Skip to main content

Applications of Nanomaterials in Neurological Diseases, Neuronal Differentiation, Neuronal Protection, and Neurotoxicity

  • Chapter
  • First Online:
Applications of Nanomaterials in Human Health

Abstract

The central nervous system (CNS) is one of the most important systems in the human body, and thus, CNS disorders are causing a significant threat to human health. Researchers from around the world are making impressive efforts to come up with therapeutics and solutions to treat neurodegenerative disorders. However, the issue of brain targeting remains an unsolved challenge due to the blood-brain barrier (BBB) existence. Due to the many unique properties of engineered nanomaterials, their use could make it possible to overcome difficulties in the diagnosis and treatment of neurodegenerative disorders, provide promising neuroprotective strategies, and stimulate neuronal differentiation and nerve generation as a therapeutic approach. In contrast, despite the rapid development of the nanomaterials industry and the spread of its applications in the biomedical field, there is lacking evidence regarding their possible adverse health effects, and very little is known about their toxicity. Numerous in vivo and in vitro studies have emerged, providing evidence of neurotoxic effects of various types of nanoparticles (NPs), and therefore the advantages of nanomaterials should be weighed against their potential effects. In this chapter, we focused on the applications of nanomaterials in neurological disorders, neuronal differentiation, neuroprotection, and neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdal Dayem A et al (2018) Silver Nanoparticles: Two-Faced Neuronal Differentiation-Inducing Material in Neuroblastoma (SH-SY5Y) Cells. Int J Mol Sci 19(5):1470

    Google Scholar 

  • Ahmed MM, Hussein MM (2017) Neurotoxic effects of silver nanoparticles and the protective role of rutin. Biomed Pharmacother 90:731–739

    CAS  Google Scholar 

  • Akhavan O, Ghaderi E (2014) The use of graphene in the self-organized differentiation of human neural stem cells into neurons under pulsed laser stimulation. J Mater Chem B 2(34):5602–5611

    CAS  Google Scholar 

  • Akhavan O et al (2016) Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells. Carbon 97:71–77

    CAS  Google Scholar 

  • Akhtar MJ et al (2012) Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomedicine 7:845

    CAS  Google Scholar 

  • Albertazzi L et al (2012) In vivo distribution and toxicity of PAMAM dendrimers in the central nervous system depend on their surface chemistry. Mol Pharm 10(1):249–260

    Google Scholar 

  • Albrecht J et al (2007) Glutamine in the central nervous system: function and dysfunction. Front Biosci 12(332):e43

    Google Scholar 

  • Alghazali KM et al (2017) Functionalized gold nanorod nanocomposite system to modulate differentiation of human mesenchymal stem cells into neural-like progenitors. Sci Rep 7(1):16654

    Google Scholar 

  • Alghazali KM et al (2019) Plasmonic Nanofactors as Switchable Devices to Promote or Inhibit Neuronal Activity and Function. Nanomaterials 9(7):1029

    CAS  Google Scholar 

  • Ambesh P, Angeli DG (2015) Nanotechnology in neurology: Genesis, current status, and future prospects. Ann Indian Acad Neurol 18(4):382

    Google Scholar 

  • An Y et al (2010) A photoelectrochemical immunosensor based on Au-doped TiO2 nanotube arrays for the detection of α-synuclein. Chemistry–A European Journal 16(48):14439–14446

    CAS  Google Scholar 

  • Arulmoli J et al (2016) Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering. Acta Biomater 43:122–138

    CAS  Google Scholar 

  • Ashbrook DG et al (2014) Joint genetic analysis of hippocampal size in mouse and human identifies a novel gene linked to neurodegenerative disease. BMC Genomics 15(1):850

    Google Scholar 

  • Attia H, Nounou H, Shalaby M (2018) Zinc oxide nanoparticles induced oxidative DNA damage, inflammation and apoptosis in rat’s brain after oral exposure. Toxics 6(2):29

    Google Scholar 

  • Au C et al (2007) Effects of nanoparticles on the adhesion and cell viability on astrocytes. Biol Trace Elem Res 120(1–3):248–256

    CAS  Google Scholar 

  • Bai J, Zhou B (2014) Titanium dioxide nanomaterials for sensor applications. Chem Rev 114(19):10131–10176

    CAS  Google Scholar 

  • Bailey ZS et al (2016) Cerium oxide nanoparticles improve outcome after in vitro and in vivo mild traumatic brain injury. J Neurotrauma. https://doi.org/10.1089/neu.2016.4644

  • Baron R, Zayats M, Willner I (2005) Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. Anal Chem 77(6):1566–1571

    CAS  Google Scholar 

  • Bataveljić D et al (2011) Imaging cellular markers of neuroinflammation in the brain of the rat model of amyotrophic lateral sclerosis. Acta Physiol Hung 98(1):27–31

    Google Scholar 

  • Bencsik A, Lestaevel P, Canu IG (2018) Nano-and neurotoxicology: An emerging discipline. Prog Neurobiol 160:45–63

    CAS  Google Scholar 

  • Bereczki E et al (2011) Liposomes functionalized with acidic lipids rescue Aβ-induced toxicity in murine neuroblastoma cells. Nanomed Nanotechnol Biol Med 7(5):560–571

    CAS  Google Scholar 

  • Berns EJ et al (2016) A tenascin-C mimetic peptide amphiphile nanofiber gel promotes neurite outgrowth and cell migration of neurosphere-derived cells. Acta Biomater 37:50–58

    CAS  Google Scholar 

  • Bhaskar S et al (2010) Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol 7(1):3

    Google Scholar 

  • Bird CM, Burgess N (2008) The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci 9(3):182

    CAS  Google Scholar 

  • Bondì ML et al (2010) Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution. Nanomedicine 5(1):25–32

    Google Scholar 

  • Borisova T et al (2015) Neuromodulatory properties of fluorescent carbon dots: effect on exocytotic release, uptake and ambient level of glutamate and GABA in brain nerve terminals. Int J Biochem Cell Biol 59:203–215

    CAS  Google Scholar 

  • Brun E, Carrière M, Mabondzo A (2012) In vitro evidence of dysregulation of blood–brain barrier function after acute and repeated/long-term exposure to TiO2 nanoparticles. Biomaterials 33(3):886–896

    CAS  Google Scholar 

  • Calienni MN et al (2017) Nanotoxicological and teratogenic effects: a linkage between dendrimer surface charge and zebrafish developmental stages. Toxicol Appl Pharmacol 337:1–11

    CAS  Google Scholar 

  • Canovi M et al (2011) The binding affinity of anti-Aβ1-42 MAb-decorated nanoliposomes to Aβ1-42 peptides in vitro and to amyloid deposits in post-mortem tissue. Biomaterials 32(23):5489–5497

    CAS  Google Scholar 

  • Carradori D et al (2017) The therapeutic contribution of nanomedicine to treat neurodegenerative diseases via neural stem cell differentiation. Biomaterials 123:77–91

    CAS  Google Scholar 

  • Celardo I et al (2011) Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3(4):1411–1420

    CAS  Google Scholar 

  • Chen B, Li J, Borgens RB (2018) Neuroprotection by chitosan nanoparticles in oxidative stress-mediated injury. BMC Res Notes 11(1):49

    Google Scholar 

  • Chen T et al (2013) Multi-walled carbon nanotube increases the excitability of hippocampal CA1 neurons through inhibition of potassium channels in rat’s brain slices. Toxicol Lett 217(2):121–128

    CAS  Google Scholar 

  • Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed 52(6):1636–1653

    CAS  Google Scholar 

  • Cho Y, Borgens RB (2012) Polymer and nano-technology applications for repair and reconstruction of the central nervous system. Exp Neurol 233(1):126–144

    CAS  Google Scholar 

  • Cho Y, Shi R, Borgens RB (2010) Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury. Journal of Biological Engineering 4(1):2

    Google Scholar 

  • Choi J et al (2009) Silica-based nanoparticle uptake and cellular response by primary microglia. Environ Health Perspect 118(5):589–595

    Google Scholar 

  • Christopherson GT, Song H, Mao H-Q (2009) The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials 30(4):556–564

    CAS  Google Scholar 

  • Chung C-Y et al (2017) Brain-derived neurotrophic factor loaded PS80 PBCA nanocarrier for in vitro neural differentiation of mouse induced pluripotent stem cells. Int J Mol Sci 18(3):663

    Google Scholar 

  • Cimini A et al (2012) Antibody-conjugated PEGylated cerium oxide nanoparticles for specific targeting of Aβ aggregates modulate neuronal survival pathways. Acta Biomater 8(6):2056–2067

    CAS  Google Scholar 

  • Cinteza LO (2010) Quantum dots in biomedical applications: advances and challenges. Journal of Nanophotonics 4(1):042503

    Google Scholar 

  • Ciofani G et al (2013) Effects of cerium oxide nanoparticles on PC12 neuronal-like cells: proliferation, differentiation, and dopamine secretion. Pharm Res 30(8):2133–2145

    CAS  Google Scholar 

  • Coccini T et al (2015) Comparative cellular toxicity of titanium dioxide nanoparticles on human astrocyte and neuronal cells after acute and prolonged exposure. Neurotoxicology 48:77–89

    CAS  Google Scholar 

  • Cole NB, Murphy DD (2002) The cell biology of alpha-synuclein: a sticky problem? Neuromolecular Med 1(2):95–109

    CAS  Google Scholar 

  • Crucho CI, Barros MT (2017) Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater Sci Eng C 80:771–784

    CAS  Google Scholar 

  • Cunha C et al (2011) 3D culture of adult mouse neural stem cells within functionalized self-assembling peptide scaffolds. Int J Nanomedicine 6:943

    CAS  Google Scholar 

  • D’Agata F et al (2018) Magnetic nanoparticles in the central nervous system: targeting principles, applications and safety issues. Molecules 23(1):9

    Google Scholar 

  • D’Angelo B et al (2009) Cerium oxide nanoparticles trigger neuronal survival in a human Alzheimer disease model by modulating BDNF pathway. Current Nanoscience 5(2):167–176

    Google Scholar 

  • Das M et al (2007) Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 28(10):1918–1925

    CAS  Google Scholar 

  • Dayem AA et al (2014) Biologically synthesized silver nanoparticles induce neuronal differentiation of SH-SY5Y cells via modulation of reactive oxygen species, phosphatases, and kinase signaling pathways. Biotechnol J 9(7):934–943

    Google Scholar 

  • de Oliveira GMT et al (2014) Transient modulation of acetylcholinesterase activity caused by exposure to dextran-coated iron oxide nanoparticles in brain of adult zebrafish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 162:77–84

    Google Scholar 

  • Deng X et al (2009) Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology 20(11):115101

    Google Scholar 

  • Deng M et al (2014) Fabrication and neuron cytocompatibility of iron oxide nanoparticles coated with silk-fibroin peptides. Colloids Surf B Biointerfaces 116:465–471

    CAS  Google Scholar 

  • Dillon C et al (2011) Cerium oxide nanoparticles protect against MPTP-induced dopaminergic neurodegeneration in a mouse model for Parkinson’s disease. Nanotechnology 3:451–454

    CAS  Google Scholar 

  • Disdier C et al (2015) Tissue biodistribution of intravenously administrated titanium dioxide nanoparticles revealed blood-brain barrier clearance and brain inflammation in rat. Part Fibre Toxicol 12(1):27

    Google Scholar 

  • Dowding J et al (2014) Cerium oxide nanoparticles protect against Aβ-induced mitochondrial fragmentation and neuronal cell death. Cell Death Differ 21(10):1622

    CAS  Google Scholar 

  • Eitan E et al (2015) Combination therapy with lenalidomide and nanoceria ameliorates CNS autoimmunity. Exp Neurol 273:151–160

    CAS  Google Scholar 

  • Elder A et al (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 114(8):1172–1178

    CAS  Google Scholar 

  • Engler AJ et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    CAS  Google Scholar 

  • Estevez A et al (2011) Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radic Biol Med 51(6):1155–1163

    CAS  Google Scholar 

  • Farrukh A, Zhao S, Del Campo A (2018) Microenvironments designed to support growth and function of neuronal cells. Frontiers in Materials 5:62

    Google Scholar 

  • Feng L et al (2010) Fluorescence imaging of APP in Alzheimer’s disease with quantum dot or Cy3: a comparative study. Zhong nan da xue xue bao. Yi xue ban= Journal of Central South University. Med Sci 35(9):903–909

    CAS  Google Scholar 

  • Feng ZQ et al (2018) Neurogenic differentiation of adipose derived stem cells on graphene-based mat. Korean J Couns Psychother 90:685–692

    CAS  Google Scholar 

  • Fernandes C, Soni U, Patravale V (2010) Nano-interventions for neurodegenerative disorders. Pharmacol Res 62(2):166–178

    CAS  Google Scholar 

  • Gaillard PJ et al (2012) Enhanced brain drug delivery: safely crossing the blood–brain barrier. Drug Discov Today Technol 9(2):e155–e160

    CAS  Google Scholar 

  • Gao X, Gu X, Chen H (2017) The Distribution and Elimination of Nanomaterials in Brain. Neurotoxicity of Nanomaterials and Nanomedicine 50:59–74

    Google Scholar 

  • Gao H, Jiang X (2017) Perspective on Strategies to Reduce the Neurotoxicity of Nanomaterials and Nanomedicines. Neurotoxicity of Nanomaterials and Nanomedicine 9:331–336

    Google Scholar 

  • Gaoe H et al (2012) Anti-glioma effect and safety of docetaxel-loaded nanoemulsion. Arch Pharm Res 35(2):333–341

    CAS  Google Scholar 

  • Georganopoulou DG et al (2005) Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci 102(7):2273–2276

    CAS  Google Scholar 

  • Geppert M et al (2009) Accumulation of iron oxide nanoparticles by cultured brain astrocytes. J Biomed Nanotechnol 5(3):285–293

    CAS  Google Scholar 

  • Geppert M et al (2012) Ferritin up-regulation and transient ROS production in cultured brain astrocytes after loading with iron oxide nanoparticles. Acta Biomater 8(10):3832–3839

    CAS  Google Scholar 

  • Geraets L et al (2014) Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part Fibre Toxicol 11(1):30

