Skip to main content

Gut Remediation: Back to the Future

  • Chapter
  • First Online:
Gut Remediation of Environmental Pollutants

Abstract

Probiotics alleviate the toxicity of environmental pollutants by regulating the composition and function of gut microbiota, which are termed as “gut remediation.” Compared to current remediation technology, gut remediation appears to be a novel remediation approach to repair tissue damage caused by various pollutants. Recently, gut remediation has been used for in vivo remediation of pollution. This chapter mainly reviews how to reduce heavy metals and organic contaminants in the gut. Some successful research cases are listed. Additionally, an essential consideration for probiotics is how to successfully introduce a/some strain(s) with desired function as well as robust colonization into recipient communities, which merit formulating probiotics regimen design based on the consumer in differing clinical contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen HM et al (2000) Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41(1-2):229–234

    CAS  PubMed  Google Scholar 

  2. Antoci A, Galeotti M, Sordi S (2018) Environmental pollution as engine of industrialization. Communications in Nonlinear Science and Numerical Simulation 58:262–273

    Google Scholar 

  3. Wang QYD, Cui Y, Liu X (2001) Instances of soil and crop heavy metal contamination in China. Soil Sediment Contam 10(5):497–510

    Google Scholar 

  4. Aoshima K (2012) [Itai-itai disease: cadmium-induced renal tubular osteomalacia]. Nihon Eiseigaku Zasshi 67(4):455463.

    Google Scholar 

  5. Collen A, Smith JJB (2015) 10% Human: How Your body’s Microbes Hold the Key to Health and Happiness. 9(780316):380102

    Google Scholar 

  6. Cani PD, Delzenne NM (2011) The gut microbiome as therapeutic target. Pharmacology & Therapeutics 130(2):202–212

    CAS  Google Scholar 

  7. Woodhouse CA et al (2018) Review article: the gut microbiome as a therapeutic target in the pathogenesis and treatment of chronic liver disease. Alimentary Pharmacology & Therapeutics 47(2):192–202

    CAS  Google Scholar 

  8. Knight DJW, Girling KJ (2003) Gut flora in health and disease. Lancet 361(9371):1831–1831

    CAS  PubMed  Google Scholar 

  9. Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361(9356):512–519

    Google Scholar 

  10. Gordon JI (2012) Honor thy gut symbionts redux. Science 336(6086):1251–1253

    CAS  PubMed  Google Scholar 

  11. Frank DN et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104(34):13780–13785

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Schloss PD, Handelsman J (2004) Status of the microbial census. Microbiol Mol Biol Rev 68(4):686–691

    PubMed  PubMed Central  Google Scholar 

  13. Gough E, Shaikh H, Manges AR (2011) Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis 53(10):994–1002

    PubMed  Google Scholar 

  14. Hartmann P, Chen WC, Schnabl B (2012) The intestinal microbiome and the leaky gut as therapeutic targets in alcoholic liver disease. Frontiers in Physiology 3:402

    PubMed  PubMed Central  Google Scholar 

  15. Nishida AH, Ochman H (2018) Rates of gut microbiome divergence in mammals. Molecular Ecology 27(8):1884–1897

    PubMed  PubMed Central  Google Scholar 

  16. Winek K, Dirnagl U, Meisel A (2016) The Gut Microbiome as Therapeutic Target in Central Nervous System Diseases: Implications for Stroke. Neurotherapeutics 13(4):762–774

    CAS  PubMed  PubMed Central  Google Scholar 

  17. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. Embo Reports 7(7):688–693

    PubMed  PubMed Central  Google Scholar 

  18. Pei Y et al (2018) Microbial community structure and function indicate the severity of chromium contamination of the Yellow River. 9:38

    Google Scholar 

  19. Yu Z et al (2014) A mer operon confers mercury reduction in a Staphylococcus epidermidis strain isolated from Lanzhou reach of the Yellow River. 90:57–63

    Google Scholar 

  20. Zheng Z et al (2015) A Bacillus subtilis strain can reduce hexavalent chromium to trivalent and an nfrA gene is involved. 97:90–96

    Google Scholar 

  21. Chen Y et al (2018) Long-term and high-concentration heavy-metal contamination strongly influences the microbiome and functional genes in Yellow River sediments. 637:1400–1412

    Google Scholar 

  22. Jiang Y et al (2015) Pseudomonas sp. LZ-Q continuously degrades phenanthrene under hypersaline and hyperalkaline condition in a membrane bioreactor system. 1(3):156–167

    Google Scholar 

  23. Huang H et al (2017) The naphthalene catabolic protein NahG plays a key role in hexavalent chromium reduction in Pseudomonas brassicacearum LZ-4. 7(1):1–11

    Google Scholar 

  24. Wu W et al (2016) Genome sequencing reveals mechanisms for heavy metal resistance and polycyclic aromatic hydrocarbon degradation in Delftia lacustris strain LZ-C. 25(1):234–247

    Google Scholar 

  25. Yu X et al (2016) Simultaneous aerobic denitrification and Cr (VI) reduction by Pseudomonas brassicacearum LZ-4 in wastewater. 221:121–129

    Google Scholar 

  26. Huang H et al (2016) A novel Pseudomonas gessardii strain LZ-E simultaneously degrades naphthalene and reduces hexavalent chromium. 207:370–378

    Google Scholar 

  27. Xu R et al (2018) Co-expression of YieF and PhoN in Deinococcus radiodurans R1 improves uranium bioprecipitation by reducing chromium interference. 211:1156–1165

    Google Scholar 

  28. Boopathy R (2000) Factors limiting bioremediation technologies. Bioresource Technology 74(1):63–67

    CAS  Google Scholar 

  29. Souiri M et al (2009) Escherichia coli-functionalized magnetic nanobeads as an ultrasensitive biosensor for heavy metals. Procedia Chem 1(1):1027–1030

    CAS  Google Scholar 

  30. Biswas JK et al (2018) Exploring potential applications of a novel extracellular polymeric substance synthesizing bacterium (Bacillus licheniformis) isolated from gut contents of earthworm (Metaphire posthuma) in environmental remediation. Biodegradation 29(4):323–337

    PubMed  Google Scholar 

  31. Cai M et al (2018) Systematic characterization and proposed pathway of tetracycline degradation in solid waste treatment by Hermetia illucens with intestinal microbiota. Environ Pollut 242(Pt A):634–642

    CAS  PubMed  Google Scholar 

  32. Halttunen T et al (2008) Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous solution. Lett Appl Microbiol 46(2):160–165

    CAS  PubMed  Google Scholar 

  33. Feng PY et al (2019) A Review on Gut Remediation of Selected Environmental Contaminants: Possible Roles of Probiotics and Gut Microbiota. Nutrients 11(1)

    Google Scholar 

  34. Carter LJ et al (2014) Fate and uptake of pharmaceuticals in soil-earthworm systems. Environ Sci Technol 48(10):5955–5963

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sinha RK, Bharambe G, Ryan D (2008) Converting wasteland into wonderland by earthworms—a low-cost nature’s technology for soil remediation: a case study of vermiremediation of PAHs contaminated soil. The Environmentalist 28(4):466–475

    Google Scholar 

  36. Nagaoka M et al (1995) Structural studies on a cell wall polysaccharide from Bifidobacterium longum YIT4028. Carbohydr Res 274:245–249

    CAS  PubMed  Google Scholar 

  37. Landersjo C et al (2002) Structural studies of the exopolysaccharide produced by Lactobacillus rhamnosus strain GG (ATCC 53103). Biomacromolecules 3(4):880–884

    PubMed  Google Scholar 

  38. Frece J et al (2005) In vivo Testing of Functional Properties of Three Selected Probiotic Strains. World Journal of Microbiology and Biotechnology 21(8):1401

    Google Scholar 

  39. Avall-Jaaskelainen S, Lindholm A, Palva A (2003) Surface display of the receptor-binding region of the Lactobacillus brevis S-layer protein in Lactococcus lactis provides nonadhesive lactococci with the ability to adhere to intestinal epithelial cells. Appl Environ Microbiol 69(4):2230–2236

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jadán-Piedra C et al (2017) The use of lactic acid bacteria to reduce mercury bioaccessibility. Food Chemistry 228:158–166

    PubMed  Google Scholar 

  41. Kelleher SL et al (2002) Supplementation of infant formula with the probiotic lactobacillus reuteri and zinc: impact on enteric infection and nutrition in infant rhesus monkeys. J Pediatr Gastroenterol Nutr 35(2):162–168

    PubMed  Google Scholar 

  42. Scholz-Ahrens KE et al (2007) Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J Nutr 137(3 Suppl 2):838S–846S

    CAS  PubMed  Google Scholar 

  43. Zhai Q et al (2016) Oral administration of probiotics inhibits absorption of the Heavy Metal Cadmium by Protecting the Intestinal Barrier. Appl Environ Microbiol 82(14):4429–4440

