Skip to main content

Biocorrosion and Souring in the Crude-Oil Production Process

  • Chapter
  • First Online:
Electron-Based Bioscience and Biotechnology
  • 454 Accesses

Abstract

To enhance oil recovery by injection of seawater into the production well causes an increase of hydrogen sulfide concentration in the crude oil by the environmental microbes. It is known as biological souring caused by sulfate-reducing bacteria (SRB) in the reservoir. The souring causes microbiologically influenced corrosion (MIC) of the tubing material and deterioration of crude oil. In this chapter, the change of microbial consortia during the souring process of the crude oil is described. Especially, by clarifying the population of SRB in the microbial consortia, the effects of nitrate injection not only on the biological souring but also to MIC are explained. Moreover, the possibilities of alkaline addition to suppress the biological souring and MIC of carbon steel are also argued.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abboud MM, Khieifat KM, Batarseh M, Taraeneh KA, Al-Mustafa A, Al-Madadhah M (2007) Different optimization conditions required for enhancing the biodegradation of linear alkylbenzosulfonate and sodium dodecyl sulfate surfactant by novel consortium of Acinetobacter calcoaceticus and Pantoea agglomerans. Enzym Microb Technol 41:432–439

    Article  CAS  Google Scholar 

  • Agrawal A, Park HS, Nathoo S, Gieg LM, Jack TR, Miner K, Ertmoed R, Benko A, Voordouw G (2012) Toluene depletion in produced oil contributes to souring control in a field subjected to nitrate injection. Environ Sci Technol 46:1285–1292

    Article  CAS  Google Scholar 

  • De Gusseme B, De Schryver P, De Cooman M, Verbeken K, Boeckx P, Verstraete W, Boon N (2009) Nitrate-reducing, sulfide-oxidizing bacteria as microbial oxidants for rapid biological sulfide removal. FEMS Microbiol Ecol 67:151–161

    Article  Google Scholar 

  • Dunsmore B, Youldon J, Thrasher D, Vance I (2006) Effects of nitrate treatment on a mixed species, oil field microbial biofilm. J Ind Microbiol Biotechnol 33:454–462

    Article  CAS  Google Scholar 

  • Emerson D (2018) The role of iron-oxidizing bacteria in biocorrosion: a review. Biofouling 34:989–1000

    Article  CAS  Google Scholar 

  • Enning D, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 80:1226–1236

    Article  Google Scholar 

  • Gieg LM, Jack TR, Foght JM (2011) Biological souring and mitigation in oil reservoirs. Appl Microbiol Biotechnol 92:263–282

    Article  CAS  Google Scholar 

  • Gu T (2012) Can acid producing bacteria be responsible for very fast MIC pitting? Paper no. C2012-0001214, CORROSION, Salt Lake City, UT, 11–15 Mar 2012

    Google Scholar 

  • Hasegawa R, Toyama K, Miyanaga K, Tanji Y (2014) Identification of crude-oil components and microorganisms that cause souring under anaerobic conditions. Appl Microbiol Biotechnol 98:1853–1861

    Article  CAS  Google Scholar 

  • Hubert C, Nemati M, Jenneman G, Voordouw G (2005) Corrosion risk associated with microbial souring control using nitrate or nitrite. Appl Microbiol Biotechnol 68:272–282

    Article  CAS  Google Scholar 

  • Iino T, Ito K, Wakai S, Tsurumaru H, Ohkuma M, Harayama S (2015) Iron corrosion induced by nonhydrogenotrophic nitrate-reducing Prolixibacter sp. strain MIC1-1. Appl Environ Microbiol 81:1839–1846

    Article  Google Scholar 

  • Jayaraman A, Mansfeld FB, Wood TK (1999) Inhibiting sulfate-reducing bacteria in biofilms by expressing the antimicrobial peptides indolicidin and bactenecin. J Ind Microbiol Biotechnol 22:167–175

    Article  CAS  Google Scholar 

  • Kamarisima, Hidaka K, Miyanaga K, Tanji Y (2018) The presence of nitrate- and sulfate-reducing bacteria contributes to ineffectiveness souring control by nitrate injection. Int Biodeterior Biodegradation 129:81–88

