Skip to main content

Mechanisms of Action of Inhaled Particulates on Allergic Lung Inflammation

  • Chapter
  • First Online:
Allergy and Immunotoxicology in Occupational Health - The Next Step
  • 250 Accesses

Abstract

The incidence of allergic diseases is on the rise, especially in developed countries, and airborne particulate pollution from fine particulate matter and sand dust has been suggested as a factor in the exacerbation of allergic responses. These particulates function as adjuvants to induce allergic responses such as immunoglobulin E induction and eosinophil activation. This chapter summarizes data on the mechanisms by which particulates stimulate immune responses in the lung, including alveolar macrophage function and interleukin 1α release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DAMP:

damage-associated molecular pattern

iBALT:

inducible bronchus-associated lymphoid tissue

IgE:

   immunoglobulin E

IL:

      interleukin

MyD88:

myeloid differentiation primary response 88

NLRP:

nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing

OVA:

  ovalbumin

PAMP:

pathogen-associated molecular pattern

PM2.5:

fine particulate matter with a diameter of 2.5 microns

PRR:

    pattern-recognition receptor

Tfh:

   T follicular helper

Th2:

   type 2 T helper

References

  1. Kanatani KT, Ito I, Al-Delaimy WK, Adachi Y, Mathews WC, Ramsdell JW, et al. Desert dust exposure is associated with increased risk of asthma hospitalization in children. Am J Respir Crit Care Med. 2010;182(12):1475–81. https://doi.org/10.1164/rccm.201002-0296OC.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ueda K, Nitta H, Odajima H. The effects of weather, air pollutants, and Asian dust on hospitalization for asthma in Fukuoka. Environ Health Prev Med. 2010;15(6):350–7. https://doi.org/10.1007/s12199-010-0150-5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schwartz J, Slater D, Larson TV, Pierson WE, Koenig JQ. Particulate air pollution and hospital emergency room visits for asthma in Seattle. Am Rev Respir Dis. 1993;147(4):826–31. https://doi.org/10.1164/ajrccm/147.4.826.

    Article  CAS  PubMed  Google Scholar 

  4. Pulendran B, Artis D. New paradigms in type 2 immunity. Science. 2012;337(6093):431–5. https://doi.org/10.1126/science.1221064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nakayama T, Hirahara K, Onodera A, Endo Y, Hosokawa H, Shinoda K, et al. Th2 cells in health and disease. Annu Rev Immunol. 2017;35:53–84. https://doi.org/10.1146/annurev-immunol-051116-052350.

    Article  CAS  PubMed  Google Scholar 

  6. Akira S. Innate immunity and adjuvants. Phil Trans R Soc B. 2011;366:2748–55. https://doi.org/10.1098/rstb.2011.0106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science. 2010;327:291–5. https://doi.org/10.1126/science.1183021327/5963/291.. [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hiyoshi K, Ichinose T, Sadakane K, Takano H, Nishikawa M, Mori I, et al. Asian sand dust enhances ovalbumin-induced eosinophil recruitment in the alveoli and airway of mice. Environ Res. 2005;99(3):361–8. https://doi.org/10.1016/j.envres.2005.03.008.

    Article  CAS  PubMed  Google Scholar 

  9. Ban M, Langonne I, Huguet N, Guichard Y, Goutet M. Iron oxide particles modulate the ovalbumin-induced Th2 immune response in mice. Toxicol Lett. 2013;216(1):31–9. https://doi.org/10.1016/j.toxlet.2012.11.003.

    Article  CAS  PubMed  Google Scholar 

  10. Inoue K, Koike E, Yanagisawa R, Hirano S, Nishikawa M, Takano H. Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model. Toxicol Appl Pharmacol. 2009;237(3):306–16. https://doi.org/10.1016/j.taap.2009.04.003.

