Skip to main content

Role of Tropical Floodplain Wetlands in Carbon Sequestration: A Case Study from Barak River Basin of Assam, Northeast India

  • Chapter
  • First Online:
Nature-based Solutions for Resilient Ecosystems and Societies

Part of the book series: Disaster Resilience and Green Growth ((DRGG))

Abstract

Wetlands store an enormous amount of carbon in its different biophysical components, namely vegetation, soil, and sediment, thus playing an important role in mitigating climate change. Floodplain wetlands cover substantial area in northeast India. They are seasonally inundated by nutrient-rich floodwater that facilitates luxuriant growth of shrubs, herbs, and pteridophytes. High productivity and rapid turnover of such plants may play an important role in carbon-stocking and sequestration in such wetlands. We tested this proposition in Chatla, a seasonal floodplain wetland in Assam, Northeast India by estimating the carbon stock and sequestration of vegetation and soil. The estimated total carbon stock was 21.75 Mg C ha−1. Of this, the vegetation component contributed 3.18 Mg C ha−1 (14.62%), saturated soil contributed 8.53 Mg C ha−1 (39.22%), and unsaturated soil contributed 10.04 Mg C ha−1 (46.16%). The carbon sequestration potential of Chatla was estimated to be 6.36 Mg C ha−1 year−1, of which the contribution of vegetation was the highest (4.14 Mg C ha−1 year−1), followed by saturated soil (1.76 Mg C ha−1 year−1), and unsaturated soil (0.46 Mg C ha−1 year−1). Thus, it is evident that tropical floodplain wetlands sequester large amount of carbon annually through its biophysical components, i.e., vegetation especially the lower angiosperms like shrubs and herbs, and soil. Therefore, management strategies should focus on maintaining vegetation cover comprising the lower angiosperms in the wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adame MF, Santini NS, Tovilla C et al (2015) Carbon stocks and soil sequestration rates of tropical riverine wetlands. Biogeosciences 12:3805–3818

    CAS  Google Scholar 

  • Allen SE, Grimshaw HM, Parkinson JA et al (1974) Chemical analysis of ecological materials. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • ASA (1973) Soils laboratory exercise source book. American Society of Agronomy, Madison, WI

    Google Scholar 

  • Baishya R, Barik SK, Upadhaya K (2009) Distribution pattern of aboveground biomass in natural and plantation forests of humid tropics in northeast India. Trop Ecol 50:295

    Google Scholar 

  • Belsky AJ (1992) Effects of grazing, competition, disturbance and fire on species composition and diversity in grassland communities. J Veg Sci 3:187–200

    Google Scholar 

  • Bernal B, Mitsch WJ (2008) A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio. Ecol Eng 34:311–323

    Google Scholar 

  • Bernal B, Mitsch WJ (2012) Comparing carbon sequestration in temperate freshwater wetland communities. Glob Chang Biol 18:1636–1647

    Google Scholar 

  • Bernal B, Mitsch WJ (2013) Carbon sequestration in freshwater wetlands in Costa Rica and Botswana. Biogeochemistry 115:77–93

    CAS  Google Scholar 

  • Bora N, Nath AJ, Das AK (2013) Above ground biomass and carbon stocks of tree species in tropical forests of Cachar district, Assam, Northeast India. Int J Ecol Environ Sci 39:97–106

    Google Scholar 

  • Bouyoucos GJ (1962) Hydrometer method improved for making particle size analyses of soils. Agron J 54:464–465

    Google Scholar 

  • Brady NC, Weil RR (2008) The nature and properties of soils, 14th edn. Pearson Education, Hoboken, NJ

    Google Scholar 

  • Burrows WH, Henry BK, Back PV, Hoffmann MB et al (2002) Growth and carbon stock change in eucalypt woodlands in northeast Australia: ecological and greenhouse sink implications. Glob Chang Biol 8:769–784

    Google Scholar 

  • Chaudhari PR, Ahire DV, Chkravarty M et al (2013) Soil bulk density as related to soil texture, organic matter content and available total nutrients of Coimbatore soil. Int J Sci Res Pub 3:1–8

    CAS  Google Scholar 

  • Chen JY (2000) Study on the relation between under vegetation biomass and soil bulk density of Cunninghamia lanceolata plantation. J Fujian For Sci Technol 27:56–60

    Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR et al (2003) Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles 17:1111. https://doi.org/10.1029/2002GB001917

    Article  CAS  Google Scholar 

  • Chomchalow N (2000) The utilization of vetiver as medicinal and aromatic plants with special reference to Thailand. Tech Bull No. 2001/1. PRVN/ORDPB, Bangkok. https://pdfs.semanticscholar.org/bd1d/6cd51c012ac9a8f9185c607d18cd1a59a4d4.pdf. Accessed 3 Feb 2020

    Google Scholar 

  • Costanza R, d’Arge R, de Groot R et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    CAS  Google Scholar 

  • Costanza R, de Groot R, Sutton P et al (2014) Changes in the global value of ecosystem services. Glob Environ Chang 26:152–158

    Google Scholar 

  • Cronk JK, Fennessy MS (2016) Wetland plants: biology and ecology. CRC press, Boca Raton, FL

    Google Scholar 

  • Darajeh N, Idris A, Truong P et al (2014) Phytoremediation potential of vetiver system technology for improving the quality of palm oil mill effluent. Adv Mater Sci Eng 2014:683579. https://doi.org/10.1155/2014/683579

    Article  Google Scholar 

  • Deb DB (1981) The flora of Tripura State, vol I. Today and Tomorrow’s Printers and Publishers, New Delhi

    Google Scholar 

  • Deb DB (1983) The flora of Tripura state, vol II. Today and Tomorrow’s Printers and Publishers, New Delhi

    Google Scholar 

  • Dieter M, Elsasser P (2002) Carbon stocks and carbon stock changes in the tree biomass of Germany’s forests. Forstwiss Centralbl 121:195–210

    CAS  Google Scholar 

  • Dixon RK, Krankina ON (1995) Can the terrestrial biosphere be managed to conserve and sequester carbon?. In: Carbon sequestration in the biosphere: processes and products. NATO ASI Series. Series 1. Glob Environ Chang 33:153–179

    CAS  Google Scholar 

  • Dwivedi AK, Singh PN, Samuel CO (2013) Phytosociological analysis of Turanala, a riverine wetland of Gorakhpur, India. Life Sci Leafl 11:101–112

    Google Scholar 

  • Eid EM, Sewelam NA (2010) Estimating the above-ground biomass of Ipomoea Carnea Jacq.: a promising source of fuel-wood in Egypt. In: Proceedings of 6th International Conference on Biological Sciences (Botany), vol 6. ICBS, Tanta University, Tanta, p 38

    Google Scholar 

  • Gao J, Lei G, Zhang X et al (2014) Can δ13C abundance, water-soluble carbon, and light fraction carbon be potential indicators of soil organic carbon dynamics in Zoigê wetland? Catena 119:21–27

    CAS  Google Scholar 

  • Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2:045023. https://doi.org/10.1088/1748-9326/2/4/045023

    Article  CAS  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Google Scholar 

  • de Groot R, Brander L, Van Der PS et al (2012) Global estimates of the value of ecosystems and their services in monetary units. Ecosyst Serv 1:50–61

    Google Scholar 

  • Guyette RP, Dey DC, Stambaugh MC (2008) The temporal distribution and carbon storage of large oak wood in streams and floodplain deposits. Ecosystems 11:643–653

    CAS  Google Scholar 

  • Haase R (1999) Seasonal growth of “algodão-bravo” (Ipomoea carnea spp. fistulosa). Pesq Agrop Brasileira 34:159–163

    Google Scholar 

  • Han F, Hu W, Zheng J et al (2010) Estimating soil organic carbon storage and distribution in a catchment of Loess Plateau, China. Geoderma 154:261–266

    CAS  Google Scholar 

  • Han G, Xing Q, Luo Y et al (2014) Vegetation types alter soil respiration and its temperature sensitivity at the field scale in an estuary wetland. PLoS One 9:e91182. https://doi.org/10.1371/journal.pone.0091182

    Article  CAS  Google Scholar 

  • Hassan MM, Mazumder AH (1990) Distribution of organic matter in some representative forest soils of Bangladesh. Indian J For 13:281–287

    Google Scholar 

  • Hattori T, Shiotsu F, Doi T, Morita S (2010) Suppression of tillering in Erianthus ravennae (L.) Beauv. due to drought stress at establishment. Plant Prod Sci 13:252–255

    Google Scholar 

  • Hengchaovanich D (1998) Vetiver grass for slope stabilization and erosion control, with particular reference to engineering applications. Pacific Rim Vetiver Network Tech Bull 2. Office of the Royal Development Projects Board, Bangkok. https://www.vetiver.org/ICV3-Proceedings/THAI_slopestab.pdf. Accessed 3 Feb 2020

    Google Scholar 

  • Hobbie SE, Schimel JP, Trumbore SE, Randerson JR (2000) Controls over carbon storage and turnover in high-latitude soils. Glob Chang Biol 6:196–210

    Google Scholar 

  • Hooker JD (1875) Flora of British India, vol I. Published Under the Authority of the Secretary of State for India in Council, L. Reeve and Co, London

    Google Scholar 

  • Horowitz M (1972) Spatial growth of Cynodon dactylon (L.) Pers. Weed Res 12:373–383

    Google Scholar 

  • Horowitz M, Friedman T (1971) Biological activity of subterranean residues of Cynodon dactylon L., Sorghum halepense L. and Cyperus rotundus L. Weed Res 11:88–93

    Google Scholar 

  • Howard PJA, Loveland PJ, Bradley RI et al (1995) The carbon content of soil and its geographical distribution in Great Britain. Soil Use Manag 11:9–15

    Google Scholar 

  • Jassal R, Black A, Novak M et al (2005) Relationship between soil CO2 concentrations and forest-floor CO2 effluxes. Agric For Meteorol 130:176–192

    Google Scholar 

  • Junk WJ, An S, Finlayson CM et al (2013) Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquat Sci 75:151–167

    CAS  Google Scholar 

  • Kanjilal UN, Kanjilal PC, Das A (1934) Flora of Assam, vol I. Government of Assam, Shillong

    Google Scholar 

  • Kanjilal UN, Kanjilal PC, Das A (1936) Flora of Assam, vol II. Government of Assam, Shillong

    Google Scholar 

  • Kanjilal UN, Kanjilal PC, Das A et al (1938) Flora of Assam, vol II. The Authority of the Government of Assam, Shillong

    Google Scholar 

  • Kanjilal UN, Kanjilal PC, De RN et al (1940) Flora of India, vol IV. Government of Assam, Shillong

    Google Scholar 

  • Kar D, Barbhuiya AH, Saha B (2008) Wetland diversity of Assam: their present status. In: Sengupta M, Dalwani R (eds) Proceedings of the 12th World Lake Conference Jaipur (Rajasthan) India, 28 October–2 November, 2007

    Google Scholar 

  • Kayranli B, Scholz M, Mustafa A et al (2010) Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands 30:111–124

    Google Scholar 

  • Keddy PA (2010) Wetland ecology: principles and conservation. Cambridge University press, Cambridge

    Google Scholar 

  • Kent M (2011) Vegetation description and data analysis: a practical approach, 2nd edn. Wiley-Blackwell, Chichester

    Google Scholar 

  • Kumar BM (2006) Carbon sequestration potential of tropical homegardens. In: Kumar BM, Nair PKR (eds) Tropical home gardens: a time-tested example of sustainable agroforestry. Springer, Dordrecht, pp 185–204

    Google Scholar 

  • Lal R (2008) Carbon sequestration. Phil Trans R Soc B 363:815–830

    CAS  Google Scholar 

  • Lavania S (2003) Vetiver root system: search for the ideotype. In: Proceedings of the Third International Vetiver Conference (ICV-3) Guangzhou, China, 6–9 October 2003

    Google Scholar 

  • Limpens J, Berendse F, Blodau C et al (2008) Peatlands and the carbon cycle: from local processes to global implications–a synthesis. Biogeosciences 5:1475–1491

    CAS  Google Scholar 

  • Liu M, Zhang Z, He Q et al (2014) Exogenous phosphorus inputs alter complexity of soil-dissolved organic carbon in agricultural riparian wetlands. Chemosphere 95:572–580

    Google Scholar 

  • Lytle DA, Poff NL (2004) Adaptation to natural flow regimes. Trends Ecol Evol 19:94–100

    Google Scholar 

  • Mandal RA, Jha PK, Dutta IC et al (2016) Carbon sequestration in tropical and subtropical plant species in collaborative and community forests of Nepal. Adv Ecol 2016:1529703. https://doi.org/10.1155/2016/1529703