    Google Scholar 

  • Ghooshchian M, Khodarahmi P, Tafvizi F (2017) Apoptosis-mediated neurotoxicity and altered gene expression induced by silver nanoparticles. Toxicol Ind Health 33(10):757–764

    CAS  Google Scholar 

  • Gilmore JL et al (2008) Novel nanomaterials for clinical neuroscience. J Neuroimmune Pharmacol 3(2):83–94

    Google Scholar 

  • Group, P.S. (2004) Levodopa and the progression of Parkinson’s disease. N Engl J Med 351(24):2498–2508

    Google Scholar 

  • Guerzoni LP, Nicolas V, Angelova A (2017) In vitro modulation of TrkB receptor signaling upon sequential delivery of curcumin-DHA loaded carriers towards promoting neuronal survival. Pharm Res 34(2):492–505

    CAS  Google Scholar 

  • Guo J et al (2011) Aptamer-functionalized PEG–PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 32(31):8010–8020

    CAS  Google Scholar 

  • Gurunathan S, Kim J-H (2017) Graphene oxide–silver nanoparticles nanocomposite stimulates differentiation in human neuroblastoma cancer cells (SH-SY5Y). Int J Mol Sci 18(12):2549

    Google Scholar 

  • Haddad T et al (2016) Fabrication and surface modification of poly lactic acid (PLA) scaffolds with epidermal growth factor for neural tissue engineering. Biomatter 6(1):e1231276

    Google Scholar 

  • Halim A et al (2018) A mini review focused on the recent applications of graphene oxide in stem cell growth and differentiation. Nanomaterials 8(9):736

    Google Scholar 

  • Hamsici S et al (2017) Bioactive peptide functionalized aligned cyclodextrin nanofibers for neurite outgrowth. J Mater Chem B 5(3):517–524

    CAS  Google Scholar 

  • Han JW et al (2017) Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity-and differentiation-mediated cancer therapy. Int J Nanomedicine 12:7529

    CAS  Google Scholar 

  • Hayashi K et al (2017) The brain-specific RasGEF very-KIND is required for normal dendritic growth in cerebellar granule cells and proper motor coordination. PLoS One 12(3):e0173175

    Google Scholar 

  • Heckman KL et al (2013) Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano 7(12):10582–10596

    CAS  Google Scholar 

  • Hobson DE et al (2002) Excessive daytime sleepiness and sudden-onset sleep in Parkinson disease: a survey by the Canadian Movement Disorders Group. JAMA 287(4):455–463

    Google Scholar 

  • Hoff D et al (2013) Comparison study of ferrofluid and powder iron oxide nanoparticle permeability across the blood–brain barrier. Int J Nanomedicine 8:703

    Google Scholar 

  • Hohnholt MC et al (2013) Handling of iron oxide and silver nanoparticles by astrocytes. Neurochem Res 38(2):227–239

    CAS  Google Scholar 

  • Hong S et al (2009) Sensitive and colorimetric detection of the structural evolution of superoxide dismutase with gold nanoparticles. Anal Chem 81(4):1378–1382

    CAS  Google Scholar 

  • Hong F et al (2015) Suppression of neurite outgrowth of primary cultured hippocampal neurons is involved in impairment of glutamate metabolism and NMDA receptor function caused by nanoparticulate TiO2. Biomaterials 53:76–85

    CAS  Google Scholar 

  • Hu R et al (2010) Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles. Biomaterials 31(31):8043–8050

    CAS  Google Scholar 

  • Hu Y-L et al (2011a) Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. Int J Nanomedicine 6:3351

    CAS  Google Scholar 

  • Hu R et al (2011b) Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles. J Hazard Mater 191(1–3):32–40

    CAS  Google Scholar 

  • Hu K et al (2018) Neuroprotective effect of gold nanoparticles composites in Parkinson’s disease model. Nanomed Nanotechnol Biol Med 14(4):1123–1136

    CAS  Google Scholar 

  • Huang R et al (2010) Gene therapy using lactoferrin-modified nanoparticles in a rotenone-induced chronic Parkinson model. J Neurol Sci 290(1–2):123–130

    CAS  Google Scholar 

  • Huang TH et al (2016) Patterned porous silicon photonic crystals with modular surface chemistry for spatial control of neural stem cell differentiation. Nanoscale 8(21):10891–10895

    CAS  Google Scholar 

  • Huerta-García E et al (2014) Titanium dioxide nanoparticles induce strong oxidative stress and mitochondrial damage in glial cells. Free Radic Biol Med 73:84–94

    Google Scholar 

  • Huile G et al (2011) A cascade targeting strategy for brain neuroglial cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 32(33):8669–8675

    Google Scholar 

  • Huo T et al (2012) Preparation, biodistribution and neurotoxicity of liposomal cisplatin following convection enhanced delivery in normal and F98 glioma bearing rats. PLoS One 7(11):e48752

    CAS  Google Scholar 

  • Imam SZ et al (2015) Iron oxide nanoparticles induce dopaminergic damage: in vitro pathways and in vivo imaging reveals mechanism of neuronal damage. Mol Neurobiol 52(2):913–926

    CAS  Google Scholar 

  • Iswarya V et al (2016) Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels. Environ Sci Pollut Res 23(5):4844–4858

    CAS  Google Scholar 

  • Ittner LM, Götz J (2011) Amyloid-β and tau—a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12(2):67

    Google Scholar 

  • Iv M et al (2015) Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine 10(6):993–1018

    CAS  Google Scholar 

  • Jhala D, Vasita R (2015) A review on extracellular matrix mimicking strategies for an artificial stem cell niche. Polymer Reviews 55(4):561–595

    CAS  Google Scholar 

  • Jia G et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39(5):1378–1383

    CAS  Google Scholar 

  • Kao Y-Y et al (2012) Demonstration of an olfactory bulb–brain translocation pathway for ZnO nanoparticles in rodent cells in vitro and in vivo. J Mol Neurosci 48(2):464–471

    CAS  Google Scholar 

  • Kapilashrami M et al (2014) Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem Rev 114(19):9662–9707

    CAS  Google Scholar 

  • Kaushik AC et al (2018) Nano-particle mediated inhibition of Parkinson’s disease using computational biology approach. Sci Rep 8(1):9169

    Google Scholar 

  • Kenzaoui BH et al (2012) Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. Biochem J 441(3):813–821

    Google Scholar 

  • Khan H et al (2018a) Nanoparticles for biomedical applications: An overview. Nanobiomaterials 22:357–384

    Google Scholar 

  • Khan FA et al (2018b) Impact of nanoparticles on neuron biology: current research trends. Int J Nanomedicine 13:2767

    CAS  Google Scholar 

  • Khan AM et al (2019) Silver nanoparticle-induced expression of proteins related to oxidative stress and neurodegeneration in an in vitro human blood-brain barrier model. Nanotoxicology 13(2):221–239

    CAS  Google Scholar 

  • Khodr CE et al (2011) An alpha-synuclein AAV gene silencing vector ameliorates a behavioral deficit in a rat model of Parkinson’s disease, but displays toxicity in dopamine neurons. Brain Res 1395:94–107

    CAS  Google Scholar 

  • Kiessling F et al (2014) Nanoparticles for imaging: top or flop? Radiology 273(1):10–28

    Google Scholar 

  • Kim Y-J, Yang SI (2011) Neurotoxic effects by silica TM nanoparticle is independent of differentiation of SH-SY5Y cells. Molecular & Cellular Toxicology 7(4):381–388

    CAS  Google Scholar 

  • Kim JH et al (2003) The role of synaptic GTPase-activating protein in neuronal development and synaptic plasticity. J Neurosci 23(4):1119–1124

    CAS  Google Scholar 

  • Kim CK et al (2012) Ceria nanoparticles that can protect against ischemic stroke. Angew Chem Int Ed 51(44):11039–11043

    CAS  Google Scholar 

  • Kim Y et al (2013) In vivo nanoneurotoxicity screening using oxidative stress and neuroinflammation paradigms. Nanomed Nanotechnol Biol Med 9(7):1057–1066

    CAS  Google Scholar 

  • Kim J-H et al (2015) Zinc oxide nanoparticles induce lipoxygenase-mediated apoptosis and necrosis in human neuroblastoma SH-SY5Y cells. Neurochem Int 90:204–214

    CAS  Google Scholar 

  • Kosicek M et al (2010) Nano-HPLC–MS analysis of phospholipids in cerebrospinal fluid of Alzheimer’s disease patients—a pilot study. Anal Bioanal Chem 398(7–8):2929–2937

    CAS  Google Scholar 

  • Kreuter J (2015) Influence of chronobiology on the nanoparticle-mediated drug uptake into the brain. Pharmaceutics 7(1):3–9

    CAS  Google Scholar 

  • Kteeba SM et al (2018) Exposure to ZnO nanoparticles alters neuronal and vascular development in zebrafish: Acute and transgenerational effects mitigated with dissolved organic matter. Environ Pollut 242:433–448

    CAS  Google Scholar 

  • Kumar A et al (2017) Nanotechnology for neuroscience: promising approaches for diagnostics, therapeutics and brain activity mapping. Adv Funct Mater 27(39):1700489

    Google Scholar 

  • Lamkowsky MC et al (2012) Magnetic field-induced acceleration of the accumulation of magnetic iron oxide nanoparticles by cultured brain astrocytes. J Biomed Mater Res A 100(2):323–334

    Google Scholar 

  • Lansdown AB (2006) Silver in health care: antimicrobial effects and safety in use. Biofunctional Textiles and the Skin 8:17–34

    Google Scholar 

  • Lauzon M-A, Drevelle O, Faucheux N (2017) Peptides derived from the knuckle epitope of BMP-9 induce the cholinergic differentiation and inactivate GSk3beta in human SH-SY5Y neuroblastoma cells. Sci Rep 7(1):4695

    Google Scholar 

  • Lauzon M-A, Marcos B, Faucheux N (2018) Characterization of alginate/chitosan-based nanoparticles and mathematical modeling of their SpBMP-9 release inducing neuronal differentiation of human SH-SY5Y cells. Carbohydr Polym 181:801–811

    CAS  Google Scholar 

  • Lebda MA et al (2018) Potential role of α-lipoic acid and Ginkgo biloba against silver nanoparticles-induced neuronal apoptosis and blood-brain barrier impairments in rats. Life Sci 212:251–260

    CAS  Google Scholar 

  • Lee HY et al (2007) A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem Commun 28:2959–2961

    Google Scholar 

  • Lee TJ et al (2015) RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model. Oncotarget 6(17):14766

    Google Scholar 

  • Lee MK et al (2016) Three dimensional conjugation of recombinant N-cadherin to a hydrogel for in vitro anisotropic neural growth. J Mater Chem B 4(42):6803–6811

    Google Scholar 

  • Lee JS et al (2018) Ferritin nanoparticles for improved self-renewal and differentiation of human neural stem cells. Biomaterials Research 22(1):5

    Google Scholar 

  • Lein P et al (2000) Manganese induces neurite outgrowth in PC12 cells via upregulation of αv integrins. Brain Res 885(2):220–230

    CAS  Google Scholar 

  • Li Y et al (2010) Systematic influence induced by 3 nm titanium dioxide following intratracheal instillation of mice. J Nanosci Nanotechnol 10(12):8544–8549

    CAS  Google Scholar 

  • Li M et al (2013) Cerium oxide caged metal chelator: anti-aggregation and anti-oxidation integrated H 2 O 2-responsive controlled drug release for potential Alzheimer’s disease treatment. Chem Sci 4(6):2536–2542

    CAS  Google Scholar 

  • Liang H et al (2018) Neuroinflammation is induced by tongue-instilled ZnO nanoparticles via the Ca 2+-dependent NF-κB and MAPK pathways. Part Fibre Toxicol 15(1):39

    CAS  Google Scholar 

  • Liao H-Y et al (2014) Six-month follow-up study of health markers of nanomaterials among workers handling engineered nanomaterials. Nanotoxicology 8(sup1):100–110

    CAS  Google Scholar 

  • Lin B-L et al (2017) Superparamagnetic iron oxide nanoparticles-complexed cationic amylose for in vivo magnetic resonance imaging tracking of transplanted stem cells in stroke. Nanomaterials 7(5):107

    Google Scholar 

  • Liu Y, Xu Z, Li X (2013) Cytotoxicity of titanium dioxide nanoparticles in rat neuroglia cells. Brain Inj 27(7–8):934–939

    Google Scholar 

  • Liu S et al (2010) Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology 267(1–3):172–177

    CAS  Google Scholar 

  • Liu F et al (2015) Effects of silver nanoparticles on human and rat embryonic neural stem cells. Front Neurosci 9:115

    Google Scholar 

  • Loane DJ, Faden AI (2010) Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci 31(12):596–604

    CAS  Google Scholar 

  • Lockman PR et al (2004) Nanoparticle surface charges alter blood–brain barrier integrity and permeability. J Drug Target 12(9–10):635–641

    CAS  Google Scholar 

  • Low WC et al (2015) Nanofiber-mediated release of retinoic acid and brain-derived neurotrophic factor for enhanced neuronal differentiation of neural progenitor cells. Drug Deliv Transl Res 5(2):89–100

    CAS  Google Scholar 

  • Lu W et al (2006) Cationic albumin–conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res 66(24):11878–11887

    CAS  Google Scholar 

  • Lu W et al (2007) Aclarubicin-loaded cationic albumin-conjugated pegylated nanoparticle for glioma chemotherapy in rats. Int J Cancer 120(2):420–431

    CAS  Google Scholar 

  • Luther EM et al (2013) Endocytotic uptake of iron oxide nanoparticles by cultured brain microglial cells. Acta Biomater 9(9):8454–8465

    CAS  Google Scholar 

  • Ma L et al (2010) Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity. Biomaterials 31(1):99–105

    CAS  Google Scholar 

  • Machtoub L, Bataveljic D, Andjus P (2011) Molecular imaging of brain lipid environment of lymphocytes in amyotrophic lateral sclerosis using magnetic resonance imaging and SECARS microscopy. Physiol Res 60:S121

    CAS  Google Scholar 

  • Mageswari A et al (2016) Nanomaterials: classification, biological synthesis and characterization. Nanoscience in Food and Agriculture 3:31–71

    Google Scholar 

  • Male D, Gromnicova R, Mcquaid C (2016) Gold Nanoparticles for imaging and drug transport to the CNS. Int Rev Neurobiol 23:155–198

    Google Scholar 

  • Manchineella S et al (2016) Surface-functionalized silk fibroin films as a platform to guide neuron-like differentiation of human mesenchymal stem cells. ACS Appl Mater Interfaces 8(35):22849–22859

    CAS  Google Scholar 

  • Mao Z et al (2015) Titanium dioxide nanoparticles alter cellular morphology via disturbing the microtubule dynamics. Nanoscale 7(18):8466–8475

    CAS  Google Scholar 

  • Márquez-Ramírez SG et al (2012) Titanium dioxide nanoparticles inhibit proliferation and induce morphological changes and apoptosis in glial cells. Toxicology 302(2–3):146–156

    Google Scholar 

  • Martirosyan A, Schneider Y-J (2014) Engineered nanomaterials in food: implications for food safety and consumer health. Int J Environ Res Public Health 11(6):5720–5750

    Google Scholar 

  • Massard C, Deutsch E, Soria J (2006) Tumour stem cell-targeted treatment: elimination or differentiation. Ann Oncol 17(11):1620–1624

    CAS  Google Scholar 

  • Matsuoka Y et al (2003) Novel therapeutic approach for the treatment of Alzheimer’s disease by peripheral administration of agents with an affinity to β-amyloid. J Neurosci 23(1):29–33

    CAS  Google Scholar 

  • Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42(16):5843–5859

    CAS  Google Scholar 

  • Meena R, Kumar S, Paulraj R (2015) Titanium oxide (TiO 2) nanoparticles in induction of apoptosis and inflammatory response in brain. J Nanopart Res 17(1):49

    Google Scholar 

  • Meng L et al (2013) Inhibitory effects of multiwall carbon nanotubes with high iron impurity on viability and neuronal differentiation in cultured PC12 cells. Toxicology 313(1):49–58

    CAS  Google Scholar 

  • Mili B et al (2018) Preparation of NGF encapsulated chitosan nanoparticles and its evaluation on neuronal differentiation potentiality of canine mesenchymal stem cells. J Mater Sci Mater Med 29(1):4

    Google Scholar 

  • Mohammadipour A et al (2014) Maternal exposure to titanium dioxide nanoparticles during pregnancy; impaired memory and decreased hippocampal cell proliferation in rat offspring. Environ Toxicol Pharmacol 37(2):617–625

    CAS  Google Scholar 

  • Montesinos R (2017) Liposomal drug delivery to the central nervous system. Liposomes

    Google Scholar 

  • Mu K et al (2015) Monoclonal Antibody–Conjugated Superparamagnetic Iron Oxide Nanoparticles for Imaging of Epidermal Growth Factor Receptor–Targeted Cells and Gliomas. Mol Imaging 14(5):7290

    Google Scholar 

  • Murakami S, Tashiro F (2015) Prospects of Differentiation Therapy for Cancer Stem Cells. Adv Tech Biol Med 3: 144. doi: 10.4172/2379-1764.1000144 Page 2 of 5 Volume 3• Issue 3• 1000144 Adv Tech Biol Med ISSN: 2379-1764 ATBM, an open access journal were originally found in hematopoietic stem cells by the side population (SP) assay [28, 29]. The SP assay is the method for identifying CSCs using the efflux of the DNA-binding dye Hoechst 33342 [30, 31]. The expression level of the ABC transporter gene correlates with stem cell compartment characterized by SP, MDR1

    Google Scholar 

  • Muthiah M, Park I-K, Cho C-S (2013) Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnol Adv 31(8):1224–1236

    CAS  Google Scholar 

  • Myhre O et al (2013) Metal dyshomeostasis and inflammation in Alzheimer’s and Parkinson’s diseases: possible impact of environmental exposures. Oxid Med Cell Longev 2013

    Google Scholar 

  • Nalika N, Parvez S (2015) Mitochondrial dysfunction in titanium dioxide nanoparticle-induced neurotoxicity. Toxicol Mech Methods 25(5):355–363

    CAS  Google Scholar 

  • Neely A et al (2009) Ultrasensitive and highly selective detection of Alzheimer’s disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano 3(9):2834–2840

    CAS  Google Scholar 

  • Newman MD, Stotland M, Ellis JI (2009) The safety of nanosized particles in titanium dioxide–and zinc oxide–based sunscreens. J Am Acad Dermatol 61(4):685–692

    CAS  Google Scholar 

  • Ngwa HA et al (2011) Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells. Toxicol Appl Pharmacol 256(3):227–240

    Google Scholar 

  • Nicholls FJ et al (2016) DNA–gadolinium–gold nanoparticles for in vivo T1 MR imaging of transplanted human neural stem cells. Biomaterials 77:291–306

    CAS  Google Scholar 

  • Nicolosi A et al (2018) Acute exposure to zinc oxide nanoparticles critically disrupts operation of the respiratory neural network in neonatal rat. Neurotoxicology 67:150–160

    CAS  Google Scholar 

  • Niu S et al (2017) Inhibition by multifunctional magnetic nanoparticles loaded with alpha-synuclein RNAi plasmid in a Parkinson’s disease model. Theranostics 7(2):344

    CAS  Google Scholar 

  • Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. ACS Publications, Switzerland

    Google Scholar 

  • Oberdörster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112(10):1058–1062

    Google Scholar 

  • Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1):2–25

    Google Scholar 

  • Orlando A et al (2017) Mesoporous silica nanoparticles trigger mitophagy in endothelial cells and perturb neuronal network activity in a size-and time-dependent manner. Int J Nanomedicine 12:3547

    CAS  Google Scholar 

  • Ostrakhovitch E, Semenikhin O (2013) The role of redox environment in neurogenic development. Arch Biochem Biophys 534(1–2):44–54

    CAS  Google Scholar 

  • Pampaloni NP et al (2018) Sculpting neurotransmission during synaptic development by 2D nanostructured interfaces. Nanomed Nanotechnol Biol Med 14(7):2521–2532

    CAS  Google Scholar 

  • Panyala NR, Peña-Méndez EM, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to the environment and human health? Journal of Applied Biomedicine (De Gruyter Open) 6(3):20

    Google Scholar 

  • Park GE, Webster TJ (2005) A review of nanotechnology for the development of better orthopedic implants. J Biomed Nanotechnol 1(1):18–29

    CAS  Google Scholar 

  • Park SY et al (2017) Kalopanacis Cortex extract-capped gold nanoparticles activate NRF2 signaling and ameliorate damage in human neuronal SH-SY5Y cells exposed to oxygen–glucose deprivation and reoxygenation. Int J Nanomedicine 12:4563

    CAS  Google Scholar 

  • Park SY et al (2019) Neuroprotective effect of Dictyopteris divaricata extract-capped gold nanoparticles against oxygen and glucose deprivation/reoxygenation. Colloids Surf B Biointerfaces 179:421–428

    Google Scholar 

  • Patel M (2016) Targeting oxidative stress in central nervous system disorders. Trends Pharmacol Sci 37(9):768–778

    CAS  Google Scholar 

  • Peres TV et al (2016) Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies. BMC Pharmacol Toxicol 17(1):57

    Google Scholar 

  • Petters C, Thiel K, Dringen R (2016) Lysosomal iron liberation is responsible for the vulnerability of brain microglial cells to iron oxide nanoparticles: comparison with neurons and astrocytes. Nanotoxicology 10(3):332–342

    CAS  Google Scholar 

  • Petters C et al (2014) Uptake and metabolism of iron oxide nanoparticles in brain cells. Neurochem Res 39(9):1648–1660

    CAS  Google Scholar 

  • Pickard M, Chari D (2010) Robust uptake of magnetic nanoparticles (MNPs) by central nervous system (CNS) microglia: implications for particle uptake in mixed neural cell populations. Int J Mol Sci 11(3):967–981

    CAS  Google Scholar 

  • Pinna A et al (2015) Ceria nanoparticles for the treatment of Parkinson-like diseases induced by chronic manganese intoxication. RSC Adv 5(26):20432–20439

    CAS  Google Scholar 

  • Pisanic TR, Jin S, Shubayev VI (2009) Iron oxide magnetic nanoparticle nanotoxicity: incidence and mechanisms. Nanotoxicity: From in vivo and in Vitro Models to Health Risks 28:397–425

    Google Scholar 

  • Podolski IY et al (2007) Effects of hydrated forms of C60 fullerene on amyloid β-peptide fibrillization in vitro and performance of the cognitive task. J Nanosci Nanotechnol 7(4–5):1479–1485

    CAS  Google Scholar 

  • Polak P, Shefi O (2015) Nanometric agents in the service of neuroscience: manipulation of neuronal growth and activity using nanoparticles. Nanomed Nanotechnol Biol Med 11(6):1467–1479

    CAS  Google Scholar 

  • Portney NG, Ozkan M (2006) Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem 384(3):620–630

    CAS  Google Scholar 

  • Quadros ME, Marr LC (2010) Environmental and human health risks of aerosolized silver nanoparticles. J Air Waste Manage Assoc 60(7):770–781

    CAS  Google Scholar 

  • Ragusa A et al (2018) Neuroprotective investigation of chitosan nanoparticles for dopamine delivery. Applied Sciences 8(4):474

    Google Scholar 

  • Raspa A et al (2016) A biocompatibility study of new nanofibrous scaffolds for nervous system regeneration. Nanoscale 8(1):253–265

    CAS  Google Scholar 

  • Ren L, Zhong W (2010) Oxidation reactions mediated by single-walled carbon nanotubes in aqueous solution. Environ Sci Technol 44(18):6954–6958

    CAS  Google Scholar 

  • Richert L et al (2008) Surface nanopatterning to control cell growth. Adv Mater 20(8):1488–1492

    CAS  Google Scholar 

  • Riggio C et al (2012) Poly-l-lysine-coated magnetic nanoparticles as intracellular actuators for neural guidance. Int J Nanomedicine 7:3155

    CAS  Google Scholar 

  • Riggio C et al (2014) The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field. Nanomed Nanotechnol Biol Med 10(7):1549–1558

    CAS  Google Scholar 

  • Roney CA et al (2009) Nanoparticulate radiolabelled quinolines detect amyloid plaques in mouse models of Alzheimer’s disease. International Journal of Alzheimer’s Disease 2009:12

    Google Scholar 

  • RUSSELL JW et al (2002) High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 16(13):1738–1748

    CAS  Google Scholar 

  • Rzigalinski BA (2005) Nanoparticles and cell longevity. Technol Cancer Res Treat 4(6):651–659

    CAS  Google Scholar 

  • Rzigalinski BA, Carfagna CS, Ehrich M (2017) Cerium oxide nanoparticles in neuroprotection and considerations for efficacy and safety. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9(4):e1444

    Google Scholar 

  • Safari M, Arbabi Bidgoli S, Rezayat S (2016) Differential neurotoxic effects of silver nanoparticles: A review with special emphasis on potential biomarkers. Nanomedicine Journal 3(2):83–94

    CAS  Google Scholar 

  • Saleh TA, Gupta VK (2016) Chapter 4—Synthesis, classification, and properties of nanomaterials. In: Saleh TA, Gupta VK (eds) Nanomaterial and Polymer Membranes. Elsevier, Amsterdam, The Netherlands, pp 83–133

    Google Scholar 

  • Salim S (2017) Oxidative stress and the central nervous system. Journal of Pharmacology and Experimental Therapeutics 360(1):201–205

    CAS  Google Scholar 

  • Sandhir R et al (2015) Nano-antioxidants: an emerging strategy for intervention against neurodegenerative conditions. Neurochem Int 89:209–226

    CAS  Google Scholar 

  • Santos T et al (2016) Nanomedicine approaches to modulate neural stem cells in brain repair. Trends Biotechnol 34(6):437–439

    CAS  Google Scholar 

  • Saraiva C, Ferreira L, Bernardino L (2016) Traceable microRNA-124 loaded nanoparticles as a new promising therapeutic tool for Parkinson’s disease. Neurogenesis 3(1):e1256855

    Google Scholar 

  • Saraiva C et al (2018) MicroRNA-124-loaded nanoparticles increase survival and neuronal differentiation of neural stem cells in vitro but do not contribute to stroke outcome in vivo. PLoS One 13(3):e0193609

    Google Scholar 

  • Sarkar A et al (2017) Nanoparticles as a carrier system for drug delivery across blood brain barrier. Curr Drug Metab 18(2):129–137

    CAS  Google Scholar 

  • Scheringer M et al (2010) Environmental risks associated with nanoparticulate silver used as biocide. Household Pers Care Today 1:34–37

    Google Scholar 

  • Schöneborn H et al (2019) Novel Tools towards Magnetic Guidance of Neurite Growth:(I) Guidance of Magnetic Nanoparticles into Neurite Extensions of Induced Human Neurons and In Vitro Functionalization with RAS Regulating Proteins. Journal of Functional Biomaterials 10(3):32

    Google Scholar 

  • Schubert D et al (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342(1):86–91

    CAS  Google Scholar 

  • Seaton A, Donaldson K (2005) Nanoscience, nanotoxicology, and the need to think small. The Lancet 365(9463):923–924

    Google Scholar 

  • Shadfar S et al (2015) Involvement of inflammation in Alzheimer’s disease pathogenesis and therapeutic potential of anti-inflammatory agents. Arch Pharm Res 38(12):2106–2119

    CAS  Google Scholar 

  • Shah B et al (2013) Multimodal Magnetic Core–Shell Nanoparticles for Effective Stem-Cell Differentiation and Imaging. Angew Chem Int Ed 52(24):6190–6195

    CAS  Google Scholar 

  • Shah S et al (2014) Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. Adv Mater 26(22):3673–3680

    CAS  Google Scholar 

  • Shang L, Nienhaus K, Nienhaus GU (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12(1):5

    Google Scholar 

  • Shao H et al (2018) Carbon nanotube multilayered nanocomposites as multifunctional substrates for actuating neuronal differentiation and functions of neural stem cells. Biomaterials 175:93–109

    CAS  Google Scholar 

  • Shim KH et al (2014) Analysis of zinc oxide nanoparticles binding proteins in rat blood and brain homogenate. Int J Nanomedicine 9(Suppl 2):217

    Google Scholar 

  • Singh N, Cohen CA, Rzigalinski BA (2007) Treatment of neurodegenerative disorders with radical nanomedicine. Ann N Y Acad Sci 1122(1):219–230

    CAS  Google Scholar 

  • Singh N et al (2008) The antioxidant activity of cerium oxide nanoparticles is size dependent and blocks Aβ1-42-induced free radical production and neurotoxicity. Federation of American Societies for Experimental Biology 5(2):15

    Google Scholar 

  • Singh N et al (2017) Drug delivery: advancements and challenges. Nanostructures for Drug Delivery 43:865–886

    Google Scholar 

  • Skaper SD et al (2018) An inflammation-centric view of neurological disease: beyond the neuron. Front Cell Neurosci 12:72

    Google Scholar 

  • Smith CJ, Shaw BJ, Handy RD (2007) Toxicity of single walled carbon nanotubes to rainbow trout (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 82(2):94–109

    CAS  Google Scholar 

  • Solanki A et al (2013) Nanotopography-mediated reverse uptake for siRNA delivery into neural stem cells to enhance neuronal differentiation. Sci Rep 3:1553

    Google Scholar 

  • Soltani Nejad M (2015) G.H. Shahidi Bonjar, and N. Khaleghi, Biosynthesis of gold nanoparticles using streptomyces fulvissimus isolate. Nanomedicine Journal 2(2):153–159

    Google Scholar 

  • Song B et al (2016) Is neurotoxicity of metallic nanoparticles the cascades of oxidative stress? Nanoscale Res Lett 11(1):291

    Google Scholar 

  • Sousa F et al (2010) Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study. Nanoscale 2(12):2826–2834

    CAS  Google Scholar 

  • Srinageshwar B et al (2017) PAMAM dendrimers cross the blood–brain barrier when administered through the carotid artery in C57BL/6J mice. Int J Mol Sci 18(3):628

    Google Scholar 

  • Sruthi S, Mohanan P (2015) Investigation on cellular interactions of astrocytes with zinc oxide nanoparticles using rat C6 cell lines. Colloids Surf B Biointerfaces 133:1–11

    CAS  Google Scholar 

  • Stephanopoulos N et al (2014) Bioactive DNA-peptide nanotubes enhance the differentiation of neural stem cells into neurons. Nano Lett 15(1):603–609

    Google Scholar 

  • Strużyńska L, Skalska J (2018) Mechanisms underlying neurotoxicity of silver nanoparticles. Cellular and Molecular Toxicology of Nanoparticles 18:227–250

    Google Scholar 

  • Sudhakaran S, Athira S, Mohanan P (2019) Zinc oxide nanoparticle induced neurotoxic potential upon interaction with primary astrocytes. Neurotoxicology 73:213–227

    CAS  Google Scholar 

  • Sun X et al (2012) Co-delivery of pEGFP-hTRAIL and paclitaxel to brain glioma mediated by an angiopep-conjugated liposome. Biomaterials 33(3):916–924

    CAS  Google Scholar 

  • Talukdar Y et al (2014) The effects of graphene nanostructures on mesenchymal stem cells. Biomaterials 35(18):4863–4877

    CAS  Google Scholar 

  • Tang J et al (2009) Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 9(8):4924–4932

    CAS  Google Scholar 

  • Taylor M et al (2011) Effect of curcumin-associated and lipid ligand-functionalized nanoliposomes on aggregation of the Alzheimer’s Aβ peptide. Nanomed Nanotechnol Biol Med 7(5):541–550

    CAS  Google Scholar 

  • Teleanu DM et al (2019) Neurotoxicity of nanomaterials: An up-to-date overview. Nanomaterials 9(1):96

    Google Scholar 

  • Tian L et al (2015) Neurotoxicity induced by zinc oxide nanoparticles: age-related differences and interaction. Sci Rep 5:16117

    CAS  Google Scholar 

  • Tiwari SK et al (2013) Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano 8(1):76–103

    Google Scholar 

  • Tran HNA et al (2010) A novel class of potential prion drugs: preliminary in vitro and in vivo data for multilayer coated gold nanoparticles. Nanoscale 2(12):2724–2732

    CAS  Google Scholar 

  • Usmani S et al (2016) 3D meshes of carbon nanotubes guide functional reconnection of segregated spinal explants. Sci Adv 2(7):e1600087

    Google Scholar 

  • Valdiglesias V et al (2013a) Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells. Food Chem Toxicol 57:352–361

    CAS  Google Scholar 

  • Valdiglesias V et al (2013b) Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles. Environ Int 55:92–100

    CAS  Google Scholar 

  • Vidal F et al (2018) Prevention of synaptic alterations and neurotoxic effects of PAMAM dendrimers by surface functionalization. Nanomaterials 8(1):7

    Google Scholar 

  • Vissers C, Ming G-l, Song H (2019) Nanoparticle technology and stem cell therapy team up against neurodegenerative disorders. Adv Drug Deliv Rev 148:239–251

    CAS  Google Scholar 

  • Wang B et al (2007) Transport of intranasally instilled fine Fe 2 O 3 particles into the brain: micro-distribution, chemical states, and histopathological observation. Biol Trace Elem Res 118(3):233–243

    CAS  Google Scholar 

  • Wang J et al (2008) Biological effect of intranasally instilled titanium dioxide nanoparticles on female mice. Nano 3(04):279–285

    CAS  Google Scholar 

  • Wang J et al (2011a) Cytotoxicity of single-walled carbon nanotubes on PC12 cells. Toxicol In Vitro 25(1):242–250

    CAS  Google Scholar 

  • Wang F et al (2011b) Oxidative mechanisms contribute to nanosize silican dioxide-induced developmental neurotoxicity in PC12 cells. Toxicol In Vitro 25(8):1548–1556

    CAS  Google Scholar 

  • Wang Z et al (2015) Polymeric nanovehicle regulated spatiotemporal real-time imaging of the differentiation dynamics of transplanted neural stem cells after traumatic brain injury. ACS Nano 9(7):6683–6695

    CAS  Google Scholar 

  • Weaver CL, Cui XT (2015) Directed neural stem cell differentiation with a functionalized graphene oxide nanocomposite. Adv Healthc Mater 4(9):1408–1416

    CAS  Google Scholar 

  • Wiechers JW, Musee N (2010) Engineered inorganic nanoparticles and cosmetics: facts, issues, knowledge gaps and challenges. J Biomed Nanotechnol 6(5):408–431

    CAS  Google Scholar 

  • Wiedmer L et al (2019) Silica nanoparticle-exposure during neuronal differentiation modulates dopaminergic and cholinergic phenotypes in SH-SY5Y cells. J Nanobiotechnol 17(1):46

    Google Scholar 

  • Wijnhoven S et al (2008) Nano silver: A review of available data and knowledge gaps. RIVM Briefrapport, 360003001

    Google Scholar 

  • Win-Shwe T-T, Fujimaki H (2011) Nanoparticles and neurotoxicity. Int J Mol Sci 12(9):6267–6280

    CAS  Google Scholar 

  • Wu J, Sun J (2011) Investigation on mechanism of growth arrest induced by iron oxide nanoparticles in PC12 cells. J Nanosci Nanotechnol 11(12):11079–11083

    CAS  Google Scholar 

  • Wu J, Sun J, Xue Y (2010) Involvement of JNK and P53 activation in G2/M cell cycle arrest and apoptosis induced by titanium dioxide nanoparticles in neuron cells. Toxicol Lett 199(3):269–276

    CAS  Google Scholar 

  • Wu J et al (2009) Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol Lett 191(1):1–8

    CAS  Google Scholar 

  • Wu D et al (2012) Multi-walled carbon nanotubes inhibit regenerative axon growth of dorsal root ganglia neurons of mice. Neurosci Lett 507(1):72–77

    CAS  Google Scholar 

  • Wu H-Y et al (2013) Iron oxide nanoparticles suppress the production of IL-1beta via the secretory lysosomal pathway in murine microglial cells. Part Fibre Toxicol 10(1):46

    CAS  Google Scholar 

  • Wu T et al (2016) Research advances on potential neurotoxicity of quantum dots. J Appl Toxicol 36(3):345–351

    CAS  Google Scholar 

  • Xiao SJ et al (2010) Sensitive discrimination and detection of prion disease-associated isoform with a dual-aptamer strategy by developing a sandwich structure of magnetic microparticles and quantum dots. Anal Chem 82(23):9736–9742

    CAS  Google Scholar 

  • Xie M et al (2010) PEG-interspersed nitrilotriacetic acid-functionalized quantum dots for site-specific labeling of prion proteins expressed on cell surfaces. Biomaterials 31(32):8362–8370

    CAS  Google Scholar 

  • Xing D, Ma L, Gao C (2017) A bioactive hyaluronic acid–based hydrogel cross-linked by Diels–Alder reaction for promoting neurite outgrowth of PC12 cells. Journal of Bioactive and Compatible Polymers 32(4):382–396

    CAS  Google Scholar 

  • Xu L et al (2015) Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood–brain barrier primary triple coculture model. Int J Nanomedicine 10:6105

    CAS  Google Scholar 

  • Xue Y, Wu J, Sun J (2012) Four types of inorganic nanoparticles stimulate the inflammatory reaction in brain microglia and damage neurons in vitro. Toxicol Lett 214(2):91–98

    CAS  Google Scholar 

  • Xue J et al (2019) Neuroprotective effect of biosynthesised gold nanoparticles synthesised from root extract of Paeonia moutan against Parkinson disease–In vitro & In vivo model. J Photochem Photobiol B Biol 200:111635

    Google Scholar 

  • Yamamoto S et al (2006) Brain cytokine and chemokine mRNA expression in mice induced by intranasal instillation with ultrafine carbon black. Toxicol Lett 163(2):153–160

    Google Scholar 

  • Yang J et al (2011) Detection of amyloid plaques targeted by USPIO-Aβ1–42 in Alzheimer’s disease transgenic mice using magnetic resonance microimaging. Neuroimage 55(4):1600–1609

    Google Scholar 

  • Yang X et al (2014) Uptake of silica nanoparticles: neurotoxicity and Alzheimer-like pathology in human SK-N-SH and mouse neuro2a neuroblastoma cells. Toxicol Lett 229(1):240–249

    CAS  Google Scholar 

  • Yemisci M et al (2015) Systemically administered brain-targeted nanoparticles transport peptides across the blood—brain barrier and provide neuroprotection. J Cereb Blood Flow Metab 35(3):469–475

    CAS  Google Scholar 

  • Yin N et al (2013) Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress. Small 9(9–10):1831–1841

    CAS  Google Scholar 

  • Yin N et al (2015) Vitamin E attenuates silver nanoparticle-induced effects on body weight and neurotoxicity in rats. Biochem Biophys Res Commun 458(2):405–410

    CAS  Google Scholar 

  • Yiu HH et al (2012) Fe 3 O 4-PEI-RITC magnetic nanoparticles with imaging and gene transfer capability: development of a tool for neural cell transplantation therapies. Pharm Res 29(5):1328–1343

    CAS  Google Scholar 

  • Yoo Y-e et al (2004) Iron enhances NGF-induced neurite outgrowth in PC12 cells. Molecules & Cells (Springer Science & Business Media BV) 17(2):21

    Google Scholar 

  • You R et al (2018) Silica nanoparticles induce neurodegeneration-like changes in behavior, neuropathology, and affect synapse through MAPK activation. Part Fibre Toxicol 15(1):28

    Google Scholar 

  • Yu J, Lyubchenko YL (2009) Early stages for Parkinson’s development: α-Synuclein misfolding and aggregation. J Neuroimmune Pharmacol 4(1):10

    Google Scholar 

  • Yuan Z-Y, Hu Y-L, Gao J-Q (2015) Brain localization and neurotoxicity evaluation of polysorbate 80-modified chitosan nanoparticles in rats. PLoS One 10(8):e0134722

    Google Scholar 

  • Yuan M, Wang Y, Qin Y-X (2019) Engineered nanomedicine for neuroregeneration: light emitting diode-mediated superparamagnetic iron oxide-gold core-shell nanoparticles functionalized by nerve growth factor. Nanomed Nanotechnol Biol Med 21:102052

    CAS  Google Scholar 

  • Ze Y et al (2013) Molecular mechanism of titanium dioxide nanoparticles-induced oxidative injury in the brain of mice. Chemosphere 92(9):1183–1189

    CAS  Google Scholar 

  • Ze Y et al (2014) Neurotoxic characteristics of spatial recognition damage of the hippocampus in mice following subchronic peroral exposure to TiO2 nanoparticles. J Hazard Mater 264:219–229

    CAS  Google Scholar 

  • Zeng Y et al (2016a) Effects of PAMAM dendrimers with various surface functional groups and multiple generations on cytotoxicity and neuronal differentiation using human neural progenitor cells. J Toxicol Sci 41(3):351–370

    CAS  Google Scholar 

  • Zeng Y et al (2016b) Effects of polyamidoamine dendrimers on a 3-d neurosphere system using human neural progenitor cells. Toxicol Sci 152(1):128–144

    CAS  Google Scholar 

  • Zhang Y et al (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 4(6):3181–3186

    CAS  Google Scholar 

  • Zhang L et al (2011) Rutile TiO2 particles exert size and surface coating dependent retention and lesions on the murine brain. Toxicol Lett 207(1):73–81

    CAS  Google Scholar 

  • Zhao Y et al (2015) Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans. J Hazard Mater 283:480–489

    CAS  Google Scholar 

  • Zheng X et al (2015) Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer’s disease. Pharm Res 32(12):3837–3849

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amani H. Alhibshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alhibshi, A.H., Alamoudi, W.A., Farooq, R.K. (2020). Applications of Nanomaterials in Neurological Diseases, Neuronal Differentiation, Neuronal Protection, and Neurotoxicity. In: Khan, F. (eds) Applications of Nanomaterials in Human Health. Springer, Singapore. https://doi.org/10.1007/978-981-15-4802-4_6

Download citation

Publish with us

Policies and ethics