    Article  CAS  PubMed  Google Scholar 

  11. Nygaard UC, Hansen JS, Samuelsen M, Alberg T, Marioara CD, Lovik M. Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice. Toxicol Sci Off J Soc Toxicol. 2009;109(1):113–23. https://doi.org/10.1093/toxsci/kfp057.

    Article  CAS  Google Scholar 

  12. Honda A, Matsuda Y, Murayama R, Tsuji K, Nishikawa M, Koike E, et al. Effects of Asian sand dust particles on the respiratory and immune system. J Appl Toxicol. 2014;34(3):250–7. https://doi.org/10.1002/jat.2871.

    Article  CAS  PubMed  Google Scholar 

  13. Ichinose T, Takano H, Miyabara Y, Yanagisawa R, Sagai M. Murine strain differences in allergic airway inflammation and immunoglobulin production by a combination of antigen and diesel exhaust particles. Toxicology. 1997;122(3):183–92.

    Article  CAS  PubMed  Google Scholar 

  14. Lovik M, Hogseth AK, Gaarder PI, Hagemann R, Eide I. Diesel exhaust particles and carbon black have adjuvant activity on the local lymph node response and systemic IgE production to ovalbumin. Toxicology. 1997;121(2):165–78.

    Article  CAS  PubMed  Google Scholar 

  15. Kuroda E, Coban C, Ishii KJ. Particulate adjuvant and innate immunity: past achievements, present findings, and future prospects. Int Rev Immunol. 2013;32(2):209–20. https://doi.org/10.3109/08830185.2013.773326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Desmet CJ, Ishii KJ. Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nat Rev Immunol. 2012;12:479–91. https://doi.org/10.1038/nri3247.. [pii]

    Article  CAS  PubMed  Google Scholar 

  17. Brito LA, Malyala P, O’Hagan DT. Vaccine adjuvant formulations: a pharmaceutical perspective. Semin Immunol. 2013;25(2):130–45. https://doi.org/10.1016/j.smim.2013.05.007.

    Article  CAS  PubMed  Google Scholar 

  18. McKee AS, Marrack P. Old and new adjuvants. Curr Opin Immunol. 2017;47:44–51. https://doi.org/10.1016/j.coi.2017.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637–50. https://doi.org/10.1016/j.immuni.2011.05.006.

    Article  CAS  PubMed  Google Scholar 

  20. Elinav E, Strowig T, Henao-Mejia J, Flavell RA. Regulation of the antimicrobial response by NLR proteins. Immunity. 2011;34:665–79. https://doi.org/10.1016/j.immuni.2011.05.007.

    Article  CAS  PubMed  Google Scholar 

  21. Loo Y-M, Gale M. Immune Signaling by RIG-I-like Receptors. Immunity. 2011;34:680–92. https://doi.org/10.1016/j.immuni.2011.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Osorio F. Reis e Sousa C. myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity. 2011;34:651–64. https://doi.org/10.1016/j.immuni.2011.05.001.

    Article  CAS  PubMed  Google Scholar 

  23. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81(1):1–5. https://doi.org/10.1189/jlb.0306164.

    Article  CAS  PubMed  Google Scholar 

  24. Rock KL, Lai JJ, Kono H. Innate and adaptive immune responses to cell death. Immunol Rev. 2011;243(1):191–205. https://doi.org/10.1111/j.1600-065X.2011.01040.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yatim N, Cullen S, Albert ML. Dying cells actively regulate adaptive immune responses. Nat Rev Immunol. 2017;17(4):262–75. https://doi.org/10.1038/nri.2017.9.

    Article  CAS  PubMed  Google Scholar 

  26. Glenny AT, Pope CG, Waddington H, Wallace U. Immunological notes XVLL.–XXIV. J Pathol Bacteriol. 1926;29(1):31–40. https://doi.org/10.1002/Path.1700290106.

    Article  CAS  Google Scholar 

  27. Harrison WT. Some observations on the use of alum precipitated diphtheria toxoid. Am J Public Health Nations Health. 1935;25:298–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Holt LB. Developments in diphtheria prophylaxis. London: Heinemann; 1950.

    Google Scholar 

  29. Hutchison S, Benson RA, Gibson VB, Pollock AH, Garside P, Brewer JM. Antigen depot is not required for alum adjuvanticity. FASEB J. 2011;26:1272–9. https://doi.org/10.1096/fj.11-184556.

    Article  CAS  PubMed  Google Scholar 

  30. Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature. 2008;453:1122–6. https://doi.org/10.1038/nature06939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008;9:847–56. [pii]. https://doi.org/10.1038/ni.1631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 Inflammasome sensing of Asbestos and silica. Science. 2008;320:674–7. https://doi.org/10.1126/science.1156995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kool M, Petrilli V, De Smedt T, Rolaz A, Hammad H, van Nimwegen M, et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol. 2008;181:3755–9. https://doi.org/10.4049/jimmunol.181.6.3755.

    Article  CAS  PubMed  Google Scholar 

  34. Franchi L, Núñez G. The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1β secretion but dispensable for adjuvant activity. Eur J Immunol. 2008;38:2085–9. https://doi.org/10.1002/eji.200838549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McKee AS, Munks MW, MacLeod MKL, Fleenor CJ, Van Rooijen N, Kappler JW, et al. Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J Immunol. 2009;183:4403–14. https://doi.org/10.4049/jimmunol.0900164.

    Article  CAS  PubMed  Google Scholar 

  36. Gross O, Yazdi AS, Thomas CJ, Masin M, Heinz LX, Guarda G, et al. Inflammasome activators induce interleukin-1alpha secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity. 2012;36(3):388–400. https://doi.org/10.1016/j.immuni.2012.01.018.

    Article  CAS  PubMed  Google Scholar 

  37. Kuroda E, Ishii KJ, Uematsu S, Ohata K, Coban C, Akira S, et al. Silica crystals and aluminum salts regulate the production of prostaglandin in macrophages via NALP3 inflammasome-independent mechanisms. Immunity. 2011;34(4):514–26. https://doi.org/10.1016/j.immuni.2011.03.019.

    Article  CAS  PubMed  Google Scholar 

  38. Kuroda E, Ozasa K, Temizoz B, Ohata K, Koo CX, Kanuma T, et al. Inhaled fine particles induce alveolar macrophage death and interleukin-1alpha release to promote inducible bronchus-associated lymphoid tissue formation. Immunity. 2016;45(6):1299–310. https://doi.org/10.1016/j.immuni.2016.11.010.

    Article  CAS  PubMed  Google Scholar 

  39. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440:237–41. [pii]. https://doi.org/10.1038/nature04516.

    Article  CAS  PubMed  Google Scholar 

  40. Behrens MD, Wagner WM, Krco CJ, Erskine CL, Kalli KR, Krempski J, et al. The endogenous danger signal, crystalline uric acid, signals for enhanced antibody immunity. Blood. 2008;111:1472–9. https://doi.org/10.1182/blood-2007-10-117184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kool M, Willart MA, van Nimwegen M, Bergen I, Pouliot P, Virchow JC, et al. An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. Immunity. 2011;34(4):527–40. https://doi.org/10.1016/j.immuni.2011.03.015.

    Article  CAS  PubMed  Google Scholar 

  42. Ghaemi-Oskouie F, Shi Y. The role of uric acid as an endogenous danger signal in immunity and inflammation. Curr Rheumatol Rep. 2011;13(2):160–6. https://doi.org/10.1007/s11926-011-0162-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kono H, Chen CJ, Ontiveros F, Rock KL. Uric acid promotes an acute inflammatory response to sterile cell death in mice. J Clin Invest. 2010;120(6):1939–49. https://doi.org/10.1172/JCI40124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kool M, Soullie T, van Nimwegen M, Willart MAM, Muskens F, Jung S, et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med. 2008;205:869–82. https://doi.org/10.1084/jem.20071087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marichal T, Ohata K, Bedoret D, Mesnil C, Sabatel C, Kobiyama K, et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nat Med. 2011;17(8):996–1002. https://doi.org/10.1038/nm.2403.

    Article  CAS  PubMed  Google Scholar 

  46. McKee AS, Burchill MA, Munks MW, Jin L, Kappler JW, Friedman RS, et al. Host DNA released in response to aluminum adjuvant enhances MHC class II-mediated antigen presentation and prolongs CD4 T-cell interactions with dendritic cells. Proc Natl Acad Sci U S A. 2013;110(12):E1122–31. https://doi.org/10.1073/pnas.1300392110.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jounai N, Kobiyama K, Takeshita F, Ishii KJ. Recognition of damage-associated molecular patterns related to nucleic acids during inflammation and vaccination. Front Cell Infect Microbiol. 2012;2:168. https://doi.org/10.3389/fcimb.2012.00168.

    Article  CAS  PubMed  Google Scholar 

  48. Stephen J, Scales HE, Benson RA, Erben D, Garside P, Brewer JM. Neutrophil swarming and extracellular trap formation play a significant role in Alum adjuvant activity. NPJ Vaccines. 2017;2:1. https://doi.org/10.1038/s41541-016-0001-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miki H, Nakahashi-Oda C, Sumida T, Shibuya A. Involvement of CD300a phosphatidylserine Immunoreceptor in aluminum salt adjuvant-induced Th2 responses. J Immunol. 2015;194(11):5069–76. https://doi.org/10.4049/jimmunol.1402915.

    Article  CAS  PubMed  Google Scholar 

  50. Gavin AL, Hoebe K, Duong B, Ota T, Martin C, Beutler B, et al. Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science. 2006;314:1936–8. https://doi.org/10.1126/science.1135299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R. Toll-like receptors control activation of adaptive immune responses. Nat Immunol. 2001;2:947–50. https://doi.org/10.1038/ni712ni712.. [pii]

    Article  CAS  PubMed  Google Scholar 

  52. Matsushita K, Yoshimoto T. B cell-intrinsic MyD88 signaling is essential for IgE responses in lungs exposed to pollen allergens. J Immunol. 2014;193(12):5791–800. https://doi.org/10.4049/jimmunol.1401768.

    Article  CAS  PubMed  Google Scholar 

  53. Rabolli V, Badissi AA, Devosse R, Uwambayinema F, Yakoub Y, Palmai-Pallag M, et al. The alarmin IL-1alpha is a master cytokine in acute lung inflammation induced by silica micro- and nanoparticles. Part Fibre Toxicol. 2014;11:69. https://doi.org/10.1186/s12989-014-0069-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Beamer CA, Migliaccio CT, Jessop F, Trapkus M, Yuan D, Holian A. Innate immune processes are sufficient for driving silicosis in mice. J Leukoc Biol. 2010;88(3):547–57. https://doi.org/10.1189/jlb.0210108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cassel SL, Eisenbarth SC, Iyer SS, Sadler JJ, Colegio OR, Tephly LA, et al. The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci U S A. 2008;105(26):9035–40. https://doi.org/10.1073/pnas.0803933105.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ernst H, Rittinghausen S, Bartsch W, Creutzenberg O, Dasenbrock C, Görlitz B-D, et al. Pulmonary inflammation in rats after intratracheal instillation of quartz, amorphous SiO2, carbon black, and coal dust and the influence of poly-2-vinylpyridine-N-oxide (PVNO). Exp Toxicol Pathol. 2002;54(2):109–26. https://doi.org/10.1078/0940-2993-00241.

    Article  CAS  PubMed  Google Scholar 

  57. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–39. https://doi.org/10.1289/ehp.7339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ling SH, van Eeden SF. Particulate matter air pollution exposure: role in the development and exacerbation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2009;4:233–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yazdi AS, Guarda G, Riteau N, Drexler SK, Tardivel A, Couillin I, et al. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta. Proc Natl Acad Sci U S A. 2010;107(45):19449–54. https://doi.org/10.1073/pnas.1008155107.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sharp FA, Ruane D, Claass B, Creagh E, Harris J, Malyala P, et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc Natl Acad Sci U S A. 2009;106(3):870–5. https://doi.org/10.1073/pnas.0804897106.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chu HW, Botelho FM, Bauer CMT, Finch D, Nikota JK, Zavitz CCJ, et al. IL-1α/IL-1R1 expression in chronic obstructive pulmonary disease and mechanistic relevance to smoke-induced neutrophilia in mice. PLoS One. 2011;6(12):e28457. https://doi.org/10.1371/journal.pone.0028457.

    Article  CAS  Google Scholar 

  62. Eltom S, Belvisi MG, Stevenson CS, Maher SA, Dubuis E, Fitzgerald KA, et al. Role of the inflammasome-caspase1/11-IL-1/18 axis in cigarette smoke driven airway inflammation: an insight into the pathogenesis of COPD. PLoS One. 2014;9(11):e112829. https://doi.org/10.1371/journal.pone.0112829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Morissette MC, Jobse BN, Thayaparan D, Nikota JK, Shen P, Labiris NR, et al. Persistence of pulmonary tertiary lymphoid tissues and anti-nuclear antibodies following cessation of cigarette smoke exposure. Respir Res. 2014;15:49. https://doi.org/10.1186/1465-9921-15-49.

    Article  PubMed  PubMed Central  Google Scholar 

  64. John-Schuster G, Hager K, Conlon TM, Irmler M, Beckers J, Eickelberg O, et al. Cigarette smoke-induced iBALT mediates macrophage activation in a B cell-dependent manner in COPD. Am J Physiol Lung Cell Mol Physiol. 2014;307(9):L692–706. https://doi.org/10.1152/ajplung.00092.2014.

    Article  CAS  PubMed  Google Scholar 

  65. Hiura TS, Kaszubowski MP, Li N, Nel AE. Chemicals in diesel exhaust particles generate reactive oxygen radicals and induce apoptosis in macrophages. J Immunol. 1999;163(10):5582–91.

    CAS  PubMed  Google Scholar 

  66. Zhang X, Zhong W, Meng Q, Lin Q, Fang C, Huang X, et al. Ambient PM2.5 exposure exacerbates severity of allergic asthma in previously sensitized mice. J Asthma. 2015;52(8):785–94. https://doi.org/10.3109/02770903.2015.1036437.

    Article  CAS  PubMed  Google Scholar 

  67. Ogino K, Zhang R, Takahashi H, Takemoto K, Kubo M, Murakami I, et al. Allergic airway inflammation by nasal inoculation of particulate matter (PM2.5) in NC/Nga mice. PLoS One. 2014;9(3):e92710. https://doi.org/10.1371/journal.pone.0092710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Monn C, Becker S. Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10-2.5) in outdoor and indoor air. Toxicol Appl Pharmacol. 1999;155(3):245–52. https://doi.org/10.1006/taap.1998.8591.

    Article  CAS  PubMed  Google Scholar 

  69. Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol. 2005;207(3):221–31. https://doi.org/10.1016/j.taap.2005.01.008.

    Article  CAS  PubMed  Google Scholar 

  70. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol. 2005;289(5):L698–708. https://doi.org/10.1152/ajplung.00084.2005.

    Article  CAS  PubMed  Google Scholar 

  71. Nilsen A, Hagemann R, Eide I. The adjuvant activity of diesel exhaust particles and carbon black on systemic IgE production to ovalbumin in mice after intranasal instillation. Toxicology. 1997;124(3):225–32.

    Article  CAS  PubMed  Google Scholar 

  72. de Haar C, Hassing I, Bol M, Bleumink R, Pieters R. Ultrafine carbon black particles cause early airway inflammation and have adjuvant activity in a mouse allergic airway disease model. Toxicol Sci Off J Soc Toxicol. 2005;87(2):409–18. https://doi.org/10.1093/toxsci/kfi255.