    Article  Google Scholar 

  • Mbow C, Smith P, Skole D et al (2014) Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr Opin Environ Sustain 6:8–14

    Google Scholar 

  • McInnes RJ (2013) Recognizing ecosystem services from wetlands of international importance: an example from Sussex, UK. Wetlands 33:1001–1017

    Google Scholar 

  • Mcleod E, Chmura GL, Bouillon S (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560

    Google Scholar 

  • Megonigal JP, Conner WH, Kroeger S (1997) Aboveground production in southeastern floodplain forests: a test of the subsidy–stress hypothesis. Ecology 78:370–384

    Google Scholar 

  • Mensah S, Veldtman R, Du TB et al (2016a) Above ground biomass and carbon in a South African mistbelt forest and the relationships with tree species diversity and forest structures. Forests 7:79. https://doi.org/10.3390/f7040079

    Article  Google Scholar 

  • Mensah S, Veldtman R, Assogbadjo AE et al (2016b) Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance. Ecol Evol 6:7546–7557

    Google Scholar 

  • Mickovski SB, van Beek LH, Salin F (2005) Uprooting of vetiver uprooting resistance of vetiver grass (Vetiveria zizanioides). Plant Soil 278:33–41

    CAS  Google Scholar 

  • Miller AE, Schimel JP, Meixner T (2005) Episodic rewetting enhances carbon and nitrogen release from chaparral soils. Soil Biol Biochem 37:2195–2204

    CAS  Google Scholar 

  • Mishra R (1968) Ecology workbook. Oxford and IBH Publ. Co, Kolkata

    Google Scholar 

  • Mitra S, Wassmann R, Vlek PL (2005) An appraisal of global wetland area and its organic carbon stock. Curr Sci 88:25–35

    CAS  Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) The value of wetlands: importance of scale and landscape setting. Ecol Econ 35:25–33

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands, 4th edn. Wiley, New York, NY

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2015) Wetlands, 5th edn. Wiley & Sons Inc, Hoboken, NJ

    Google Scholar 

  • Mitsch WJ, Bernal B, Nahlik AM et al (2012) Wetlands, carbon, and climate change. Landsc Ecol 28:583–597

    Google Scholar 

  • Mohanraj R, Saravanan J, Dhanakumar S (2011) Carbon stock in Kolli forests, Eastern Ghats (India) with emphasis on aboveground biomass, litter, woody debris and soils. iForest 4:61–65

    Google Scholar 

  • Mohanty PK, Mishra D (1963) Stomatal distribution in relation to xeromorphy in aquatic plants. Nature 200:909–910

    Google Scholar 

  • Moreno-Casasola P, Hernández ME, Campos CA (2017) Hydrology, soil carbon sequestration and water retention along a coastal wetland gradient in the Alvarado Lagoon System, Veracruz, Mexico. J Coast Res 77:104–115

    CAS  Google Scholar 

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. John Wiley and Sons Inc, New York, NY

    Google Scholar 

  • Munsell Soil Color Charts (1994) Revised edition Munsell publishing company. New Windsor, New York, NY

    Google Scholar 

  • Murthy IK, Gupta M, Tomar S et al (2013) Carbon sequestration potential of agroforestry systems in India. J Earth Sci Clim Change 4:1–7

    Google Scholar 

  • Nandan MJ (2012) Floodplain wetlands: focusing on India. In: Lars B, Reginald WH, Fairbridge RW (eds) Encyclopedia of lakes and reservoirs. Springer, Dordrecht; London, p 282

    Google Scholar 

  • Nath S, Nath AJ, Sileshi GW et al (2017) Biomass stocks and carbon storage in Barringtonia acutangula L. floodplain forests in North East India. Biomass Bioenergy 98:37–42

    Google Scholar 

  • Návar J (2009) Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. For Ecol Manag 257:427–434

    Google Scholar 

  • Nie N, Hull C, Bent D (2011) IBM statistical package for the social sciences (SPSS Version 20). Computer software. IBM, Chicago, IL

    Google Scholar 

  • Nowak DJ, Crane DE (2002) Carbon storage and sequestration by urban trees in the USA. Environ Pollut 116:381–389

    CAS  Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    CAS  Google Scholar 