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu L et al (2016) Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress. Nutrients 8(12):783

    PubMed Central  Google Scholar 

  45. Wu G et al (2017) Gut remediation: a potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1-1. Sci Rep 7(1):15000

    PubMed  PubMed Central  Google Scholar 

  46. Zmora N et al (2018) Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features. Cell 174(6):1388–1405. e21

    CAS  PubMed  Google Scholar 

  47. Bisanz JE et al (2014) Randomized open-label pilot study of the influence of probiotics and the gut microbiome on toxic metal levels in Tanzanian pregnant women and school children. MBio 5(5):e01580-14

    PubMed  PubMed Central  Google Scholar 

  48. Zhai Q et al (2014) Protective effects of Lactobacillus plantarum CCFM8610 against chronic cadmium toxicity in mice indicate routes of protection besides intestinal sequestration. Appl. Environ. Microbiol. 80(13):4063–4071

    PubMed  PubMed Central  Google Scholar 

  49. Li B et al (2014) Mercury nano-trap for effective and efficient removal of mercury (II) from aqueous solution. Nature communications 5:5537

    CAS  PubMed  Google Scholar 

  50. Liu YR et al (2016) Effects of cellular Sorption on mercury bioavailability and methylmercury production by Desulfovibrio desulfuricans ND132. Environmental Science & Technology 50(24):13335–13341

    CAS  Google Scholar 

  51. Chang D-E et al (2004) Carbon nutrition of Escherichia coli in the mouse intestine. Proceedings of the National Academy of Sciences of the United States of America 101(19):7427–7432

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu M et al (2019) Hg2+-binding peptide decreases mercury ion accumulation in fish through a cell surface display system. Science of The Total Environment 659:540–547

    CAS  PubMed  Google Scholar 

  53. Cabral L et al (2016) Methylmercury degradation by Pseudomonas putida V1. Ecotoxicology and environmental safety 130:37–42

    CAS  PubMed  Google Scholar 

  54. Zhang W et al (2018) Risk assessment of total mercury and methylmercury in aquatic products from offshore farms in China. Journal of Hazardous Materials 354:198–205

    CAS  PubMed  Google Scholar 

  55. Cerveny D et al (2016) Young-of-the-year fish as a prospective bioindicator for aquatic environmental contamination monitoring. Water research 103:334–342

    CAS  PubMed  Google Scholar 

  56. Hsu-Kim H et al (2013) Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environmental science & technology 47(6):2441–2456

    CAS  Google Scholar 

  57. Zhou HY, Wong MH (2000) Mercury accumulation in freshwater fish with emphasis on the dietary influence. Water Research 34(17):4234–4242

    CAS  Google Scholar 

  58. Harada M (1995) Minamata Disease: Methylmercury Poisoning in Japan Caused by Environmental Pollution. Critical Reviews in Toxicology 25(1):24

    Google Scholar 

  59. Tuzen M et al (2009) Mercury (II) and methyl mercury determinations in water and fish samples by using solid phase extraction and cold vapour atomic absorption spectrometry combination. Food and Chemical Toxicology 47(7):1648–1652

    CAS  PubMed  Google Scholar 

  60. Liu M et al (2019) Reducing methylmercury accumulation in fish using Escherichia coli with surface-displayed methylmercury-binding peptides. Journal of Hazardous Materials 367:35–42

    CAS  PubMed  Google Scholar 

  61. Uchikawa T et al (2010) The influence of Parachlorella beyerinckii CK-5 on the absorption and excretion of methylmercury (MeHg) in mice. The Journal of toxicological sciences 35(1):101–105

    CAS  PubMed  Google Scholar 

  62. Nakamori M et al (2016) Oral administration of erythromycin decreases RNA toxicity in myotonic dystrophy. Ann Clin Transl Neurol 3(1):42–54

    CAS  PubMed  Google Scholar 

  63. Zhai Q et al (2020) Oral Supplementation of Lead-Intolerant Intestinal Microbes Protects Against Lead (Pb) Toxicity in Mice. Frontiers in Microbiology 10:3161

    PubMed  PubMed Central  Google Scholar 

  64. Ezzariai A et al (2018) Human and veterinary antibiotics during composting of sludge or manure: Global perspectives on persistence, degradation, and resistance genes. Journal of Hazardous Materials 359:465–481

    CAS  PubMed  Google Scholar 

  65. Liu M et al (2019) Pretreatment of swine manure containing β-lactam antibiotics with whole-cell biocatalyst to improve biogas production. Journal of Cleaner Production 240:118070

    CAS  Google Scholar 

  66. Kafaei R et al (2018) Occurrence, distribution, and potential sources of antibiotics pollution in the water-sediment of the northern coastline of the Persian Gulf, Iran. Sci Total Environ 627:703–712

    CAS  PubMed  Google Scholar 

  67. de Cazes M et al (2016) Erythromycin degradation by esterase (EreB) in enzymatic membrane reactors. Biochemical Engineering Journal 114:70–78

    Google Scholar 

  68. Minami T et al (1996) Effects of erythromycin in chronic idiopathic intestinal pseudo-obstruction. Journal of Gastroenterology 31(6):855–859

    CAS  PubMed  Google Scholar 

  69. Kohno Y et al (1989) Comparative pharmacokinetics of clarithromycin (TE-031), a new macrolide antibiotic, and erythromycin in rats. Antimicrobial Agents and Chemotherapy 33(5):751–756

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Dubreuil JD (2014) Escherichia coli | Enterotoxigenic E. coli (ETEC). In: Batt CA, Tortorello ML (eds) Encyclopedia of Food Microbiology, 2nd edn. Academic Press, Oxford, pp 728–734

    Google Scholar 

  71. Liu M et al (2020) Reducing residual antibiotic levels in animal feces using intestinal Escherichia coli with surface-displayed erythromycin esterase. Journal of Hazardous Materials 388:122032

    CAS  PubMed  Google Scholar 

  72. Hernández-Castellanos B et al (2013) Removal of benzo (a) pyrene from soil using an endogeic earthworm Pontoscolex corethrurus (). Applied soil ecology 70:62–69

    Google Scholar 

  73. Kersanté A et al (2006) Interactions of earthworms with atrazine-degrading bacteria in an agricultural soil. FEMS microbiology ecology 57(2):192–205

    PubMed  Google Scholar 

  74. Singleton DR et al (2003) Identification of uncultured bacteria tightly associated with the intestine of the earthworm Lumbricus rubellus (Lumbricidae; Oligochaeta). Soil Biology and Biochemistry 35(12):1547–1555

    CAS  Google Scholar 

  75. Weinbreck, F., I. Bodnár, and M.J.I.j.o.f.m. Marco, Can encapsulation lengthen the shelf-life of probiotic bacteria in dry products? 2010. 136(3): p. 364-367.

    Google Scholar 

  76. de Araújo Etchepare M et al (2016) Effect of resistant starch and chitosan on survival of Lactobacillus acidophilus microencapsulated with sodium alginate. 65:511–517

    Google Scholar 

  77. Broeckx G et al (2016) Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics. 505(1-2):303–318

    Google Scholar 

  78. Hotel, A.C.P. aand AA.J.P. Cordoba, Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria.. 2001. 5(1): p. 1-10.

    Google Scholar 

  79. Sohail A et al (2011) Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method. 145(1):162–168

    Google Scholar 

  80. Doherty S et al (2011) Development and characterisation of whey protein micro-beads as potential matrices for probiotic protection. 25(6):1604–1617

    Google Scholar 

  81. Doherty S et al (2012) Survival of entrapped Lactobacillus rhamnosus GG in whey protein micro-beads during simulated ex vivo gastro-intestinal transit. 22(1):31–43

    Google Scholar 

  82. Dimitrellou D et al (2016) Survival of spray dried microencapsulated Lactobacillus casei ATCC 393 in simulated gastrointestinal conditions and fermented milk. 71:169–174

    Google Scholar 

  83. Huang S et al (2016) Double use of highly concentrated sweet whey to improve the biomass production and viability of spray-dried probiotic bacteria. 23:453–463

    Google Scholar 

  84. Mortazavian A, Sohrabvandi SJEP, Tehran (2006) Probiotics and food probiotic products; based on dairy probiotic products..

    Google Scholar 

  85. Oliveira AC et al (2007) Stability of microencapsulated B. lactis (BI 01) and L. acidophilus (LAC 4) by complex coacervation followed by spray drying. 24(7):685–693

    Google Scholar 

  86. Jiménez-Pranteda ML et al (2012) Stability of lactobacilli encapsulated in various microbial polymers. 113(2):179–184

    Google Scholar 

  87. Krasaekoopt, W., B. Bhandari, and H.J.I.d.j. Deeth, Evaluation of encapsulation techniques of probiotics for yoghurt. 2003. 13(1): p. 3-13.

    Google Scholar 

  88. Su R et al (2011) Encapsulation of probiotic Bifidobacterium longum BIOMA 5920 with alginate–human-like collagen and evaluation of survival in simulated gastrointestinal conditions. 49(5):979–984

    Google Scholar 

  89. Shaharuddin, S. and I.I.J.C.p. Muhamad, Microencapsulation of alginate-immobilized bagasse with Lactobacillus rhamnosus NRRL 442: Enhancement of survivability and thermotolerance. 2015. 119: p. 173-181.

    Google Scholar 

  90. Sohail A et al (2013) The viability of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM following double encapsulation in alginate and maltodextrin. 6(10):2763–2769

    Google Scholar 

  91. Sousa S et al (2015) Characterization of freezing effect upon stability of, probiotic loaded, calcium-alginate microparticles. 93:90–97

    Google Scholar 

  92. Yeung TW et al (2016) Microencapsulation of probiotics in hydrogel particles: enhancing Lactococcus lactis subsp. cremoris LM0230 viability using calcium alginate beads. 7(4):1797–1804

    Google Scholar 

  93. Yeung TW et al (2016) Microencapsulation in alginate and chitosan microgels to enhance viability of Bifidobacterium longum for oral delivery. 7:494

    Google Scholar 

  94. Lee, K.-Y. and T.-R.J.A.E.M. Heo, Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution.. 2000. 66(2): p. 869-873.

    Google Scholar 

  95. Adhikari K et al (2000) Viability of Microencapsulated Bifidobacteria in Set Yogurt During Refrigerated Storage1. 83(9):1946–1951

    Google Scholar 

  96. Abbaszadeh S et al (2014) The effect of alginate and chitosan concentrations on some properties of chitosan-coated alginate beads and survivability of encapsulated Lactobacillus rhamnosus in simulated gastrointestinal conditions and during heat processing. 94(11):2210–2216

    Google Scholar 

  97. Mandal S et al (2014) Enhancement of survival of alginate-encapsulated Lactobacillus casei NCDC 298. 94(10):1994–2001

    Google Scholar 

  98. Kim S-J et al (2008) Effect of microencapsulation on viability and other characteristics in Lactobacillus acidophilus ATCC 43121. 41(3):493–500

    Google Scholar 

  99. Sultana K et al (2000) Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. 62(1-2):47–55

    Google Scholar 

  100. Chávarri M et al (2010) Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. 142(1-2):185–189

    Google Scholar 

  101. Nag, A., K.-S. Han, and H.J.I.D.J. Singh, Microencapsulation of probiotic bacteria using pH-induced gelation of sodium caseinate and gellan gum. 2011. 21(4): p. 247-253.

    Google Scholar 

  102. Homayouni A et al (2008) Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. 111(1):50–55

    Google Scholar 

  103. Coghetto CC et al (2016) Electrospraying microencapsulation of Lactobacillus plantarum enhances cell viability under refrigeration storage and simulated gastric and intestinal fluids. 24:316–326

    Google Scholar 

  104. Ghibaudo F et al (2017) Pectin-iron capsules: Novel system to stabilise and deliver lactic acid bacteria. 39:299–305

    Google Scholar 

  105. Takei T et al (2017) Air drying on superamphiphobic surfaces can reduce damage by organic solvents to microbial cells immobilized in synthetic resin capsules. 54:28–32

    Google Scholar 

  106. Hassanzadeh AM et al (2017) Immobilization and microencapsulation of Lactobacillus caseii and Lactobacillus plantarum using zeolite base and evaluating their viability in gastroesophageal-intestine simulated condition.

    Google Scholar 

  107. Alehosseini A et al (2019) Agarose-based freeze-dried capsules prepared by the oil-induced biphasic hydrogel particle formation approach for the protection of sensitive probiotic bacteria. 87:487–496

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangkai Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ling, Z., Jiang, Y., Li, X. (2020). Gut Remediation: Back to the Future. In: Li, X., Liu, P. (eds) Gut Remediation of Environmental Pollutants. Springer, Singapore. https://doi.org/10.1007/978-981-15-4759-1_7

Download citation

Publish with us

Policies and ethics