    Article  CAS  Google Scholar 

  • Kamarisima, Miyanaga K, Tanji Y (2019) The utilization of aromatic hydrocarbon by nitrate- and sulfate-reducing bacteria in single and multiple nitrate injection for souring control. Biochem Eng J 143:75–80

    Article  CAS  Google Scholar 

  • Koch GH, Brongers MPH, Thompson NG, Virmani YP, Payer JH (2001) Corrosion cost and preventive strategies in the United States. FHWA-RD-01-156. CC Technologies Laboratories, NACE International, Dublin, OH

    Google Scholar 

  • Kruger J (2011) Cost of metallic corrosion. In: Revie RW (ed) Uhlig’s corrosion handbook, 3rd edn. Wiley, Hoboken, NJ, pp 15–20

    Chapter  Google Scholar 

  • Miyanaga K, Hasegawa R, Tanji Y (2017) Addition of sodium hydroxide to seawater inhibits sulfide production (souring) by microbes in oil field water. J Chem Eng Jpn 50:850–856

    Article  CAS  Google Scholar 

  • Nemati M, Mazutinec TJ, Jenneman GE, Voordouw G (2001) Control of biogenic H2S production with nitrite and molybdate. J Ind Microbiol Biotechnol 26:350–355

    Article  CAS  Google Scholar 

  • Ochi T, Kitagawa M, Tanaka S (1998) Controlling sulfide generation in force mains by air injection. Water Sci Technol 37:87–95

    Article  Google Scholar 

  • Plankaert M (2005) Oil reservoir and oil production. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM, Washington, DC, pp 123–142

    Google Scholar 

  • Popp N, Schlomann M, Mau M (2006) Bacterial diversity in active stage of a bioremediation system for mineral oil hydrocarbon- contaminated soils. Microbiology 152:3291–3304

    Article  CAS  Google Scholar 

  • Ravot G, Magot M, Fardeau M, Patel BKC, Thomas P, Garcia J, Ollivier B (1999) Fusibacter paucivorans gen. nov., sp. nov., an anaerobic, thiosulfate-reducing bacterium from an oil-producing well. Int J Syst Bacteriol 49:1141–1147

    Article  CAS  Google Scholar 

  • Skovhus TL, Eckert RB, Rodrigues E (2017) Management and control of microbiologically influenced corrosion (MIC) in the oil and gas industry—overview and a North Sea case study. J Biotechnol 256:31–45

    Article  CAS  Google Scholar 

  • Tang K, Baskaran V, Nemati M (2009) Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J 44:73–94

    Article  CAS  Google Scholar 

  • Uchiyama T, Ito K, Mori K, Tsurumaru H, Harayama S (2010) Iron-corroding methanogen isolated from a crude-oil storage tank. Appl Environ Microbiol 76:1783–1788

    Article  CAS  Google Scholar 

  • Voordouw G, Grigoryan AA, Lambo A, Lin S, Park HS, Jack TR, Coombe D, Clay B, Zhang F, Ertmoed R, Miner K, Arensdorf JJ (2009) Sulfide remediation by pulsed injection of nitrate into a low temperature Canadian heavy oil reservoir. Environ Sci Technol 43:9512–9518

    Article  CAS  Google Scholar 

  • Zrafi-Nouira I, Guermazi S, Chouari R, Safi NMD, Pelletier E, Bakhrouf A, Saidane-Mosbahi D, Sghir A (2009) Molecular diversity analysis and bacterial population dynamics of adapted seawater microbiota during the degradation of Tunisian zarzatine oil. Biodegradation 20:467–486

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Miyanaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miyanaga, K. (2020). Biocorrosion and Souring in the Crude-Oil Production Process. In: Ishii, M., Wakai, S. (eds) Electron-Based Bioscience and Biotechnology . Springer, Singapore. https://doi.org/10.1007/978-981-15-4763-8_15

Download citation

Publish with us

Policies and ethics