  • Odum WE, Odum EP, Odum HT (1995) Nature’s pulsing paradigm. Estuaries 18:547–555

    Google Scholar 

  • Owens PR, Rutledge EM (2005) Soil morphology. In: Encyclopedia of soil science in the environment, vol 2. Elsevier Publishing, Oxford, p 520

    Google Scholar 

  • Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    CAS  Google Scholar 

  • Pearson TR, Brown SL, Birdsey RA (2007) Measurement guidelines for the sequestration of forest carbon. Northern Research Station, Department of Agriculture, Newtown Square, PA. https://www.nrs.fs.fed.us/pubs/gtr/gtr_nrs18.pdf. Accessed 10 Nov 2017

    Google Scholar 

  • Piedade MTF, Junk WJ, Parolin P (2001) The flood pulse and photosynthetic response of trees in a whitewater floodplain (várzea) of the Central Amazon, Brazil. Verh Internat Verein Theor Angew Limnol 27:1734–1739

    Google Scholar 

  • Pietsch SA, Hasenauer H, Kučera J et al (2003) Modeling effects of hydrological changes on the carbon and nitrogen balance of oak in floodplains. Tree Physiol 23:735–746

    Google Scholar 

  • Piper CS (1966) Soil and plant analysis. Hans Publishers, Bombay

    Google Scholar 

  • Prasad SN, Ramachandra TV, Ahalya N et al (2002) Conservation of wetlands of India - a review. Trop Ecol 43:173–186

    Google Scholar 

  • Rao NS, Purkayastha D (2003) Common property resource management: the case of Chatla in Assam. J Hum Ecol 14:457–462

    Google Scholar 

  • Rizvi RH, Dhyani SK, Yadav RS et al (2011) Biomass production and carbon stock of poplar agroforestry systems in Yamunanagar and Saharanpur districts of northwestern India. Curr Sci 100:736–742

    CAS  Google Scholar 

  • Robertson AI, Bunn SE, Boon PI et al (1999) Sources, sinks and transformations of organic carbon in Australian floodplain rivers. Mar Freshw Res 50:813–829

    CAS  Google Scholar 

  • Robertson AI, Bacon P, Heagney G (2001) The responses of floodplain primary production to flood frequency and timing. J Appl Ecol 38:126–136

    Google Scholar 

  • Rodríguez-Loinaz G, Amezaga I, Onaindia M (2013) Use of native species to improve carbon sequestration and contribute towards solving the environmental problems of the timberlands in Biscay, northern Spain. J Environ Manag 120:18–26

    Google Scholar 

  • Sahagian D, Melack J, Birkett C et al (1997) Global wetland distribution and functional characterization: trace gases and the hydrologic cycle. In: Joint IGBP GAIM-DIS-BAHC-IGAC-LUCC workshop, IGBP GAIM/IGBP Global Change, Santa Barbara, CA, USA, 16–20 May 1996

    Google Scholar 

  • Saintilan N, Rogers K, Mazumder D et al (2013) Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estua Coas Shelf Sc 128:84–92

    CAS  Google Scholar 

  • Sarkar UK, Borah BC (2017) Flood plain wetland fisheries of India: with special reference to impact of climate change. Wetl Ecol Manag 26:1–15

    Google Scholar 

  • Sarkar P, Das T (2016) Wetland ecosystem services and its valuation with special reference to India - a review. In: Upadhaya K (ed) Biodiversity and environmental conservation. Discovery Publishing House Pvt. Ltd, New Delhi, pp 59–76

    Google Scholar 

  • Sarkar P, Das T, Mandal R (2019a) Assessing human dependency on the provisioning ecosystem services of Chatla floodplain wetland of Barak Valley, Assam, Northeast India. Ind J Ecol 46:516–520

    Google Scholar 

  • Sarkar P, Das T, Adhikari D (2019b) Variation in species assemblages due to micro-topography and flow regime govern vegetation carbon stock in seasonal floodplain wetlands. Ecol. Process 8:49. https://doi.org/10.1186/s13717-019-0201-9

  • Saunders MJ, Jones MB, Kansiime F (2007) Carbon and water cycles in tropical papyrus wetlands. Wetl Ecol Manag 15:489–498

    CAS  Google Scholar 

  • Scharf R (2009) Soil composition and formation. SCDNR Land, Water, and Conservation Division, Columbia, SC. http://www.nerrs.noaa.gov/doc/siteprofile/acebasin/html/envicond/soil/slform.htm. Accessed 6 Mar 2017

    Google Scholar 

  • Schöngart J, Wittmann F (2010) Biomass and net primary production of Central Amazonian floodplain forests. In: Junk WJ, TFP M, Florian W et al (eds) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Dordrecht, pp 347–388

    Google Scholar 

  • Sharma CM, Baduni NP, Gairola S et al (2010) Tree diversity and carbon stocks of some major forest types of Garhwal Himalaya, India. For Ecol Manag 260:2170–2179

    Google Scholar 

  • Silver WL, Kueppers LM, Lugo AE et al (2004) Carbon sequestration and plant community dynamics following reforestation of tropical pasture. Ecol Appl 14:1115–1127

    Google Scholar 

  • Sohi S, Lopez-Capel E, Krull E et al (2009) Biochar, climate change and soil: a review to guide future research. CSIRO Land Water Sci Rep 5:17–31

    Google Scholar 

  • Stevenson FJ, Cole MA (1999) Cycles of soils: carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley & Sons, New York, NY

    Google Scholar 

  • Sugunan VV, Bhattacharya BK (2000) Ecology and fisheries of beels in Assam. Bull. 104. CIFRI, Barrackpore

    Google Scholar 

  • Tandon HLS (ed) (1995) Methods of analysis of soils, plants, waters, and fertilizers. Fertilizer Development and Consultation Organization, New Delhi

    Google Scholar 

  • Truong PN (1999) Vetiver grass technology for land stabilization, erosion and sediment control in the Asia Pacific region. In: Proceedings of First Asia Pacific Conference on Ground and Water Bioengineering for Erosion Control and Slope Stabilisation, Manila, Philippines, 19–21 April 1999

    Google Scholar 

  • Vymazal J, Kröpfelová L (2008) Wastewater treatment in constructed wetlands with horizontal sub-surface flow, vol 14. Springer, Dordrecht

    Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    CAS  Google Scholar 

  • Walling DE, Fang D, Nicholas AP et al (2006) River floodplains as carbon sinks. In: Proceedings of the Sediment Dynamics and the Hydromorphology of Fluvial Systems symposium, Dundee, UK, 3–7 July 2006, vol 306. IAHS Publication, Wallingford, p 470

    Google Scholar 

  • Wauters JB, Coudert S, Grallien E et al (2008) Carbon stock in rubber tree plantations in Western Ghana and Mato Grosso (Brazil). For Ecol Manag 255:2347–2361

    Google Scholar 

  • White LM (1973) Carbohydrate reserves of grasses: a review. J Range Manag 26:13–18

    CAS  Google Scholar 

  • Wood J, Low AB, Donaldson JS et al (1994) Threats to plant species diversity through urbanization and habitat fragmentation in the Cape Metropolitan Area, South Africa. Strelitzia 1:259–274

    Google Scholar 

  • Woomer PL (1999) Impact of cultivation of carbon fluxes in woody savannas of South Africa. Water Air Soil Pollut 70:403–412

    Google Scholar 

  • Xu M, Qi Y (2001) Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Glob Chang Biol 7:667–677

    Google Scholar 

  • Young JA (1992) Ecology and management of medusahead (Taeniatherum caput-medusae ssp. asperum [Simk.] Melderis). Great Basin Nat 52:245–252

    Google Scholar 

  • Zdruli P, Eswaran H, Kimble J (1995) Organic carbon content and rates of sequestration in soils of Albania. Soil Sci Soc Am J 59:1684–1687

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Natural Resource Management division laboratory of ICAR Research Complex for NEH Region, Meghalaya for helping in soil sample analyses. The first author is thankful to UGC, New Delhi, for providing the UGC-BSR fellowship in carrying out the research work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarkar, P., Das, T. (2020). Role of Tropical Floodplain Wetlands in Carbon Sequestration: A Case Study from Barak River Basin of Assam, Northeast India. In: Dhyani, S., Gupta, A., Karki, M. (eds) Nature-based Solutions for Resilient Ecosystems and Societies. Disaster Resilience and Green Growth. Springer, Singapore. https://doi.org/10.1007/978-981-15-4712-6_21

Download citation

Publish with us

Policies and ethics