Skip to main content

Abstract

In this chapter, we review the latest and main research findings on anthropic nanoparticles (NPs) from the immune-cytotoxicological perspective aiming at defining the intrinsic chemical-physical and the extrinsic (acquired by the interaction with the environment) characteristics of the nano-systems to which the immune system appears to be unresponsive, tolerant, or anergic. The hereby outlined presumptive and speculative determinants of immune compatibility of nanoparticulate matters, although based on experimental data, represent a basic information for the design of new biocompatible nanomatters; finally, they represent an evaluation tool for potential immune outcome in professionally involved workers and may be important to enhance the exertion of risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schulte P, Leso V, Niang M, Iavicoli I. Biological monitoring of workers exposed to engineered nanomaterials. Toxicol Lett. 2018;298:112–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Di Gioacchino M, et al. Allergens in occupational allergy: risk management. G Ital Med Lav Ergon. 2017;39(3):172–4.

    PubMed  Google Scholar 

  3. Di Giampaolo L, et al. Occupational allergy: is there a role for nanoparticles? J Biol Regul Homeost Agents. 33(3):661–8.

    Google Scholar 

  4. Dobrovolskaia MA. Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: challenges, considerations and strategy. J Control Release. 2015;220:571–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zolnik BS, González-Fernández A, Sadrieh N, Dobrovolskaia MA. Nanoparticles and the immune system. Endocrinology. 2010;151(2):458–65.

    Article  CAS  PubMed  Google Scholar 

  6. Petrarca C, et al. Engineered metal based nanoparticles and innate immunity. Clin Mol Allergy. 2015;13(1):13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Pedata P, Petrarca C, Garzillo EM, Di Gioacchino M. Immunotoxicological impact of occupational and environmental nanoparticles exposure: the influence of physical, chemical, and combined characteristics of the particles. Int J Immunopathol Pharmacol. 2016;29(3):343–53.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pallardy MJ, Turbica I, Biola-Vidamment A. Why the immune system should be concerned by nanomaterials? Front Immunol. 2017;8:544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Sabbioni E, et al. Interaction with culture medium components, cellular uptake and intracellular distribution of cobalt nanoparticles, microparticles and ions in Balb/3T3 mouse fibroblasts. Nanotoxicology. 2014;8(1):88–99.

    Article  CAS  PubMed  Google Scholar 

  10. Perconti S, et al. Distinctive gene expression profiles in Balb/3T3 cells exposed to low dose cobalt nanoparticles, microparticles and ions: potential nanotoxicological relevance. J Biol Regul Homeost Agents. 2013;27(2):443–54.

    CAS  PubMed  Google Scholar 

  11. Sabbioni E, et al. Cytotoxicity and morphological transforming potential of cobalt nanoparticles, microparticles and ions in Balb/3T3 mouse fibroblasts: an in vitro model. Nanotoxicology. 2014;8(4):455–64.

    Article  CAS  PubMed  Google Scholar 

  12. Liu H, et al. Comparative study of respiratory tract immune toxicity induced by three sterilisation nanoparticles: silver, zinc oxide and titanium dioxide. J Hazard Mater. 2013;248–249:478–86.

    Article  PubMed  CAS  Google Scholar 

  13. Vandebriel RJ, et al. Immunotoxicity of silver nanoparticles in an intravenous 28-day repeated-dose toxicity study in rats. Part Fibre Toxicol. 2014;11(1):21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Côté-Maurais G, Bernier J. Silver and fullerene nanoparticles’ effect on interleukin-2-dependent proliferation of CD4 (+) T cells. Toxicol In Vitro. 2014;28(8):1474–81.

    Article  PubMed  CAS  Google Scholar 

  15. Roy R, Singh SK, Chauhan LKS, Das M, Tripathi A, Dwivedi PD. Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via PI3K/Akt/mTOR inhibition. Toxicol Lett. 2014;227(1):29–40.

    Article  CAS  PubMed  Google Scholar 

  16. An SSA, et al. Immunotoxicity of zinc oxide nanoparticles with different size and electrostatic charge. Int J Nanomedicine. 2014;9(Suppl 2):195.

    Article  CAS  Google Scholar 

  17. Senapati VA, Kumar A, Gupta GS, Pandey AK, Dhawan A. ZnO nanoparticles induced inflammatory response and genotoxicity in human blood cells: a mechanistic approach. Food Chem Toxicol. 2015;85:61–70.

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, et al. Immunotoxicity assessment of CdSe/ZnS quantum dots in macrophages, lymphocytes and BALB/c mice. J Nanobiotechnol. 2016;14(1):10.

    Article  CAS  Google Scholar 

  19. Abass MA, Selim SA, Selim AO, El-Shal AS, Gouda ZA. Effect of orally administered zinc oxide nanoparticles on albino rat thymus and spleen. IUBMB Life. 2017;69(7):528–39.

    Article  CAS  PubMed  Google Scholar 

  20. Inoue K-I, Takano H. Aggravating impact of nanoparticles on immune-mediated pulmonary inflammation. Sci World J. 2011;11:382–90.

    Article  CAS  Google Scholar 

  21. Park E-J, et al. Comparison of subchronic immunotoxicity of four different types of aluminum-based nanoparticles. J Appl Toxicol. 2018;38(4):575–84.

    Article  CAS  PubMed  Google Scholar 

  22. Peer D. Immunotoxicity derived from manipulating leukocytes with lipid-based nanoparticles. Adv Drug Deliv Rev. 2012;64(15):1738–48.

    Article  CAS  PubMed  Google Scholar 

  23. Elsabahy M, Li A, Zhang F, Sultan D, Liu Y, Wooley KL. Differential immunotoxicities of poly(ethylene glycol)- vs. poly(carboxybetaine)-coated nanoparticles. J Control Release. 2013;172(3):641–52.

    Article  CAS  PubMed  Google Scholar 

  24. Liao L, et al. Subchronic toxicity and immunotoxicity of MeO-PEG-poly(D,L-lactic-co-glycolic acid)-PEG-OMe triblock copolymer nanoparticles delivered intravenously into rats. Nanotechnology. 2014;25(24):245705.

    Article  PubMed  CAS  Google Scholar 

  25. Hu Q, Zhao F, Guo F, Wang C, Fu Z. Polymeric nanoparticles induce NLRP3 inflammasome activation and promote breast cancer metastasis. Macromol Biosci. 2017;17(12):1700273.

    Article  CAS  Google Scholar 

  26. Da Silva J, Jesus S, Bernardi N, Colaço M, Borges O. Poly(D,L-Lactic Acid) nanoparticle size reduction increases its immunotoxicity. Front Bioeng Biotechnol. 2019;7:137.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Maiti S, Manna S, Shen J, Esser-Kahn AP, Du W. Mitigation of hydrophobicity-induced immunotoxicity by sugar poly(orthoesters). J Am Chem Soc. 2019;141(11):4510–4.

    Article  CAS  PubMed  Google Scholar 

  28. David CA, Owen A, Liptrott NJ. Determining the relationship between nanoparticle characteristics and immunotoxicity: key challenges and approaches. Nanomedicine. 2016;11(11):1447–64.

    Article  CAS  PubMed  Google Scholar 

  29. Syama S, Gayathri V, Mohanan PV. Assessment of immunotoxicity of dextran coated ferrite nanoparticles in albino mice. Mol Biol Int. 2015;2015:518527.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lee S, Yun H-S, Kim S-H. The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials. 2011;32(35):9434–43.

    Article  CAS  PubMed  Google Scholar 

  31. Lee S, et al. The comparative immunotoxicity of mesoporous silica nanoparticles and colloidal silica nanoparticles in mice. Int J Nanomedicine. 2013;8:147–58.

    PubMed  PubMed Central  Google Scholar 

  32. Luo Z, et al. Surface functionalized mesoporous silica nanoparticles with natural proteins for reduced immunotoxicity. J Biomed Mater Res A. 2014;102(11):3781–94.

    Article  PubMed  CAS  Google Scholar 

  33. Li X, et al. Immunotoxicity assessment of ordered mesoporous carbon nanoparticles modified with PVP/PEG. Colloids Surf B Biointerfaces. 2018;171:485–93.

    Article  CAS  PubMed  Google Scholar 

  34. Liangjiao C, et al. The current understanding of immunotoxicity induced by silica nanoparticles. Nanomedicine (Lond). 2019;14(10):1227–9.

    Article  CAS  Google Scholar 

  35. Dobrovolskaia MA, Shurin M, Shvedova AA. Current understanding of interactions between nanoparticles and the immune system. Toxicol Appl Pharmacol. 2016;299:78–89.

    Article  CAS  PubMed  Google Scholar 

  36. Park E-J, Jeong U, Kim Y, Lee B-S, Cho M-H, Go Y-S. Deleterious effects in reproduction and developmental immunity elicited by pulmonary iron oxide nanoparticles. Environ Res. 2017;152:503–13.

    Article  CAS  PubMed  Google Scholar 

  37. Easo SL, Mohanan PV. In vitro hematological and in vivo immunotoxicity assessment of dextran stabilized iron oxide nanoparticles. Colloids Surf B Biointerfaces. 2015;134:122–30.

    Article  CAS  PubMed  Google Scholar 

  38. Shah A, Mankus CI, Vermilya AM, Soheilian F, Clogston JD, Dobrovolskaia MA. Feraheme® suppresses immune function of human T lymphocytes through mitochondrial damage and mitoROS production. Toxicol Appl Pharmacol. 2018;350:52–63.

    Article  CAS  PubMed  Google Scholar 

  39. Zasonska BA, et al. Functionalized porous silica&maghemite core-shell nanoparticles for applications in medicine: design, synthesis, and immunotoxicity. Croat Med J. 2016;57(2):165–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hong E, Halman JR, Shah AB, Khisamutdinov EF, Dobrovolskaia MA, Afonin KA. Structure and composition define immunorecognition of nucleic acid nanoparticles. Nano Lett. 2018;18(7):4309–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim J-H, et al. Immunotoxicity of silicon dioxide nanoparticles with different sizes and electrostatic charge. Int J Nanomedicine. 2014;9(Suppl 2):183–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Dhupal M, Oh J-M, Tripathy DR, Kim S-K, Koh SB, Park K-S. Immunotoxicity of titanium dioxide nanoparticles via simultaneous induction of apoptosis and multiple toll-like receptors signaling through ROS-dependent SAPK/JNK and p38 MAPK activation. Int J Nanomedicine. 2018;13:6735–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dai T, Li N, Liu L, Liu Q, Zhang Y. AMP-conjugated quantum dots: low immunotoxicity both in vitro and in vivo. Nanoscale Res Lett. 2015;10(1):434.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Elsabahy M, Samarajeewa S, Raymond JE, Clark C, Wooley KL. Shell-crosslinked knedel-like nanoparticles induce lower immunotoxicity than their non-crosslinked analogs. J Mater Chem B. 2013;1(39):5241.

    Article  CAS  Google Scholar 

  45. Priebe M, et al. Antimicrobial silver-filled silica nanorattles with low immunotoxicity in dendritic cells. Nanomedicine. 2017;13(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  46. Elsabahy M, et al. Surface charges and shell crosslinks each play significant roles in mediating degradation, biofouling, cytotoxicity and immunotoxicity for polyphosphoester-based nanoparticles. Sci Rep. 2013;3(1):3313.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Petrarca C, et al. Cobalt nano-particles modulate cytokine in vitro release by human mononuclear cells mimicking autoimmune disease. Int J Immunopathol Pharmacol. 2006;19(4 Suppl):11–4.

    CAS  PubMed  Google Scholar 

  48. Boscolo P, et al. Effects of palladium nanoparticles on the cytokine release from peripheral blood mononuclear cells of non-atopic women. J Biol Regul Homeost Agents. 2010;24(2):207–14.

    CAS  PubMed  Google Scholar 

  49. Galbiati V, et al. In vitro assessment of silver nanoparticles immunotoxicity. Food Chem Toxicol. 2018;112:363–74.

    Article  CAS  PubMed  Google Scholar 

  50. Petrarca C, et al. Palladium nanoparticles induce disturbances in cell cycle entry and progression of peripheral blood mononuclear cells: paramount role of ions. J Immunol Res. 2014;2014:295092.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Tulinska J, et al. Immunotoxicity and genotoxicity testing of PLGA-PEO nanoparticles in human blood cell model. Nanotoxicology. 2015;9(suppl 1):33–43.

    Article  CAS  PubMed  Google Scholar 

  52. Devanabanda M, Latheef SA, Madduri R. Immunotoxic effects of gold and silver nanoparticles: inhibition of mitogen-induced proliferative responses and viability of human and murine lymphocytes in vitro. J Immunotoxicol. 2016;13(6):897–902.

    Article  CAS  PubMed  Google Scholar 

  53. Malorni L, Guida V, Sirignano M, Genovese G, Petrarca C, Pedata P. Exposure to sub-10 nm particles emitted from a biodiesel-fueled diesel engine: in vitro toxicity and inflammatory potential. Toxicol Lett. 2017;270:51–61.

    Article  CAS  PubMed  Google Scholar 

  54. Jovanović B, Palić D. Immunotoxicology of non-functionalized engineered nanoparticles in aquatic organisms with special emphasis on fish—review of current knowledge, gap identification, and call for further research. Aquat Toxicol. 2012;118–119:141–51.

    Article  PubMed  CAS  Google Scholar 

  55. Gagné F, et al. Bioavailability and immunotoxicity of silver nanoparticles to the freshwater mussel Elliptio complanata. J Toxicol Environ Health A. 2013;76(13):767–77.

    Article  PubMed  CAS  Google Scholar 

  56. Bouallegui Y, Ben Younes R, Bellamine H, Oueslati R. Histopathological indices and inflammatory response in the digestive gland of the mussel Mytilus galloprovincialis as biomarker of immunotoxicity to silver nanoparticles. Biomarkers. 2017;23(3):1–11.

    Google Scholar 

  57. Bouallegui Y, Ben Younes R, Turki F, Mezni A, Oueslati R. Effect of exposure time, particle size and uptake pathways in immune cell lysosomal cytotoxicity of mussels exposed to silver nanoparticles. Drug Chem Toxicol. 2018;41(2):169–74.

    Article  CAS  PubMed  Google Scholar 

  58. Shi W, et al. Immunotoxicity of nanoparticle nTiO2 to a commercial marine bivalve species, Tegillarca granosa. Fish Shellfish Immunol. 2017;66:300–6.

    Article  CAS  PubMed  Google Scholar 

  59. Zha S, Rong J, Guan X, Tang Y, Han Y, Liu G. Immunotoxicity of four nanoparticles to a marine bivalve species, Tegillarca granosa. J Hazard Mater. 2019;377:237–48.

    Article  CAS  PubMed  Google Scholar 

  60. Gautam A, et al. Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm. Ecotoxicol Environ Saf. 2018;148:620–31.

    Article  CAS  PubMed  Google Scholar 

  61. Chakraborty C, Sharma AR, Sharma G, Lee S-S. Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnol. 2016;14(1):65.

    Article  CAS  Google Scholar 

  62. Bruneau A, Turcotte P, Pilote M, Gagné F, Gagnon C. Fate of silver nanoparticles in wastewater and immunotoxic effects on rainbow trout. Aquat Toxicol. 2016;174:70–81.

    Article  CAS  PubMed  Google Scholar 

  63. Li W-T, et al. Immunotoxicity of silver nanoparticles (AgNPs) on the leukocytes of common bottlenose dolphins (Tursiops truncatus). Sci Rep. 2018;8(1):5593.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Sayers BC, et al. Respiratory toxicity and immunotoxicity evaluations of microparticle and nanoparticle C60 fullerene aggregates in mice and rats following nose-only inhalation for 13 weeks. Nanotoxicology. 2016;10(10):1458–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yao S, et al. Mineralogy and textures of riebeckitic asbestos (crocidolite): the role of single versus agglomerated fibres in toxicological experiments. J Hazard Mater. 2017;340:472–85.

    Article  CAS  PubMed  Google Scholar 

  66. Di Gioacchino M, et al. Immunotoxicity of nanoparticles. Int J Immunopathol Pharmacol. 2011;24(1 Suppl):65S–71S.

    PubMed  Google Scholar 

  67. Engin AB, Hayes AW. The impact of immunotoxicity in evaluation of the nanomaterials safety. Toxicol Res Appl. 2018;2:239784731875557.

    Google Scholar 

  68. Sharma B, McLeland CB, Potter TM, Stern ST, Adiseshaiah PP. Assessing NLRP3 inflammasome activation by nanoparticles. Methods Mol Biol. 2018;1682:135–47.

    Article  CAS  PubMed  Google Scholar 

  69. Paganelli R, Petrarca C, Di Gioacchino M. Biological clocks: their relevance to immune-allergic diseases. Clin Mol Allergy. 2018;16(1):1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Barillet S, et al. Immunotoxicity of poly (lactic-co-glycolic acid) nanoparticles: influence of surface properties on dendritic cell activation. Nanotoxicology. 2019;13:606–22.

    Article  CAS  PubMed  Google Scholar 

  71. Elsabahy M, Wooley KL. Data mining as a guide for the construction of cross-linked nanoparticles with low immunotoxicity via control of polymer chemistry and supramolecular assembly. Acc Chem Res. 2015;48(6):1620–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Petrarca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petrarca, C., Mangifesta, R., Di Giampaolo, L. (2020). Immunotoxicity of Nanoparticles. In: Otsuki, T., Di Gioacchino, M., Petrarca, C. (eds) Allergy and Immunotoxicology in Occupational Health - The Next Step. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-4735-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4735-5_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4734-8

  • Online ISBN: 978-981-15-4735-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics