ignition of gas suspensions of metallic powders in reflected shock waves. Combust Explos Shock Waves 25(2):193–199

    Google Scholar 

  104. Trunov MA, Schoenitz M, Dreizin EL (2005) Ignition of aluminum powders under different experimental conditions. Propellants Explos Pyrotech 30(1):36–43

    CAS  Google Scholar 

  105. Huang Y, Risha GA, Yang V, Yetter RA (2009) Effect of particle size on combustion of aluminum particle dust in air. Combust Flame 156(2009):5–13

    CAS  Google Scholar 

  106. Shafirovich E, Escot Bocanegra P, Chauveau C, Gökalp I, Rosenband V, Gany A (2004) Combustion of single aluminum particles with thin nickel coatings. In: DeLuca LT, Galfetti L, Pesce-Rodriguez RA, Grafiche GSS (eds) Novel energetic materials and applications, Bergamo, Italy. Paper 47

    Google Scholar 

  107. Escot Bocanegra P, Chauveau C, Gokalp I, Shafirovich E (2005) Studies on the burning of complex aluminum particles. In: 1st European Conference for AeroSpace Science (EuCASS), Session 5.3 SRM metalized formulations, Moscow, Russia, 4-8 July 2005

    Google Scholar 

  108. Escot Bocanegra P, Chauveau C, Gokalp I (2007) Experimental studies on the burning of coated and uncoated micro- and nano-sized aluminum particles. Aerosp Sci Technol 11(1):33–38

    Google Scholar 

  109. Levi S, Galfetti L, De Luca LT, Cianfanelli S, Babuk VA, Klyakin GF, Sinditskii VP, Vorozhtsov AB (2006) Metallized dual-oxidizer solid propellants for green space access. In: Third international conference on green propellants for space propulsion, Poitiers, France, 17–20 Sep 2006

    Google Scholar 

  110. Reina A, Vorozhtsov AB, Krawiec I, Morlacchi M, Colombo G, Lerner MI, Rodkevich NG, DeLuca LT (2013) Effects of HTPB-coating on nano-sized aluminum in solid rocket propellant performance, ICT-2013. Paper V-27

    Google Scholar 

  111. Vorozhtsov AB, DeLuca LT, Reina A, Lerner MI, N.G. Rodkevich (2015) Effects of HTPB-coating on nano-sized aluminum in solid rocket propellant performance. Sci Tech Energ Mater 76(5):105–109

    Google Scholar 

  112. Noor F, Vorozhtsov AB, Lerner M, Bandarra Filho EP, Wen D (2015) Thermal-chemical characteristics of Al-Cu alloy nanoparticles. J Phys Chem C 119(25):14001–14009

    Google Scholar 

  113. Noor F, Vorozhtsov AB, Wen D, Lerner M (2015) Exothermic characteristics of aluminum based nanomaterials. Powder Technol 282:19–24

    Google Scholar 

  114. Abraham A, Nie H, Schoenitz M, Vorozhtsov AB, Lerner M, Pervikov A, Rodkevich N, Dreizin EL (2016) Bimetal Al–Ni nano-powders for energetic formulations. Combust Flame 173:179–186

    Google Scholar 

  115. Korotkikh AG, Arkhipov VA, Glotov OG, Zolotorev NN (2017) Ignition by laser radiation and combustion of composite solid propellants with bimetal powders. In: Journal of physics: conference series 830, p 012137. https://doi.org/10.1088/1742-6596/830/1/012137

  116. Korotkikh AG, Glotov OG, Sorokin IV, Arkhipov VA (2020) Bimetal fuels for energetic materials, Chap. 7 in this volume

    Google Scholar 

  117. Vorozhtsov AB, Lerner M, Rodkevich N, Nie H, Abraham A, Schoenitz M, Dreizin EL (2016) Oxidation of nano-sized aluminum powders. Thermochim Acta 636(2016):48–56

    CAS  Google Scholar 

  118. DeLuca LT (2018) Overview of Al-based nanoenergetic ingredients for solid rocket propulsion. Def Technol 14:357–365

    Google Scholar 

  119. DeLuca LT (2020) A Survey of nanotechnology for rocket propulsion: promises and challenges. In: Hussain CH (ed) The ELSI handbook of nanotechnology—risk, safety, ELSI and commercialization, Chap. 12, Wiley-Scrivener, pp. 277–332. ISBN 978-1-119-59160-3

    Google Scholar 

Download references

Acknowledgments

Useful and clarifying discussions are gratefully acknowledged with:

• Mr. Giovanni Colombo, Politecnico di Milano, Milan, Italy;

• Prof. Alexander B. Vorozhtsov and Dr. Marat I. Lerner, Tomsk State University, Tomsk, Russia;

• Dr. Alexander A. Gromov and Dr. Alexander G. Korotkikh, Tomsk Polytechnic University, Tomsk, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi T. DeLuca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

DeLuca, L.T., Pang, W. (2020). Transient Burning of nAl-Loaded Solid Rocket Propellants. In: Pang, W., DeLuca, L., Gromov, A., Cumming, A. (eds) Innovative Energetic Materials: Properties, Combustion Performance and Application. Springer, Singapore. https://doi.org/10.1007/978-981-15-4831-4_5

Download citation

Publish with us

Policies and ethics