    Article  CAS  Google Scholar 

  73. Mancino D, Buono G, Cusano M, Minucci M. Adjuvant effects of a crystalline silica on IgE and IgG1 antibody production in mice and their prevention by the macrophage stabilizer poly-2-vinylpyridine N-oxide. Int Arch Allergy Appl Immunol. 1983;71(3):279–81.

    Article  CAS  PubMed  Google Scholar 

  74. Granum B, Gaarder PI, Groeng E, Leikvold R, Namork E, Lovik M. Fine particles of widely different composition have an adjuvant effect on the production of allergen-specific antibodies. Toxicol Lett. 2001;118(3):171–81.

    Article  CAS  PubMed  Google Scholar 

  75. Becker S, Fenton MJ, Soukup JM. Involvement of microbial components and toll-like receptors 2 and 4 in cytokine responses to air pollution particles. Am J Respir Cell Mol Biol. 2002;27(5):611–8. https://doi.org/10.1165/rcmb.4868.

    Article  CAS  PubMed  Google Scholar 

  76. Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol. 2014;14(2):81–93. https://doi.org/10.1038/nri3600.

    Article  CAS  PubMed  Google Scholar 

  77. Dagvadorj J, Shimada K, Chen S, Jones HD, Tumurkhuu G, Zhang W, et al. Lipopolysaccharide induces alveolar macrophage necrosis via CD14 and the P2X7 receptor leading to interleukin-1alpha release. Immunity. 2015;42(4):640–53. https://doi.org/10.1016/j.immuni.2015.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim B, Lee Y, Kim E, Kwak A, Ryoo S, Bae SH, et al. The interleukin-1alpha precursor is biologically active and is likely a key Alarmin in the IL-1 family of cytokines. Front Immunol. 2013;4:391. https://doi.org/10.3389/fimmu.2013.00391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rider P, Carmi Y, Guttman O, Braiman A, Cohen I, Voronov E, et al. IL-1alpha and IL-1beta recruit different myeloid cells and promote different stages of sterile inflammation. J Immunol. 2011;187(9):4835–43. https://doi.org/10.4049/jimmunol.1102048.

    Article  CAS  PubMed  Google Scholar 

  80. Lukens JR, Vogel P, Johnson GR, Kelliher MA, Iwakura Y, Lamkanfi M, et al. RIP1-driven autoinflammation targets IL-1alpha independently of inflammasomes and RIP3. Nature. 2013;498(7453):224–7. https://doi.org/10.1038/nature12174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nambu A, Nakae S. IL-1 and allergy. Allergol Int Off J Japanese Soc Allergol. 2010;59(2):125–35. https://doi.org/10.2332/allergolint.10-RAI-0190.

    Article  CAS  Google Scholar 

  82. Nakae S. IL-1 is required for allergen-specific Th2 cell activation and the development of airway hypersensitivity response. Int Immunol. 2003;15(4):483–90. https://doi.org/10.1093/intimm/dxg054.

    Article  CAS  PubMed  Google Scholar 

  83. Dolence JJ, Kobayashi T, Iijima K, Krempski J, Drake LY, Dent AL, et al. Airway exposure initiates peanut allergy by involving the IL-1 pathway and T follicular helper cells in mice. J Allergy Clin Immunol. 2017;142:1144. https://doi.org/10.1016/j.jaci.2017.11.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Harada Y, Tanaka S, Motomura Y, Harada Y, Ohno S, Ohno S, et al. The 3′ enhancer CNS2 is a critical regulator of interleukin-4-mediated humoral immunity in follicular helper T cells. Immunity. 2012;36(2):188–200. https://doi.org/10.1016/j.immuni.2012.02.002.

    Article  CAS  PubMed  Google Scholar 

  85. Moyron-Quiroz JE, Rangel-Moreno J, Kusser K, Hartson L, Sprague F, Goodrich S, et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat Med. 2004;10(9):927–34. https://doi.org/10.1038/nm1091.

    Article  CAS  PubMed  Google Scholar 

  86. Rangel-Moreno J, Hartson L, Navarro C, Gaxiola M, Selman M, Randall TD. Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis. J Clin Invest. 2006;116(12):3183–94. https://doi.org/10.1172/JCI28756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. GeurtsvanKessel CH, Willart MA, Bergen IM, van Rijt LS, Muskens F, Elewaut D, et al. Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. J Exp Med. 2009;206(11):2339–49. https://doi.org/10.1084/jem.20090410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Halle S, Dujardin HC, Bakocevic N, Fleige H, Danzer H, Willenzon S, et al. Induced bronchus-associated lymphoid tissue serves as a general priming site for T cells and is maintained by dendritic cells. J Exp Med. 2009;206(12):2593–601. https://doi.org/10.1084/jem.20091472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rangel-Moreno J, Carragher DM, de la Luz G-HM, Hwang JY, Kusser K, Hartson L, et al. The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat Immunol. 2011;12(7):639–46. https://doi.org/10.1038/ni.2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Randall TD. Bronchus-associated lymphoid tissue (BALT) structure and function. Adv Immunol. 2010;107:187–241. https://doi.org/10.1016/B978-0-12-381300-8.00007-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chvatchko Y, Kosco-Vilbois MH, Herren S, Lefort J, Bonnefoy JY. Germinal center formation and local immunoglobulin E (IgE) production in the lung after an airway antigenic challenge. J Exp Med. 1996;184(6):2353–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lee JJ, McGarry MP, Farmer SC, Denzler KL, Larson KA, Carrigan PE, et al. Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomonic of asthma. J Exp Med. 1997;185(12):2143–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shinoda K, Hirahara K, Iinuma T, Ichikawa T, Suzuki AS, Sugaya K, et al. Thy1+IL-7+ lymphatic endothelial cells in iBALT provide a survival niche for memory T-helper cells in allergic airway inflammation. Proc Natl Acad Sci U S A. 2016;113(20):E2842–51. https://doi.org/10.1073/pnas.1512600113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Neyt K, GeurtsvanKessel CH, Deswarte K, Hammad H, Lambrecht BN. Early IL-1 signaling promotes iBALT induction after influenza virus infection. Front Immunol. 2016;7:312. https://doi.org/10.3389/fimmu.2016.00312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Emery JL, Dinsdale F. The postnatal development of lymphoreticular aggregates and lymph nodes in infants’ lungs. J Clin Pathol. 1973;26(7):539–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tschernig T, Kleemann WJ, Pabst R. Bronchus-associated lymphoid tissue (BALT) in the lungs of children who had died from sudden infant death syndrome and other causes. Thorax. 1995;50(6):658–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Silina K, Soltermann A, Movahedian Attar F, Casanova R, Uckeley ZM, Thut H, et al. Germinal centers determine the prognostic relevance of tertiary lymphoid structures and are impaired by corticosteroids in lung squamous cell carcinoma. Cancer Res. 2017;78:1308. https://doi.org/10.1158/0008-5472.CAN-17-1987.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etsushi Kuroda .

Editor information

Editors and Affiliations

Ethics declarations

The author received a Grant-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and the Japan Society for the Promotion of Science (JSPS) (MEXT/JSPS KAKENHI grant numbers JP24591145 and JP16H05256), the Research on Development of New Drugs from the Japan Agency for Medical Research and development (AMED) (grant number 18ak0101068h0002), and the Japan Science and Technology Agency (JST) PRESTO (grant number JPMJPR17H4).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuroda, E. (2020). Mechanisms of Action of Inhaled Particulates on Allergic Lung Inflammation. In: Otsuki, T., Di Gioacchino, M., Petrarca, C. (eds) Allergy and Immunotoxicology in Occupational Health - The Next Step. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-4735-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4735-5_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4734-8

  • Online ISBN: 978-981-15-4735-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics